Phytotherapy and Drugs: Can Their Interactions Increase Side Effects in Cancer Patients?
Abstract
:1. Introduction
- Geriatric age: patients over the age of 60 have a lower tolerance to natural or synthetic medications, which doubles their risk of overdosing and adverse responses [15];
- Renal and hepatic insufficiency: it is not recommended to consume any phytotherapics that are processed by these organs, such as aristolochia and magnolia officinalis for the kidney and all plants containing pyrrolizidine alkaloids for the liver [16];
- Obesity: it is well recognized that having an excessive amount of body fat can change the way drugs operate in the body, either making them more or less effective [17];
- Diet: The majority of interactions happen at the point of absorption, particularly when food intake is sufficient to prevent medication contact with the intestinal mucosa or when there is calcium or iron present, since these substances bind to pharmaceuticals, reducing their adsorption [18,19,20,21].
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, S.H. WHO traditional medicine strategy and activities. “Standardization with evidence-based approaches”. J. Acupunct. Meridian Stud. 2008, 1, 153–154. [Google Scholar] [CrossRef] [PubMed]
- Miroddi, M.; Calapai, G.; Navarra, M.; Minciullo, P.L.; Gangemi, S. Passiflora incarnata L.: Ethnopharmacology, clinical application, safety and evaluation of clinical trials. J. Ethnopharmacol. 2013, 150, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Beaubrun, G.; Gray, G.E. A review of herbal medicines for psychiatric disorders. Psychiatr. Serv. 2000, 51, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Malongane, F.; McGaw, L.J.; Mudau, F.N. The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: A review. J. Sci. Food Agric. 2017, 97, 4679–4689. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.M. Synergy and other interactions in phytomedicines. Phytomedicine 2001, 8, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Jones, G.L. From Petri Dish to Patient: Bioavailability Estimation and Mechanism of Action for Antimicrobial and Immunomodulatory Natural Products. Front. Microbiol. 2019, 10, 2470. [Google Scholar] [CrossRef]
- Cho, H.J.; Yoon, I.S. Pharmacokinetic interactions of herbs with cytochrome p450 and p-glycoprotein. Evid. Based Complement. Alternat. Med. 2015, 2015, 736431. [Google Scholar] [CrossRef]
- Oyebode, O.; Kandala, N.B.; Chilton, P.J.; Lilford, R.J. Use of traditional medicine in middle-income countries: A WHO-SAGE study. Health Policy Plan. 2016, 31, 984–991. [Google Scholar] [CrossRef]
- Aaltonen, T.; Abazov, V.M.; Abbott, B.; Acharya, B.S.; Adams, M.; Adams, T.; Agnew, J.P.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; et al. Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron. Phys. Rev. Lett. 2018, 120, 042001. [Google Scholar] [CrossRef]
- Ben-Arye, E.; Samuels, N.; Goldstein, L.H.; Mutafoglu, K.; Omran, S.; Schiff, E.; Charalambous, H.; Dweikat, T.; Ghrayeb, I.; Bar-Sela, G.; et al. Potential risks associated with traditional herbal medicine use in cancer care: A study of Middle Eastern oncology health care professionals. Cancer 2016, 122, 598–610. [Google Scholar] [CrossRef]
- Melchardt, T.; Magnes, T.; Weiss, L.; Grundbichler, M.; Strasser, M.; Hufnagl, C.; Moik, M.; Greil, R.; Egle, A. Liver toxicity during temozolomide chemotherapy caused by Chinese herbs. BMC Complement. Altern. Med. 2014, 14, 115. [Google Scholar] [CrossRef] [PubMed]
- Olaku, O.; White, J.D. Herbal therapy use by cancer patients: A literature review on case reports. Eur. J. Cancer 2011, 47, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Djuv, A.; Nilsen, O.G.; Steinsbekk, A. The co-use of conventional drugs and herbs among patients in Norwegian general practice: A cross-sectional study. BMC Complement. Altern. Med. 2013, 13, 295. [Google Scholar] [CrossRef] [PubMed]
- de Souza Silva, J.E.; Santos Souza, C.A.; da Silva, T.B.; Gomes, I.A.; Brito, G.e.C.; de Souza Araújo, A.A.; de Lyra-Júnior, D.P.; da Silva, W.B.; da Silva, F.A. Use of herbal medicines by elderly patients: A systematic review. Arch. Gerontol. Geriatr. 2014, 59, 227–233. [Google Scholar] [CrossRef]
- Ojha, S.; Venkataraman, B.; Kurdi, A.; Mahgoub, E.; Sadek, B.; Rajesh, M. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity. Oxid. Med. Cell Longev. 2016, 2016, 4320374. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, M.; Eftekhari, Z.; Saki, K.; Fazeli-Moghadam, E.; Jelodari, M.; Rafieian-Kopaei, M. Obesity Phytotherapy: Review of Native Herbs Used in Traditional Medicine for Obesity. J. Evid. Based Complement. Altern Med. 2016, 21, 228–234. [Google Scholar] [CrossRef]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. [Google Scholar] [CrossRef]
- Bushra, R.; Aslam, N.; Khan, A.Y. Food-drug interactions. Oman Med. J. 2011, 26, 77–83. [Google Scholar] [CrossRef]
- Collado-Borrell, R.; Escudero-Vilaplana, V.; Romero-Jiménez, R.; Iglesias-Peinado, I.; Herranz-Alonso, A.; Sanjurjo-Sáez, M. Oral antineoplastic agent interactions with medicinal plants and food: An issue to take into account. J. Cancer Res. Clin. Oncol. 2016, 142, 2319–2330. [Google Scholar] [CrossRef]
- Deng, J.; Zhu, X.; Chen, Z.; Fan, C.H.; Kwan, H.S.; Wong, C.H.; Shek, K.Y.; Zuo, Z.; Lam, T.N. A Review of Food-Drug Interactions on Oral Drug Absorption. Drugs 2017, 77, 1833–1855. [Google Scholar] [CrossRef] [PubMed]
- Clairet, A.L.; Boiteux-Jurain, M.; Curtit, E.; Jeannin, M.; Gérard, B.; Nerich, V.; Limat, S. Interaction between phytotherapy and oral anticancer agents: Prospective study and literature review. Med. Oncol. 2019, 36, 45. [Google Scholar] [CrossRef] [PubMed]
- van den Beuken-van Everdingen, M.H.; Hochstenbach, L.M.; Joosten, E.A.; Tjan-Heijnen, V.C.; Janssen, D.J. Update on Prevalence of Pain in Patients With Cancer: Systematic Review and Meta-Analysis. J. Pain Symptom Manag. 2016, 51, 1070–1090.e1079. [Google Scholar] [CrossRef]
- Asiimwe, J.B.; Nagendrappa, P.B.; Atukunda, E.C.; Kamatenesi, M.M.; Nambozi, G.; Tolo, C.U.; Ogwang, P.E.; Sarki, A.M. Prevalence of the Use of Herbal Medicines among Patients with Cancer: A Systematic Review and Meta-Analysis. Evid. Based Complement. Alternat. Med. 2021, 2021, 9963038. [Google Scholar] [CrossRef]
- McGrowder, D.A.; Miller, F.G.; Nwokocha, C.R.; Anderson, M.S.; Wilson-Clarke, C.; Vaz, K.; Anderson-Jackson, L.; Brown, J. Medicinal Herbs Used in Traditional Management of Breast Cancer: Mechanisms of Action. Medicines (Basel) 2020, 7, 47. [Google Scholar] [CrossRef]
- Damery, S.; Gratus, C.; Grieve, R.; Warmington, S.; Jones, J.; Routledge, P.; Greenfield, S.; Dowswell, G.; Sherriff, J.; Wilson, S. The use of herbal medicines by people with cancer: A cross-sectional survey. Br. J. Cancer 2011, 104, 927–933. [Google Scholar] [CrossRef]
- Meijerman, I.; Beijnen, J.H.; Schellens, J.H. Herb-drug interactions in oncology: Focus on mechanisms of induction. Oncologist 2006, 11, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Gao, Y.; Jiang, W.; Huang, M.; Xu, A.; Paxton, J.W. Interactions of herbs with cytochrome P450. Drug Metab. Rev. 2003, 35, 35–98. [Google Scholar] [CrossRef]
- Pelkonen, O.; Turpeinen, M.; Hakkola, J.; Honkakoski, P.; Hukkanen, J.; Raunio, H. Inhibition and induction of human cytochrome P450 enzymes: Current status. Arch. Toxicol. 2008, 82, 667–715. [Google Scholar] [CrossRef]
- Sweet, E.S.; Standish, L.J.; Goff, B.A.; Andersen, M.R. Adverse events associated with complementary and alternative medicine use in ovarian cancer patients. Integr. Cancer. Ther. 2013, 12, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Gaudineau, C.; Beckerman, R.; Welbourn, S.; Auclair, K. Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract. Biochem. Biophys. Res. Commun. 2004, 318, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Mooiman, K.D.; Goey, A.K.; Huijbregts, T.J.; Maas-Bakker, R.F.; Beijnen, J.H.; Schellens, J.H.; Meijerman, I. The in-vitro effect of complementary and alternative medicines on cytochrome P450 2C9 activity. J. Pharm. Pharmacol. 2014, 66, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.G.; Malcolm, J.; Arnold, O.; Spence, J.D. Grapefruit juice-drug interactions. Br. J. Clin. Pharmacol. 1998, 46, 101–110. [Google Scholar] [CrossRef]
- Rabia, A.; Tahir, M.; Munir, B.; Sami, W. Quantitative and qualitative analysis of cadaveric human pinealocytes in various age groups. J. Coll. Physicians Surg. Pak. 2011, 21, 389–392. [Google Scholar] [PubMed]
- Molassiotis, A.; Fernández-Ortega, P.; Pud, D.; Ozden, G.; Scott, J.A.; Panteli, V.; Margulies, A.; Browall, M.; Magri, M.; Selvekerova, S.; et al. Use of complementary and alternative medicine in cancer patients: A European survey. Ann. Oncol. 2005, 16, 655–663. [Google Scholar] [CrossRef]
- Gratus, C.; Wilson, S.; Greenfield, S.M.; Damery, S.L.; Warmington, S.A.; Grieve, R.; Steven, N.M.; Routledge, P. The use of herbal medicines by people with cancer: A qualitative study. BMC Complement. Altern. Med. 2009, 9, 14. [Google Scholar] [CrossRef]
- Menniti-Ippolito, F.; Gargiulo, L.; Bologna, E.; Forcella, E.; Raschetti, R. Use of unconventional medicine in Italy: A nation-wide survey. Eur J Clin Pharmacol 2002, 58, 61–64. [Google Scholar] [CrossRef]
- Ernst, E. Complementary and alternative medicine (CAM) and cancer: The kind face of complementary medicine. Int. J. Surg. 2009, 7, 499–500. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, J.; Liu, X.; Ye, Z.; Yang, X.; Meyboom, R.; Chan, K.; Shaw, D.; Duez, P. Pharmacovigilance practice and risk control of Traditional Chinese Medicine drugs in China: Current status and future perspective. J. Ethnopharmacol. 2012, 140, 519–525. [Google Scholar] [CrossRef]
- Joo, Y.E. Natural product-derived drugs for the treatment of inflammatory bowel diseases. Intest. Res. 2014, 12, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, G.R.; Baskett, T.F. In the arms of Morpheus the development of morphine for postoperative pain relief. Can. J. Anaesth. 2000, 47, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Galm, U.; Shen, B. Natural product drug discovery: The times have never been better. Chem. Biol. 2007, 14, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Ma, X.H.; Qin, C.; Tao, L.; Liu, X.; Shi, Z.; Zhang, C.L.; Tan, C.Y.; Chen, Y.Z.; Jiang, Y.Y. Drug discovery prospect from untapped species: Indications from approved natural product drugs. PLoS ONE 2012, 7, e39782. [Google Scholar] [CrossRef]
- Ramos-Esquivel, A.; Víquez-Jaikel, Á.; Fernández, C. Potential Drug-Drug and Herb-Drug Interactions in Patients With Cancer: A Prospective Study of Medication Surveillance. J. Oncol. Pract. 2017, 13, e613–e622. [Google Scholar] [CrossRef]
- Awortwe, C.; Makiwane, M.; Reuter, H.; Muller, C.; Louw, J.; Rosenkranz, B. Critical evaluation of causality assessment of herb-drug interactions in patients. Br. J. Clin. Pharmacol. 2018, 84, 679–693. [Google Scholar] [CrossRef]
- Abdulridha, M.K.; Al-Marzoqi, A.H.; Al-Awsi, G.R.L.; Mubarak, S.M.H.; Heidarifard, M.; Ghasemian, A. Anticancer Effects of Herbal Medicine Compounds and Novel Formulations: A Literature Review. J. Gastrointest. Cancer 2020, 51, 765–773. [Google Scholar] [CrossRef]
- Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol. 2021, 69, 5–23. [Google Scholar] [CrossRef]
- Fu, B.; Wang, N.; Tan, H.Y.; Li, S.; Cheung, F.; Feng, Y. Multi-Component Herbal Products in the Prevention and Treatment of Chemotherapy-Associated Toxicity and Side Effects: A Review on Experimental and Clinical Evidences. Front. Pharmacol. 2018, 9, 1394. [Google Scholar] [CrossRef]
- Cragg, G.M.; Pezzuto, J.M. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Med. Princ. Pract. 2016, 25 (Suppl. 2), 41–59. [Google Scholar] [CrossRef]
- Messerer, M.; Johansson, S.E.; Wolk, A. Sociodemographic and health behaviour factors among dietary supplement and natural remedy users. Eur. J. Clin. Nutr. 2001, 55, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep. 2008, 25, 475–516. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S.; Robertson, A.A.; Cooper, M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014, 31, 1612–1661. [Google Scholar] [CrossRef]
- Franconi, F.; Brunelleschi, S.; Steardo, L.; Cuomo, V. Gender differences in drug responses. Pharmacol. Res. 2007, 55, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.; Aweeka, F.; Greenblatt, R.M.; Blaschke, T.F. Sex differences in pharmacokinetics and pharmacodynamics. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 499–523. [Google Scholar] [CrossRef]
- Naderi, N.; Akhavan, N.; Aziz Ahari, F.; Zamani, N.; Kamalinejad, M.; Shokrzadeh, M.; Ahangar, N.; Motamedi, F. Effects of Hydroalcoholic Extract from Salvia verticillata on Pharmacological Models of Seizure, Anxiety and Depression in Mice. Iran. J. Pharm. Res. 2011, 10, 535–545. [Google Scholar]
- Grundmann, O.; Phipps, S.M.; Zadezensky, I.; Butterweck, V. Salvia divinorum and salvinorin A: An update on pharmacology and analytical methodology. Planta Med. 2007, 73, 1039–1046. [Google Scholar] [CrossRef]
- Iuvone, T.; De Filippis, D.; Esposito, G.; D’Amico, A.; Izzo, A.A. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J. Pharmacol. Exp. Ther. 2006, 317, 1143–1149. [Google Scholar] [CrossRef]
- Hack, C.C.; Voiß, P.; Lange, S.; Paul, A.E.; Conrad, S.; Dobos, G.J.; Beckmann, M.W.; Kümmel, S. Local and Systemic Therapies for Breast Cancer Patients: Reducing Short-term Symptoms with the Methods of Integrative Medicine. Geburtshilfe Frauenheilkd 2015, 75, 675–682. [Google Scholar] [CrossRef]
- El Mihyaoui, A.; Esteves da Silva, J.C.G.; Charfi, S.; Candela Castillo, M.E.; Lamarti, A.; Arnao, M.B. Chamomile. Life (Basel) 2022, 12, 479. [Google Scholar] [CrossRef]
- Molnar, M.; Mendešević, N.; Šubarić, D.; Banjari, I.; Jokić, S. Comparison of various techniques for the extraction of umbelliferone and herniarin in Matricaria chamomilla processing fractions. Chem. Cent. J. 2017, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczyk-Czepas, J.; Bijak, M.; Saluk, J.; Ponczek, M.B.; Zbikowska, H.M.; Nowak, P.; Tsirigotis-Maniecka, M.; Pawlaczyk, I. Radical scavenging and antioxidant effects of Matricaria chamomilla polyphenolic-polysaccharide conjugates. Int. J. Biol. Macromol. 2015, 72, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Satyal, P.; Shrestha, S.; Setzer, W.N. Composition and Bioactivities of an (E)-β-Farnesene Chemotype of Chamomile (Matricaria chamomilla) Essential Oil from Nepal. Nat. Prod. Commun. 2015, 10, 1453–1457. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Shankar, E.; Gupta, S. Chamomile: A herbal medicine of the past with bright future. Mol. Med. Rep. 2010, 3, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Curra, M.; Martins, M.A.; Lauxen, I.S.; Pellicioli, A.C.; Sant’Ana Filho, M.; Pavesi, V.C.; Carrard, V.C.; Martins, M.D. Effect of topical chamomile on immunohistochemical levels of IL-1β and TNF-α in 5-fluorouracil-induced oral mucositis in hamsters. Cancer Chemother. Pharmacol. 2013, 71, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Braga, F.T.; Santos, A.C.; Bueno, P.C.; Silveira, R.C.; Santos, C.B.; Bastos, J.K.; Carvalho, E.C. Use of Chamomilla recutita in the Prevention and Treatment of Oral Mucositis in Patients Undergoing Hematopoietic Stem Cell Transplantation: A Randomized, Controlled, Phase II Clinical Trial. Cancer Nurs. 2015, 38, 322–329. [Google Scholar] [CrossRef]
- Adebayo, S.A.; Amoo, S.O.; Mokgehle, S.N.; Aremu, A.O. Ethnomedicinal uses, biological activities, phytochemistry and conservation of African ginger (Siphonochilus aethiopicus): A commercially important and endangered medicinal plant. J. Ethnopharmacol. 2021, 266, 113459. [Google Scholar] [CrossRef]
- Stafford, G.I.; Jäger, A.K.; van Staden, J. Effect of storage on the chemical composition and biological activity of several popular South African medicinal plants. J. Ethnopharmacol. 2005, 97, 107–115. [Google Scholar] [CrossRef]
- Lindsey, K.; Jäger, A.K.; Raidoo, D.M.; van Staden, J. Screening of plants used by Southern African traditional healers in the treatment of dysmenorrhoea for prostaglandin-synthesis inhibitors and uterine relaxing activity. J. Ethnopharmacol. 1999, 64, 9–14. [Google Scholar] [CrossRef]
- Jäger, A.K.; Hutchings, A.; van Staden, J. Screening of Zulu medicinal plants for prostaglandin-synthesis inhibitors. J. Ethnopharmacol. 1996, 52, 95–100. [Google Scholar] [CrossRef]
- Lin, J.; Opoku, A.R.; Geheeb-Keller, M.; Hutchings, A.D.; Terblanche, S.E.; Jäger, A.K.; van Staden, J. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities. J. Ethnopharmacol. 1999, 68, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Fouche, G.; Nieuwenhuizen, N.; Maharaj, V.; van Rooyen, S.; Harding, N.; Nthambeleni, R.; Jayakumar, J.; Kirstein, F.; Emedi, B.; Meoni, P. Investigation of in vitro and in vivo anti-asthmatic properties of Siphonochilus aethiopicus. J. Ethnopharmacol. 2011, 133, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Hitomi, S.; Ono, K.; Terawaki, K.; Matsumoto, C.; Mizuno, K.; Yamaguchi, K.; Imai, R.; Omiya, Y.; Hattori, T.; Kase, Y.; et al. [6]-gingerol and [6]-shogaol, active ingredients of the traditional Japanese medicine hangeshashinto, relief oral ulcerative mucositis-induced pain via action on Na. Pharmacol. Res. 2017, 117, 288–302. [Google Scholar] [CrossRef]
- Li, X.; Qin, Y.; Liu, W.; Zhou, X.Y.; Li, Y.N.; Wang, L.Y. Efficacy of Ginger in Ameliorating Acute and Delayed Chemotherapy-Induced Nausea and Vomiting Among Patients With Lung Cancer Receiving Cisplatin-Based Regimens: A Randomized Controlled Trial. Integr. Cancer Ther. 2018, 17, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Hussein, L.; Gouda, M.; Buttar, H.S. Pomegranate, its Components, and Modern Deliverable Formulations as Potential Botanicals in the Prevention and Treatment of Various Cancers. Curr. Drug Deliv. 2021, 18, 1391–1405. [Google Scholar] [CrossRef]
- Seeram, N.P.; Adams, L.S.; Henning, S.M.; Niu, Y.; Zhang, Y.; Nair, M.G.; Heber, D. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J. Nutr. Biochem. 2005, 16, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Larrosa, M.; Tomás-Barberán, F.A.; Espín, J.C. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J. Nutr. Biochem. 2006, 17, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.X.; Lam, K.K.; Feng, Y.B.; Xu, K.; Sze, S.C.; Tang, S.C.; Leung, G.P.; Lee, C.K.; Shi, J.; Yang, Z.J.; et al. Ellagitannins from Pomegranate Ameliorates 5-Fluorouracil-Induced Intestinal Mucositis in Rats while Enhancing Its Chemotoxicity against HT-29 Colorectal Cancer Cells through Intrinsic Apoptosis Induction. J. Agric. Food Chem. 2018, 66, 7054–7064. [Google Scholar] [CrossRef]
- Chen, L.L.; Verpoorte, R.; Yen, H.R.; Peng, W.H.; Cheng, Y.C.; Chao, J.; Pao, L.H. Effects of processing adjuvants on traditional Chinese herbs. J. Food Drug Anal. 2018, 26, S96–S114. [Google Scholar] [CrossRef]
- Beh, B.K.; Mohamad, N.E.; Yeap, S.K.; Ky, H.; Boo, S.Y.; Chua, J.Y.H.; Tan, S.W.; Ho, W.Y.; Sharifuddin, S.A.; Long, K.; et al. Anti-obesity and anti-inflammatory effects of synthetic acetic acid vinegar and Nipa vinegar on high-fat-diet-induced obese mice. Sci. Rep. 2017, 7, 6664. [Google Scholar] [CrossRef]
- Mitrou, P.; Petsiou, E.; Papakonstantinou, E.; Maratou, E.; Lambadiari, V.; Dimitriadis, P.; Spanoudi, F.; Raptis, S.A.; Dimitriadis, G. Vinegar Consumption Increases Insulin-Stimulated Glucose Uptake by the Forearm Muscle in Humans with Type 2 Diabetes. J. Diabetes Res. 2015, 2015, 175204. [Google Scholar] [CrossRef] [PubMed]
- Salbe, A.D.; Johnston, C.S.; Buyukbese, M.A.; Tsitouras, P.D.; Harman, S.M. Vinegar lacks antiglycemic action on enteral carbohydrate absorption in human subjects. Nutr. Res. 2009, 29, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; La Vecchia, C.; Negri, E.; Mery, L. Nutrients and risk of colon cancer. Cancers (Basel) 2010, 2, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Menniti-Ippolito, F.; Mazzanti, G.; Santuccio, C.; Moro, P.A.; Calapai, G.; Firenzuoli, F.; Valeri, A.; Raschetti, R. Surveillance of suspected adverse reactions to natural health products in Italy. Pharmacoepidemiol. Drug Saf. 2008, 17, 626–635. [Google Scholar] [CrossRef]
- Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef] [Green Version]
Patients (N) | 281 |
---|---|
Age (median, (IQR)) | 66 (57–72) |
Males | 170 (60.5) |
Body Mass Index (median (IQR)) | 24.09 (21.69–27.38) |
Cycles of chemotherapy (median, (IQR)) | 3.5 (2–5) |
Chemotherapy regimen (N (%)) | |
Folinic acid, 5-Fluorouracil, and Oxaliplatin | 33 (11.8) |
Raltitrexed | 8 (2.8) |
Oxaliplatin and Irinotecan | 4 (1.4) |
Gemcitabine and Cisplatin | 56 (19.9) |
Capecitabine and Oxaliplatin | 48 (17.1) |
Raltitrexed and Oxaliplatin | 5 (1.8) |
Irinotecan | 55 (19.6) |
Paclitaxel | 6 (2.1) |
Leucovorin, 5-Fluorouracil, and Irinotecan | 12 (4.3) |
Gemcitabine | 1 (0.4) |
Carboplatin, Pemetrexed, and Demcizumab | 3 (1.1) |
Leucovorin, 5-Fluorouracil, Irinotecan, and Bevacizumab | 26 (9.3) |
Cisplatin and Etoposide | 1 (0.4) |
Paclitaxel and Carboplatin | 1 (0.4) |
Carboplatin and Etoposide | 1 (0.4) |
Methotrexate | 1 (0.4) |
Nivolumab | 1 (0.4) |
Cetuximab | 1 (0.4) |
Carboplatin and Pemetrexed | 3 (1.1) |
Cisplatin and Vinorelbine | 1 (0.4) |
Fluorouracil, Leucovorin, and Bavacizumab | 1 (0.4) |
Docetaxel | 2 (0.7) |
Gemcitabine and Paclitaxel | 2 (0.7) |
Ifosfamide | 2 (0.7) |
Bleomycin, Etoposide, and Platinum | 3 (1.1) |
Cisplatin and Cetuximab | 2 (0.7) |
Leucovorin, 5-Fluorouracil, Irinotecan, and Panitumumab | 1 (0.4) |
Pemetrexed | 1 (0.4) |
Coadministered drugs (N (%)) | |
Cortisone | 124 (45.2) |
Antiemetics | 146 (52) |
Antipyretics | 88 (31.3) |
Analgesics | 140 (49.8) |
Antihypertensives | 107 (38.1) |
Statins | 32 (11.4) |
Phytotherapic use (N (%)) | 266 (94.7) |
Male | 162 (95.3) |
Female | 104 (93.7) |
Phytotherapics (N (%)) | |
Aloe | 47 (17.1) |
Broccoli | 147 (52.3) |
Chamomile | 82 (29.2) |
Echinacea | 3 (1.1) |
Eucalyptus | 9 (3.2) |
Garlic | 179 (63.7) |
Ginger | 87 (31) |
Ginseng | 21 (7.5) |
Goji Berry | 13 (4.6) |
Grapefruit | 40 (14.2) |
Hypericum | 2 (0.7) |
Licorice | 46 (16.4) |
Mint | 64 (22.8) |
Oat | 21 (7.5) |
Pineapple | 130 (46.3) |
Pomegranate | 60 (21.4) |
Propolis | 26 (9.3) |
Sage | 115 (4.9) |
Soy | 27 (9.6) |
Tobacco | 25 (8.9) |
Turmeric | 60 (21.4) |
Valerian | 43 (15.3) |
Vinegar | 169 (60.1) |
Adverse Events (N (%)) | |
Retching | 141 (50.2) |
Vomit | 57 (20.3) |
Mucositis | 81 (28.8) |
Dysgeusia | 138 (49.1) |
Stipsis | 108 (38.8) |
Diarrhea | 98 (34.9) |
Retching | Vomit | Dysgeusia | Mucositis | Diarrhea | Stipsis | |
---|---|---|---|---|---|---|
FACTOR | p | p | p | p | p | p |
β (IC95%) | β (IC95%) | β (IC95%) | β (IC95%) | β (IC95%) | β (IC95%) | |
Age | <0.001 | 0.123 | 0.239 | 0.005 | ||
0.944 (0.918–0.971) | 0.979 (0.954–1.006) | 0.987 (0.965–1.009) | 0.967 (0.945–0.990) | |||
Gender | 0.413 | 0.066 | ||||
1.263 (0.722–2.210) | 1.691 (0.967) | |||||
BMI | 0.018 | |||||
1.074 (1.012–1.139) | ||||||
Cortisone | 0.156 | |||||
0.732 (0.476–1.126) | ||||||
Antiemetics | <0.001 | 0.001 | 0.024 | |||
3.317 (1.929–5.703) | 3.063 (1.599–5.870) | 1.736 (1.075–2.805) | ||||
Antipyretics | 0.298 | 0.485 | 0.594 | |||
1.381 (0.752–2.536) | 1.274 (0.645–2.516) | 1.184 (0.636–2.206) | ||||
Analgesics | 0.986 | 0.265 | 0.180 | |||
0.995 (0.554–1.787) | 1.423 (0.765–2.647) | 1.463 (0.838–2.555) | ||||
Antihypertensives | 0.045 | |||||
0.503 (0.257–0.986) | ||||||
Statins | 0.285 | 0.289 | ||||
0.791 (0.514–1.216) | 0.755 (0.449–1.269) | |||||
Ginger | 0.065 | 0.272 | 0.048 | |||
1.767 (0.966–3.235) | 1.439 (0.752–2.752) | 1.784 (1.005–3.167) | ||||
Sage | 0.025 | |||||
1.920 (1.087–3.392) | ||||||
Valerian | 0.101 | 0.061 | ||||
1.903 (0.881–4.112) | 1.895 (0.971–3.699) | |||||
Broccoli | 0.309 | |||||
0.761 (0.451–1.287) | ||||||
Tobacco | 0.205 | |||||
0.532 (0.201–1.410) | ||||||
Echinacea | 0.561 | |||||
2.180 (0.158–30.109) | ||||||
Ginseng | 0.079 | |||||
2.339 (0.906–6.035) | ||||||
Propolis | 0.117 | 0.354 | 0.094 | |||
2.237 (0.817–6.121) | 1.554 (0.612–3.949) | 2.049 (0.885–4.744) | ||||
Garlic | 0.102 | |||||
1.559 (0.915–2.655) | ||||||
Pomegranate | 0.003 | |||||
2.658 (1.386–5.100) | ||||||
Licorice | 0.566 | 0.084 | ||||
1.252 (0.581–2.694I) | 1.822 (0.922–3.602) | |||||
Aloe | 0.193 | |||||
1.605 (0.787–3.274) | ||||||
Pineapple | 0.426 | |||||
1.264 (0.710–2.250) | ||||||
Chamomile | 0.149 | 0.009 | 0.073 | |||
1.597 (0.845–3.017) | 2.039 (1.198–3.472) | 1.643 (0.955–2.826) | ||||
Vinegar | 0.335 | 0.010 | ||||
0.731 (0.387–1.382) | 0.465 (0.260–0.831) | |||||
Goji Berry | 0.105 | |||||
0.276 (0.058–1.310) |
Phytotherapic | Side Effect | |
---|---|---|
Sage | Salvia officinalis L. | retching |
Chamomilla | Matricaria chamomilla L. | dysgeusia |
Ginger | Zingiber officinale | mucositis |
Pomegranates | Punica granatum L. | mucositis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allegra, S.; De Francia, S.; Turco, F.; Bertaggia, I.; Chiara, F.; Armando, T.; Storto, S.; Mussa, M.V. Phytotherapy and Drugs: Can Their Interactions Increase Side Effects in Cancer Patients? J. Xenobiot. 2023, 13, 75-89. https://doi.org/10.3390/jox13010007
Allegra S, De Francia S, Turco F, Bertaggia I, Chiara F, Armando T, Storto S, Mussa MV. Phytotherapy and Drugs: Can Their Interactions Increase Side Effects in Cancer Patients? Journal of Xenobiotics. 2023; 13(1):75-89. https://doi.org/10.3390/jox13010007
Chicago/Turabian StyleAllegra, Sarah, Silvia De Francia, Francesca Turco, Ilenia Bertaggia, Francesco Chiara, Tiziana Armando, Silvana Storto, and Maria Valentina Mussa. 2023. "Phytotherapy and Drugs: Can Their Interactions Increase Side Effects in Cancer Patients?" Journal of Xenobiotics 13, no. 1: 75-89. https://doi.org/10.3390/jox13010007
APA StyleAllegra, S., De Francia, S., Turco, F., Bertaggia, I., Chiara, F., Armando, T., Storto, S., & Mussa, M. V. (2023). Phytotherapy and Drugs: Can Their Interactions Increase Side Effects in Cancer Patients? Journal of Xenobiotics, 13(1), 75-89. https://doi.org/10.3390/jox13010007