Do Synthetic Fragrances in Personal Care and Household Products Impact Indoor Air Quality and Pose Health Risks?
Abstract
:1. Introduction
2. Synthetic Fragrances in Personal Care and Household Products and Potential Adverse Effects
3. Volatile Organic Compounds in Fragranced Products
4. Indoor Air Quality and Fragrance VOCs
5. Discussion
6. Conclusions
7. Materials and Methods
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozano, I.; Pérez-Guzmán, C.J.; Mora, A.; Mahlknecht, J.; Aguilar, C.L.; Cervantes-Avilés, P. Pharmaceuticals and personal care products in water streams: Occurrence, detection, and removal by electrochemical advanced oxidation processes. Sci. Total Environ. 2022, 827, 154348. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, M.; Khan, S.A. Pharmaceutical pollution: A weakly regulated global environmental risk. Rev. Eur. Comp. Int. Environ. Law 2022, 31, 75–88. [Google Scholar] [CrossRef]
- Freitas, L.A.A.; Radis-Baptista, G. Pharmaceutical Pollution and Disposal of Expired, Unused, and Unwanted Medicines in the Brazilian Context. J. Xenobiot. 2021, 11, 61–76. [Google Scholar] [CrossRef]
- Khalid, M.; Abdollahi, M. Environmental Distribution of Personal Care Products and Their Effects on Human Health. Iran. J. Pharm. Res. IJPR 2021, 20, 216–253. [Google Scholar] [CrossRef]
- Salthammer, T. Emerging indoor pollutants. Int. J. Hyg. Environ. Health 2020, 224, 113423. [Google Scholar] [CrossRef]
- Yeoman, A.M.; Lewis, A.C. Global emissions of VOCs from compressed aerosol products. Elem. Sci. Anthr. 2021, 9, 00177. [Google Scholar] [CrossRef]
- Angulo Milhem, S.; Verriele, M.; Nicolas, M.; Thevenet, F. Does the ubiquitous use of essential oil-based products promote indoor air quality? A critical literature review. Environ. Sci. Pollut. Res. Int. 2020, 27, 14365–14411. [Google Scholar] [CrossRef]
- Lin, Z.; Huang, B.; Ouyang, L.; Zheng, L. Synthesis of Cyclic Fragrances via Transformations of Alkenes, Alkynes and Enynes: Strategies and Recent Progress. Molecules 2022, 27, 3576. [Google Scholar] [CrossRef]
- Armanino, N.; Charpentier, J.; Flachsmann, F.; Goeke, A.; Liniger, M.; Kraft, P. What’s Hot, What’s Not: The Trends of the Past 20 Years in the Chemistry of Odorants. Angew. Chem. 2020, 59, 16310–16344. [Google Scholar] [CrossRef]
- Stepanyuk, A.; Kirschning, A. Synthetic terpenoids in the world of fragrances: Iso E Super(®) is the showcase. Beilstein J. Org. Chem. 2019, 15, 2590–2602. [Google Scholar] [CrossRef] [Green Version]
- Wolkoff, P. Indoor air chemistry: Terpene reaction products and airway effects. Int. J. Hyg. Environ. Health 2020, 225, 113439. [Google Scholar] [CrossRef]
- Date, M.S.; O’Brien, D.; Botelho, D.J.; Schultz, T.W.; Liebler, D.C.; Penning, T.M.; Salvito, D.T. Clustering a Chemical Inventory for Safety Assessment of Fragrance Ingredients: Identifying Read-Across Analogs to Address Data Gaps. Chem. Res. Toxicol. 2020, 33, 1709–1718. [Google Scholar] [CrossRef]
- Steinemann, A.; Wheeler, A.J.; Larcombe, A. Fragranced consumer products: Effects on asthmatic Australians. Air Qual. Atmos. Health 2018, 11, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Aloum, L.; Alefishat, E.; Adem, A.; Petroianu, G. Ionone Is More than a Violet’s Fragrance: A Review. Molecules 2020, 25, 5822. [Google Scholar] [CrossRef]
- Steinemann, A. Fragranced consumer products: Exposures and effects from emissions. Air Qual. Atmos. Health 2016, 9, 861–866. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Saha, B.K.; Kumar, R.; Varadwaj, P.K. OlfactionBase: A repository to explore odors, odorants, olfactory receptors and odorant–receptor interactions. Nucleic Acids Res. 2021, 50, D678–D686. [Google Scholar] [CrossRef]
- Maßberg, D.; Hatt, H. Human Olfactory Receptors: Novel Cellular Functions Outside of the Nose. Physiol. Rev. 2018, 98, 1739–1763. [Google Scholar] [CrossRef]
- Orecchioni, M.; Matsunami, H.; Ley, K. Olfactory receptors in macrophages and inflammation. Front. Immunol. 2022, 13, 214–221. [Google Scholar] [CrossRef]
- Sanz, G.; Leray, I.; Grébert, D.; Antoine, S.; Acquistapace, A.; Muscat, A.; Boukadiri, A.; Mir, L.M. Structurally related odorant ligands of the olfactory receptor OR51E2 differentially promote metastasis emergence and tumor growth. Oncotarget 2017, 8, 4330–4341. [Google Scholar] [CrossRef] [Green Version]
- Pick, H.; Etter, S.; Baud, O.; Schmauder, R.; Bordoli, L.; Schwede, T.; Vogel, H. Dual activities of odorants on olfactory and nuclear hormone receptors. J. Biol. Chem. 2009, 284, 30547–30555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S. Fragrance compounds: The wolves in sheep’s clothings. Med. Hypotheses 2017, 102, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, J.; Karthikeyan, B.S.; Jost, J.; Samal, A. An atlas of fragrance chemicals in children’s products. Sci. Total Environ. 2022, 818, 151682. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, N.; Doronila, A.; Mornane, P.J.; Duan, A.; Kolev, S.D.; Steinemann, A. Volatile chemical emissions from fragranced baby products. Air Qual. Atmos. Health 2018, 11, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Pinkas, A.; Gonçalves, C.L.; Aschner, M. Neurotoxicity of fragrance compounds: A review. Environ. Res. 2017, 158, 342–349. [Google Scholar] [CrossRef]
- Maqbool, F.; Mostafalou, S.; Bahadar, H.; Abdollahi, M. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci. 2016, 145, 265–273. [Google Scholar] [CrossRef]
- Darbre, P.D. Overview of air pollution and endocrine disorders. Int. J. Gen. Med. 2018, 11, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Martín-Pozo, L.; Gómez-Regalado, M.D.C.; Moscoso-Ruiz, I.; Zafra-Gómez, A. Analytical methods for the determination of endocrine disrupting chemicals in cosmetics and personal care products: A review. Talanta 2021, 234, 122642. [Google Scholar] [CrossRef]
- Reeder, M.J. Allergic Contact Dermatitis to Fragrances. Dermatol. Clin. 2020, 38, 371–377. [Google Scholar] [CrossRef]
- de Groot, A.C. Fragrances: Contact Allergy and Other Adverse Effects. Dermat. Contact Atopic Occup. Drug 2020, 31, 13–35. [Google Scholar] [CrossRef]
- Isola, D.; Kimber, I.; Sarlo, K.; Lalko, J.; Sipes, I.G. Chemical respiratory allergy and occupational asthma: What are the key areas of uncertainty? J. Appl. Toxicol. JAT 2008, 28, 249–253. [Google Scholar] [CrossRef]
- Basketter, D.; Kimber, I. Fragrance sensitisers: Is inhalation an allergy risk? Regul. Toxicol. Pharmacol. RTP 2015, 73, 897–902. [Google Scholar] [CrossRef]
- Basketter, D.A.; Huggard, J.; Kimber, I. Fragrance inhalation and adverse health effects: The question of causation. Regul. Toxicol. Pharmacol. RTP 2019, 104, 151–156. [Google Scholar] [CrossRef]
- Singer, B.C.; Destaillats, H.; Hodgson, A.T.; Nazaroff, W.W. Cleaning products and air fresheners: Emissions and resulting concentrations of glycol ethers and terpenoids. Indoor Air 2006, 16, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Batterman, S.; Su, F.C.; Li, S.; Mukherjee, B.; Jia, C. Personal exposure to mixtures of volatile organic compounds: Modeling and further analysis of the RIOPA data. Res. Rep. (Health Eff. Inst.) 2014, 181, 3–63. [Google Scholar]
- Uter, W.; Yazar, K.; Kratz, E.M.; Mildau, G.; Lidén, C. Coupled exposure to ingredients of cosmetic products: I. Fragrances. Contact Dermat. 2013, 69, 335–341. [Google Scholar] [CrossRef]
- Han, I.; Seo, J.Y.; Barr, D.B.; Panuwet, P.; Yakimavets, V.; D’Souza, P.E.; An-Han, H.; Afshar, M.; Chao, Y.Y. Evaluating Indoor Air Phthalates and Volatile Organic Compounds in Nail Salons in the Greater New York City Area: A Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 12411. [Google Scholar] [CrossRef]
- Clausen, P.A.; Frederiksen, M.; Sejbæk, C.S.; Sørli, J.B.; Hougaard, K.S.; Frydendall, K.B.; Carøe, T.K.; Flachs, E.M.; Meyer, H.W.; Schlünssen, V.; et al. Chemicals inhaled from spray cleaning and disinfection products and their respiratory effects. A comprehensive review. Int. J. Hyg. Environ. Health 2020, 229, 113592. [Google Scholar] [CrossRef]
- Kim, S.; Hong, S.H.; Bong, C.K.; Cho, M.H. Characterization of air freshener emission: The potential health effects. J. Toxicol. Sci. 2015, 40, 535–550. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, Y.; Moustakas, H.; Api, A.M.; Smith, B.; Williams, G.; Greim, H.; Eisenbrand, G.; Dekant, W. Assessment of the genotoxic potential of mintlactone. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2022, 159, 112659. [Google Scholar] [CrossRef]
- Ogbodo, J.O.; Arazu, A.V.; Iguh, T.C.; Onwodi, N.J.; Ezike, T.C. Volatile organic compounds: A proinflammatory activator in autoimmune diseases. Front. Immunol. 2022, 13, 928379. [Google Scholar] [CrossRef] [PubMed]
- Steinemann, A.; Nematollahi, N.; Rismanchi, B.; Goodman, N.; Kolev, S.D. Pandemic products and volatile chemical emissions. Air Qual. Atmos. Health 2021, 14, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Nematollahi, N.; Ross, P.A.; Hoffmann, A.A.; Kolev, S.D.; Steinemann, A. Limonene Emissions: Do Different Types Have Different Biological Effects? Int. J. Environ. Res. Public Health 2021, 18, 505. [Google Scholar] [CrossRef] [PubMed]
- Heeley-Hill, A.C.; Grange, S.K.; Ward, M.W.; Lewis, A.C.; Owen, N.; Jordan, C.; Hodgson, G.; Adamson, G. Frequency of use of household products containing VOCs and indoor atmospheric concentrations in homes. Environ. Sci. Process. Impacts 2021, 23, 699–713. [Google Scholar] [CrossRef]
- Kawakami, T.; Isama, K.; Tanaka-Kagawa, T.; Jinnno, H. Analysis of glycols, glycol ethers, and other volatile organic compounds present in household water-based hand pump sprays. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2017, 52, 1204–1210. [Google Scholar] [CrossRef]
- Asif, Z.; Chen, Z.; Haghighat, F.; Nasiri, F.; Dong, J. Estimation of Anthropogenic VOCs Emission Based on Volatile Chemical Products: A Canadian Perspective. Environ. Manag. 2022, 1–19. [Google Scholar] [CrossRef]
- Yeoman, A.M.; Heeley-Hill, A.C.; Shaw, M.; Andrews, S.J.; Lewis, A.C. Inhalation of VOCs from facial moisturizers and the influence of dose proximity. Indoor Air 2022, 32, e12948. [Google Scholar] [CrossRef]
- Potera, C. Scented products emit a bouquet of VOCs. Environ. Health Perspect. 2011, 119, A16. [Google Scholar] [CrossRef]
- Api, A.M.; Basketter, D.; Bridges, J.; Cadby, P.; Ellis, G.; Gilmour, N.; Greim, H.; Griem, P.; Kern, P.; Khaiat, A.; et al. Updating exposure assessment for skin sensitization quantitative risk assessment for fragrance materials. Regul. Toxicol. Pharmacol. RTP 2020, 118, 104805. [Google Scholar] [CrossRef]
- Liu, N.; Bu, Z.; Liu, W.; Kan, H.; Zhao, Z.; Deng, F.; Huang, C.; Zhao, B.; Zeng, X.; Sun, Y.; et al. Health effects of exposure to indoor volatile organic compounds from 1980 to 2017: A systematic review and meta-analysis. Indoor Air 2022, 32, e13038. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8972. [Google Scholar] [CrossRef]
- Paterson, C.A.; Sharpe, R.A.; Taylor, T.; Morrissey, K. Indoor PM2.5, VOCs and asthma outcomes: A systematic review in adults and their home environments. Environ. Res. 2021, 202, 111631. [Google Scholar] [CrossRef]
- Halios, C.H.; Landeg-Cox, C.; Lowther, S.D.; Middleton, A.; Marczylo, T.; Dimitroulopoulou, S. Chemicals in European residences—Part I: A review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Sci. Total Environ. 2022, 839, 156201. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Bernhardt, E.S. Chapter 3—The Atmosphere. In Biogeochemistry, 4th ed.; Schlesinger, W.H., Bernhardt, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 51–97. [Google Scholar]
- Barnes, P.W.; Robson, T.M.; Neale, P.J.; Williamson, C.E.; Zepp, R.G.; Madronich, S.; Wilson, S.R.; Andrady, A.L.; Heikkilä, A.M.; Bernhard, G.H.; et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem. Photobiol. Sci. Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol. 2022, 21, 275–301. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Environmental Impacts of Food Production. 2020. Available online: https://ourworldindata.org/environmental-impacts-of-food (accessed on 21 February 2023).
- Insights, F.B. Perfume Market Size, Share & COVID-19. 2021. Available online: https://www.fortunebusinessinsights.com/perfume-market-102273 (accessed on 21 February 2023).
- Api, A.M.; Belsito, D.; Bruze, M.; Cadby, P.; Calow, P.; Dagli, M.L.; Dekant, W.; Ellis, G.; Fryer, A.D.; Fukayama, M.; et al. Criteria for the Research Institute for Fragrance Materials, Inc. (RIFM) safety evaluation process for fragrance ingredients. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2015, 82, S1–S19. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Babar, A.; Naser Ali, A.-W.; Saiba, S.; Aftab, A.; Shah Alam, K.; Firoz, A. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Courtens, F.; Demangeat, J.L.; Benabdallah, M. Could the Olfactory System Be a Target for Homeopathic Remedies as Nanomedicines? J. Altern. Complement. Med. 2018, 24, 1032–1038. [Google Scholar] [CrossRef] [Green Version]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef]
- Steinemann, A.; Macgregor, I.; Gordon, S.; Gallagher, L.; Davis, A.; Ribeiro, D.; Wallace, L. Fragranced consumer products: Chemicals emitted, ingredients unlisted. Environ. Impact Assess. Rev. 2011, 31, 328–333. [Google Scholar] [CrossRef]
- Wenjuan, W.; John, C.L.; Olivier, R.; Corinne, M. Predicting chemical emissions from household cleaning and personal care products: A review. Build. Environ. 2022, 207, 108483. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
Fragrance Chemicals and Formula Components | Implication on Human Health | Ref. |
---|---|---|
Phthalates, synthetic musks, and terpenes (e.g., citral, linalool, limonene, geraniol, citronellol, eugenol, farnesol) | Neurotoxicity and neural issues dizziness, seizures, loss of coordination, depression, migraine, headache, insomnia | [16,25] |
Fragrance-related phthalates and synthetic musks | Endocrine disruption Reproductive and sexual abnormalities issues | [22,27,28] |
Terpenes, saturated and unsaturated aldehydes, and acetals | Allergies (cutaneous and pulmonary hypersensitivity) allergic reactions (fragrance allergy), contact dermatitis, contact reactions (contact urticaria), photosensitivity, and respiratory disorders | [30] |
Terpenes, VOCs (aromatic and aliphatic compounds) | Respiratory issues Asthma, difficulty breathing, coughing, shortness of breath | [38] |
Ultrafine particles | Cardiac symptoms Increased risk of cardiovascular health hazards and cardiac insufficiency | [39] |
Lactones (e.g., mintlactone) and phthalates | Mutagenesis and cancer | [39,40] |
VOCs (diverse classes) | Autoimmune diseases, including pulmonary Disease, atherosclerosis, and rheumatoid arthritis | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rádis-Baptista, G. Do Synthetic Fragrances in Personal Care and Household Products Impact Indoor Air Quality and Pose Health Risks? J. Xenobiot. 2023, 13, 121-131. https://doi.org/10.3390/jox13010010
Rádis-Baptista G. Do Synthetic Fragrances in Personal Care and Household Products Impact Indoor Air Quality and Pose Health Risks? Journal of Xenobiotics. 2023; 13(1):121-131. https://doi.org/10.3390/jox13010010
Chicago/Turabian StyleRádis-Baptista, Gandhi. 2023. "Do Synthetic Fragrances in Personal Care and Household Products Impact Indoor Air Quality and Pose Health Risks?" Journal of Xenobiotics 13, no. 1: 121-131. https://doi.org/10.3390/jox13010010
APA StyleRádis-Baptista, G. (2023). Do Synthetic Fragrances in Personal Care and Household Products Impact Indoor Air Quality and Pose Health Risks? Journal of Xenobiotics, 13(1), 121-131. https://doi.org/10.3390/jox13010010