Nanoformulation of a Trypanocidal Drug Isometamidium Chloride Ameliorates the Apurinic-Apyrimidinic DNA Sites/Genotoxic Effects in Horse Blood Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of ISM-Loaded Nanoparticles
2.3. Morphology/Size
2.4. Cell-Culture Conditions
2.5. Cytoviability/Toxicity Studies
2.6. Isolation of Peripheral Blood Mononuclear Cells and Treatments
2.7. Isolation of DNA
2.8. Estimation of Apurinic/Apyrimidinic (AP) Sites to Examine DNA Damage
2.9. Statistical Evaluation
3. Results and Discussion
3.1. Synthesis and Morphology of ISM-Loaded Sodium Alginate and Gum Acacia Nanoparticles
3.2. Cytotoxicity of ISM SANPs on Vero Cells
3.3. Apurinic/Apyrimidinic (AP) Sites Produced by ISM and ISM SANPs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rathore, N.S.; Manuja, A.; Manuja, B.K.; Choudhary, S. Chemotherapeutic approaches against Trypanosoma evansi: Retrospective analysis, current status and future outlook. Curr. Top. Med. Chem. 2016, 16, 2316–2327. [Google Scholar] [CrossRef] [PubMed]
- African Animal Trypanosomiasis. Available online: https://www.fao.org/3/ah809e/AH809E02.htm (accessed on 27 February 2023).
- Berg, S.S. Structure of Isometamidium (M. and B. 4180A), 7-m-Amidinophenyldiazoamino-2-amino-10-ethyl-9-phenylphenanthridinium Chloride Hydrochloride, the Red Isomer Present in Metamidium. Nature 1960, 188, 1106–1107. [Google Scholar] [CrossRef]
- Richardson, J.P. Mechanism of ethidium bromide inhibition of RNA polymerase. J. Mol. Biol. 1973, 78, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, T.A. Inhibition of topoisomerases in African trypanosomes. Acta Trop. 1993, 54, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Lantz, C.H.; Van Dyke, K. Plasmodium berghei: Inhibited incorporation of AMP-8-3H into nucleic acids of erythrocyte-free malarial parasites by acridines, phenanthridines, and 8-aminoquinolines. Exp. Parasitol. 1972, 31, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Kinabo, L.D.B.; Bogan, J.A. Pharmacokinetic and histopathological investigations of isometamidium in cattle. Res. Vet. Sci. 1988, 44, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Homeida, A.M.; El Amin, E.A.; Adam, S.E.; Mahmoud, M.M. The effect of samorin (isometamidium chloride) on Trypanosoma evansi infection in mice. Br. J. Exp. Pathol. 1980, 61, 380. [Google Scholar]
- Ali, B.H.; Haroun, E.M. Acute toxicity of samorin (isometamidium chloride) in rabbits. Comp. Biochem. Physiol. Part—C Toxicol. 1984, 78, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Peregrine, A.S.; Ogunyemi, O.; Whitelaw, D.D.; Holmes, P.H.; Moloo, S.K.; Hirumi, H.; Urquhart, G.M.; Murray, M. Factors influencing the duration of isometamidium chloride (Samorin) prophylaxis against experimental challenge with metacyclic forms of Trypanosomacongolense. Vet. Parasitol. 1988, 28, 53–64. [Google Scholar] [CrossRef]
- Jena, P.; Mohanty, S.; Mallick, R.; Jacob, B.; Sonawane, A. Toxicity and antibacterial assessment of chitosan coated silver nanoparticles on human pathogens and macrophage cells. Int. J. Nanomed. 2012, 7, 1805. [Google Scholar]
- Papageorgiou, I.; Brown, C.; Schins, R.; Singh, S.; Newson, R.; Davis, S.; Fisher, J.; Ingham, E.; Case, C.P. The effect of nano-and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials 2007, 28, 2946–2958. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Chopra, M.; Dilbaghi, N.; Manuja, B.K.; Kumar, S.; Kumar, R.; Rathore, N.S.; Yadav, S.C.; Manuja, A. Synthesis and evaluation of isometamidium-alginate nanoparticles on equine mononuclear and red blood cells. Int. J. Biol. Macromol. 2016, 92, 788–794. [Google Scholar] [CrossRef] [PubMed]
- IC50 Calculator. Available online: https://www.aatbio.com/tools/ic50-calculator (accessed on 7 July 2021).
- Manuja, A.; Kumar, P.; Kumar, R.; Kumar, B.; Singha, H.; Sharma, R.K.; Yadav, S.C. CpG-ODN class C-mediated immunostimulation and its potential against Trypanosomaevansi in equines. Int. Immunopharmacol. 2014, 22, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, T. Instability and decay of the primary structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Friedberg, E.C.; Walker, G.C.; Siede, W.; Wood, R.D.; Schultz, R.A.; Ellenberger, T. DNA Repair and Mutagenesis, 2nd ed.; ASM Press: Washington, DC, USA, 2006. [Google Scholar]
- Wilson, D.M., III; Bohr, V.A. The mechanics of base excision repair, and its relationship to aging and disease. DNA Repair. 2007, 6, 544–559. [Google Scholar] [CrossRef] [PubMed]
- Friedberg, E.C.; Aguilera, A.; Gellert, M.; Hanawalt, P.C.; Hays, J.B.; Lehmann, A.R.; Lindahl, T.; Lowndes, N.; Sarasin, A.; Wood, R.D. DNA repair: From molecular mechanism to human disease. DNA Repair. 2006, 5, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Shafirovich, V.; Kropachev, K.; Anderson, T.; Liu, Z.; Kolbanovskiy, M.; Martin, B.D.; Sugden, K.; Shim, Y.; Chen, X.; Min, J.H.; et al. Base and nucleotide excision repair of oxidatively generated guanine lesions in DNA. J. Biol. Chem. 2016, 291, 5309–5319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusakabe, M.; Onishi, Y.; Tada, H.; Kurihara, F.; Kusao, K.; Furukawa, M.; Iwai, S.; Yokoi, M.; Sakai, W.; Sugasawa, K. Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ. 2019, 41, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surve, D.H.; Jindal, A.B. Development of cationic Isometamidium chloride loaded long-acting lipid nanoformulation: Optimization, cellular uptake, pharmacokinetics, biodistribution, and immunohistochemical evaluation. Eur. J. Pharm. Sci. 2021, 167, 106024. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yao, L.; Brown, C.; Rizzo, C.J.; Turesky, R.J. Quantitation of apurinic/apyrimidinic sites in isolated DNA and in mammalian tissue with a reduced level of artifacts. Anal. Chem. 2019, 91, 7403–7410. [Google Scholar] [CrossRef]
Time (Hours) | Concentration (µg/mL) | Statistically Significant Difference | Two-Tailed p Value for ARP Sites for ISM amd ISM SANPS |
---|---|---|---|
48 h | 100 | ✓ | 0.0044 |
50 | ✓ | 0.0020 | |
25 | ✓ | 0.0001 | |
24 h | 100 | ✓ | 0.0113 |
50 | ✓ | 0.0205 | |
25 | ✓ | 0.0053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.; Kumar, B.; Dilbaghi, N.; Devi, N.; Prasad, M.; Manuja, A. Nanoformulation of a Trypanocidal Drug Isometamidium Chloride Ameliorates the Apurinic-Apyrimidinic DNA Sites/Genotoxic Effects in Horse Blood Cells. J. Xenobiot. 2023, 13, 148-158. https://doi.org/10.3390/jox13010012
Singh S, Kumar B, Dilbaghi N, Devi N, Prasad M, Manuja A. Nanoformulation of a Trypanocidal Drug Isometamidium Chloride Ameliorates the Apurinic-Apyrimidinic DNA Sites/Genotoxic Effects in Horse Blood Cells. Journal of Xenobiotics. 2023; 13(1):148-158. https://doi.org/10.3390/jox13010012
Chicago/Turabian StyleSingh, Sandeep, Balvinder Kumar, Neeraj Dilbaghi, Nisha Devi, Minakshi Prasad, and Anju Manuja. 2023. "Nanoformulation of a Trypanocidal Drug Isometamidium Chloride Ameliorates the Apurinic-Apyrimidinic DNA Sites/Genotoxic Effects in Horse Blood Cells" Journal of Xenobiotics 13, no. 1: 148-158. https://doi.org/10.3390/jox13010012
APA StyleSingh, S., Kumar, B., Dilbaghi, N., Devi, N., Prasad, M., & Manuja, A. (2023). Nanoformulation of a Trypanocidal Drug Isometamidium Chloride Ameliorates the Apurinic-Apyrimidinic DNA Sites/Genotoxic Effects in Horse Blood Cells. Journal of Xenobiotics, 13(1), 148-158. https://doi.org/10.3390/jox13010012