Mercury Content in Impacted Wisdom Teeth from Patients of the Legnica–Głogów Copper Area—An In Vitro Pilot Study
Abstract
:1. Introduction
- -
- Minimal risk of harm: strontium (Sr), zirconium (Zr);
- -
- Medium degree of potential harm: cobalt (Co), nickel (Ni);
- -
- High degree of potential harm: iron (Fe), manganese (Mn), molybdenum (Mo),
- -
- Exceptionally elevated degree of potential harm: zinc (Zn), chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg).
2. Materials and Methods
2.1. Material
2.2. Determination of Mercury in the Studied Materials
2.3. Mineralization of the Studied Materials
2.4. Examination of Mercury Content in the Samples
2.5. Methodology of Blood Collection and Determination of Vit. D3
2.6. Statistical Analysis
3. Results
3.1. Basic Characteristics of Patients
3.2. The Concentration of Mercury in the Extracted Teeth in Residents from the L-G Copper District and in the Control Group
3.3. The Risk Factors Contributing to the Build-Up of Mercury (Hg) in the Teeth of Individuals Living in the L-G District and in the Control Group
4. Discussion
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil, F.; Hernández, A.F. Toxicological importance of human biomonitoring of metallic and metalloid elements in different biological samples. Food Chem. Toxicol. 2015, 80, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Jańczuk, Z.; Kaczmarek, U.; Lipski, M. Stomatologia Zachowawcza z Endodoncją. Zarys Kliniczny, Etiologia Próchnicy; PZWL: Warszawa, Poland, 2014. [Google Scholar]
- Asaduzzaman, K.; Khandaker, M.U.; Binti Baharudin, N.A.; Amin, Y.B.M.; Farook, M.S.; Bradley, D.A.; Mahmoud, O. Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution. Chemosphere 2017, 176, 221–230. [Google Scholar] [CrossRef]
- Buddhachat, K.; Klinhom, S.; Siengdee, P.; Brown, J.L.; Nomsiri, R.; Kaewmong, P.; Thitaram, C.; Mahakkanukrauh, P.; Nganvongpanit, K. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence. PLoS ONE 2016, 11, e0155458. [Google Scholar] [CrossRef] [PubMed]
- Chudzińska, E.; Celiński, K.; Pawlaczyk, E.M.; Wojnicka-Półtorak, A.; Diatta, J.B. Trace element contamination differentiates the natural population of Scots pine: Evidence from DNA microsatellites and needle morphology. Environ. Sci. Pollut. Res. Int. 2016, 23, 22151–22162. [Google Scholar] [CrossRef]
- Martínez-García, M.J.; Moreno, J.M.; Moreno-Clavel, J.; Vergara, N.; García-Sánchez, A.; Guillamón, A.; Portí, M.; Moreno-Grau, S. Heavy metals in human bones in different historical epochs. Sci. Total Environ. 2005, 348, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, H.; Hanihara, K.; Suzuki, T.; Himeno, S.; Kawabe, T.; Hongo, T.; Morita, M. Elemental composition of ancient Japanese bones. Sci. Total Environ. 1986, 52, 93–107. [Google Scholar] [CrossRef]
- Pawlicki, R.; Bolechała, P. X-ray microanalysis of fossil dinosaur bone: Age differences in lead, iron, and magnesium content. Folia Histochem. Cytobiol. 1991, 29, 81–83. [Google Scholar]
- Piccioli, A.; Donati, F.; Giacomo, G.D.; Ziranu, A.; Careri, S.; Spinelli, M.S.; Giannini, S.; Giannicola, G.; Perisano, C.; Maccauro, G. Infective complications in tumour endoprostheses implanted after pathological fracture of the limbs. Injury 2016, 47 (Suppl. 4), S22–S28. [Google Scholar] [CrossRef]
- Smrčka, V.; Jambor, J. Trace elements and the European skeleton through 5000 years. Acta Univ. Carol. Med. 2000, 41, 59–68. [Google Scholar]
- Herman, K.; Korczyński, M.; Janeczek, M.; Wełmiński, P.; Kowalczyk-Zając, M.; Leśków, A.; Całkosiński, I.; Dobrzyński, M. Effect of toxic metals on oral tissues. J. Educ. Health Sport 2017, 7, 209–220. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Badhe, R.V.; Akinfosile, O.; Bijukumar, D.; Barba, M.; Mathew, M.T. Systemic toxicity eliciting metal ion levels from metallic implants and orthopedic devices—A mini review. Toxicol. Lett. 2021, 350, 213–224. [Google Scholar] [CrossRef]
- Přikrylová, J.; Procházková, J.; Podzimek, Š. Side Effects of Dental Metal Implants: Impact on Human Health (Metal as a Risk Factor of Implantologic Treatment). BioMed Res. Int. 2019, 2019, 2519205. [Google Scholar] [CrossRef]
- Waseem, A.; Arshad, J.; Iqbal, F.; Sajjad, A.; Mehmood, Z.; Murtaza, G. Pollution status of Pakistan: A retrospective review on heavy metal contamination of water, soil, and vegetables. BioMed Res. Int. 2014, 2014, 813206. [Google Scholar] [CrossRef]
- Cheng, S. Effects of heavy metals on plants and resistance mechanisms. A state-of-the-art report with special reference to literature published in Chinese journals. Environ. Sci. Pollut. Res. Int. 2003, 10, 256–264. [Google Scholar] [CrossRef] [PubMed]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Sun, J.; Shaghaleh, H.; Jiang, X.; Yu, H.; Zhai, S.; Hamoud, Y.A. Environmental Assessment of Soils and Crops Based on Heavy Metal Risk Analysis in Southeastern China. Agronomy 2023, 13, 1107. [Google Scholar] [CrossRef]
- Rachwał, K.; Waśko, A.; Gustaw, K.; Polak-Berecka, M. Utilization of brewery wastes in food industry. PeerJ 2020, 8, e9427. [Google Scholar] [CrossRef]
- Zhao, B.; Yan, Y.; Chen, S. How could haloalkaliphilic microorganisms contribute to biotechnology? Can. J. Microbiol. 2014, 60, 717–727. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Hussain, M.I.; Ismail, S.; Khan, Q.M. Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere 2016, 163, 54–61. [Google Scholar] [CrossRef]
- Khan, I.; Awan, S.A.; Rizwan, M.; Ali, S.; Hassan, M.J.; Brestic, M.; Zhang, X.; Huang, L. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol. Environ. Saf. 2021, 222, 112510. [Google Scholar] [CrossRef] [PubMed]
- Bešter, P.K.; Lobnik, F.; Eržen, I.; Kastelec, D.; Zupan, M. Prediction of cadmium concentration in selected home-produced vegetables. Ecotoxicol. Environ. Saf. 2013, 96, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, Q.; Cai, Z. Effect of soil HHCB on cadmium accumulation and phytotoxicity in wheat seedlings. Ecotoxicology 2014, 23, 1996–2004. [Google Scholar] [CrossRef]
- Dziubanek, G.; Piekut, A.; Rusin, M.; Baranowska, R.; Hajok, I. Contamination of food crops grown on soils with elevated heavy metals content. Ecotoxicol. Environ. Saf. 2015, 118, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Dziubanek, G.; Baranowska, R.; Ćwieląg-Drabek, M.; Spychała, A.; Piekut, A.; Rusin, M.; Hajok, I. Cadmium in edible plants from Silesia, Poland, and its implications for health risk in populations. Ecotoxicol. Environ. Saf. 2017, 142, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Gattullo, C.E.; Mininni, C.; Parente, A.; Montesano, F.F.; Allegretta, I.; Terzano, R. Effects of municipal solid waste- and sewage sludge-compost-based growing media on the yield and heavy metal content of four lettuce cultivars. Environ. Sci. Pollut. Res. Int. 2017, 24, 25406–25415. [Google Scholar] [CrossRef]
- Paltseva, A.; Cheng, Z.; Deeb, M.; Groffman, P.M.; Shaw, R.K.; Maddaloni, M. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Sci. Total Environ. 2018, 640–641, 273–283. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Wang, X. Cadmium absorption and transportation pathways in plants. Int. J. Phytoremed. 2017, 19, 133–141. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Y.; Li, L.; Xu, H.; Sun, Y.; Wang, Y. Novel synthesis of cyano-functionalized mesoporous silica nanospheres (MSN) from coal fly ash for removal of toxic metals from wastewater. J. Hazard. Mater. 2018, 345, 76–86. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, J. Emissions, environmental levels, sources, formation pathways, and analysis of polybrominated dibenzo-p-dioxins and dibenzofurans: A review. Environ. Sci. Pollut. Res. Int. 2018, 25, 33082–33102. [Google Scholar] [CrossRef]
- Grzegorczyk, L.; Stawiński, K. Zarys Stomatologii Przemysłowej; PZWL: Warszawa, Poland, 1975. [Google Scholar]
- Pan, T.L.; Wang, P.W.; Aljuffali, I.A.; Huang, C.T.; Lee, C.W.; Fang, J.Y. The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J. Dermatol. Sci. 2015, 78, 51–60. [Google Scholar] [CrossRef]
- Całkosiński, I.; Dobrzyński, M.; Całkosińska, M.; Seweryn, E.; Bronowicka-Szydełko, A.; Dzierzba, K.; Ceremuga, I.; Gamian, A. Characterization of an inflammatory response. Postepy Hig Med Dosw (Online) 2009, 63, 395–408. [Google Scholar]
- Kołacz, R.; Dobrzański, Z.; Kupczyński, R.; Cwynar, P.; Opaliński, S.; Pogoda-Sewerniak, K. Impact of the copper industry on the content of selected heavy metals and biochemical indicators in the blood of dairy cows. Med. Weter 2017, 73, 171–175. [Google Scholar] [CrossRef]
- Pandey, G.; Sharma, M. Heavy metals causing toxicity in animal and fishes. Res. J. Anim. Vet. Fish. Sci. 2014, 2, 17–23. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Springer: Basel, Switzerland, 2012; Volume 3, pp. 133–164. [Google Scholar] [CrossRef]
- Rotter, I.; Kosik-Bogacka, D.; Dołęgowska, B.; Safranow, K.; Lubkowska, A.; Laszczyńska, M. Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int. J. Environ. Res. Public Health 2015, 12, 3944–3961. [Google Scholar] [CrossRef] [PubMed]
- Van Wyk, E.; Van der Bank, F.H.; Verdoorn, G.H.; Hofmann, D. Selected mineral and heavy metal concentrations in blood and tissues of vultures in different regions of South Africa. S. Afr. J. Anim. Sci. 2001, 31, 57–64. [Google Scholar]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- Wang, H.; Shan, X.Q.; Wen, B.; Zhang, S.; Wang, Z.J. Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commoelina communis. Arch. Environ. Contam. Toxicol. 2004, 47, 185–192. [Google Scholar] [CrossRef]
- Dudek-Adamska, D.; Lech, T.; Konopka, T.; Kościelniak, P. Chromium in Postmortem Material. Biol. Trace Elem. Res. 2018, 186, 370–378. [Google Scholar] [CrossRef]
- Sall, M.L.; Diaw, A.K.D.; Gningue-Sall, D.; Efremova Aaron, S.; Aaron, J.J. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res. Int. 2020, 27, 29927–29942. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- Ociepa-Kubicka, A.; Ociepa, E. Toxic effects of heavy metals on plants, animals and humans. In Inżynieria i Ochrona Środowiska; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2012; Volume 15, pp. 169–180. [Google Scholar]
- Kot, K.; Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Ciosek, Ż. Wpływ związków rtęci na organizm człowieka. Farm. Współczesna 2016, 9, 210–216. [Google Scholar]
- Compston, J.E. Skeletal actions of intermittent parathyroid hormone: Effects on bone remodelling and structure. Bone 2007, 40, 1447–1452. [Google Scholar] [CrossRef]
- Wilson, L.R.; Tripkovic, L.; Hart, K.H.; Lanham-New, S.A. Vitamin D deficiency as a public health issue: Using Vitamin D2 or Vitamin D3 in future fortification strategies. Proc. Nutr. Soc. 2017, 76, 392–399. [Google Scholar] [CrossRef]
- Botelho, J.; Machado, V.; Proença, L.; Delgado, A.S.; Mendes, J.J. Vitamin D Deficiency and Oral Health: A Comprehensive Review. Nutrients 2020, 12, 1471. [Google Scholar] [CrossRef]
- Krawiec, M.; Dominiak, M. Prospective evaluation of vitamin D levels in dental treated patients: A screening study. Dent. Med. Probl. 2021, 58, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Albalawi, O.; Almubark, R.; Almarshad, A.; Alqahtani, A.S. The Prevalence of Vitamin and Mineral Deficiencies and High Levels of Non-Essential Heavy Metals in Saudi Arabian Adults. Healthcare 2022, 10, 2415. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.J.; Park, H.T.; Shin, J.H.; Hur, J.Y.; Kim, S.H.; Lee, K.W.; Kim, T. The relationship between blood mercury level and osteoporosis in postmenopausal women. Menopause J. N. Am. Menopause Soc. 2012, 19, 576–581. [Google Scholar] [CrossRef] [PubMed]
- PN-EN 13805:2003; Food Products-Determination of Trace Elements-Pressure Mineralization. European Commission: Brussels, Belgium, 2003.
- Całkosiński, I.; Rosińczuk-Tonderys, J.; Bronowicka-Szydełko, A.; Dzierzba, K.; Bazan, J.; Dobrzyński, M.; Majda, J.; Gamian, A. Effect of tocopherol on biochemicalbloodparameters in pleuritis-inducedratstreated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Ind. Health 2015, 31, 510–522. [Google Scholar] [CrossRef]
- Bryła, E.; Dobrzyński, M.; Konkol, D.; Kuropka, P.; Styczyńska, M.; Korczyński, M. Toxic Metals Content in Impacted Third Molars and Adjacent Bone Tissue in Different Groups of Patients. Materials 2021, 14, 793. [Google Scholar] [CrossRef] [PubMed]
- Calkosinski, I.; Rosinczuk-Tonderys, J.; Dobrzynski, M.; Palka, L.; Bazan, J. Occurrence of disseminated intravascular coagulation in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced pneumonia in the rat. Adv. Exp. Med. Biol. 2013, 788, 283–292. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Habeebu, S.M.; Waalkes, M.P.; Klaassen, C.D. Metallothionein-I/II null mice are sensitive to chronic oral cadmium-induced nephrotoxicity. Toxicol. Sci. 2000, 57, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Sitarz-Palczak, E.; Kalembkiewicz, J. Study of Remediation of Soil Contamined with Heavy Metals by Coal Fly Ash. J. Environ. Prot. 2012, 3, 1373–1383. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; Polish Scientific Publishing Company: Varsov, Poland, 1999. [Google Scholar]
- Niemi, A.; Venäläinen, E.R.; Hirvi, T.; Hirn, J.; Karppanen, E. The lead, cadmium and mercury concentrations in muscle, liver and kidney from Finnish pigs and cattle during 1987-1988. Z. Lebensm.-Unters. Forsch. 1991, 192, 427–429. [Google Scholar] [CrossRef]
- Wong, A.C.; Ryan, A.F. Mechanisms of sensorineural cell damage, death and survival in the cochlea. Front. Aging. Neurosci. 2015, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Dusek, P.; Litwin, T.; Czlonkowska, A. Wilson disease and other neurodegenerations with metal accumulations. Neurol. Clin. 2015, 33, 175–204. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Chojnacka, K.; Gedrange, T.; Górecki, H. Reference values of elements in human hair: A systematic review. Environ. Toxicol. Pharmacol. 2013, 36, 1077–1086. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Chojnacka, K.; Zielińska, A.; Michalak, I. Exposure to metals from orthodontic appliances by hair mineral analysis. Environ. Toxicol. Pharmacol. 2011, 32, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, L.; Wang, W.; Li, H.; Lv, J.; Zou, X. Trace element concentrations in hair of healthy Chinese centenarians. Sci. Total Environ. 2011, 409, 1385–1390. [Google Scholar] [CrossRef] [PubMed]
- Mikulewicz, M.; Wołowiec, P.; Michalak, I.; Chojnacka, K.; Czopor, W.; Berniczei-Royko, A.; Vegh, A.; Gedrange, T. Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX. Med. Sci. Monit. 2014, 20, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Mikulewicz, M.; Wołowiec, P.; Janeczek, M.; Gedrange, T.; Chojnacka, K. The release of metal ions from orthodontic appliances animal tests. Angle Orthod. 2014, 84, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Shishniashvili, T.; Suladze, N.; Margvelashvili, V. Primary Teeth and Hair as Indicators of Environmental Pollution. J. Clin. Pediatr. Dent. 2016, 40, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Alomary, A.; Al-Momani, I.F.; Massadeh, A.M. Lead and cadmium in human teeth from Jordan by atomic absorption spectrometry: Some factors influencing their concentrations. Sci. Total Environ. 2006, 369, 69–75. [Google Scholar] [CrossRef]
- Rayad, S.; Dobrzyński, M.; Kuźniarski, A.; Styczyńska, M.; Diakowska, D.; Gedrange, T.; Klimas, S.; Gębarowski, T.; Dominiak, M. An In-Vitro Evaluation of Toxic Metals Concentration in the Third Molars from Residents of the Legnica-Głogów Copper Area and Risk Factors Determining the Accumulation of Those Metals: A Pilot Study. Appl. Sci. 2023, 13, 2904. [Google Scholar] [CrossRef]
- Strugała-Stawik, H.; Rudkowski, Z.; Pastuszek, B.; Morawiec, K. Biomonitoring of lead in blood of children—Short assessment of results 1991-2009. Med. Srod. 2010, 13, 11–14. [Google Scholar]
- Collaborative on Health and the Environment’s Learning and Developmental Disabilities. Scientific Consensus Statement on Environmental Agents Associated with Neurodevelopmental Disorders. 2008. Available online: https://www.healthandenvironment.org/docs/xaruploads/LDDIStatement.pdf (accessed on 17 August 2023).
- Wilhelm, M.; Heinzow, B.; Angerer, J.; Schulz, C. Reassessment of critical lead effects by the German Human Biomonitoring Commission results in suspension of the human biomonitoring values (HBM I and HBM II) for lead in blood in children adults. Int. J. Hyg. Environ. Health 2010, 4, 233–320. [Google Scholar] [CrossRef] [PubMed]
- Cyran, M. Wpływ środowiskowego narażenia na rtęć na funkcjonowanie organizmu człowieka. Med. Srod. 2013, 16, 55–58. [Google Scholar]
- Rzymski, P.; Tomczyk, K.; Rzymski, P.; Poniedziałek, B.; Opala, T.; Wilczak, M. Impact of heavy metals on the female reproductive system. Ann. Agric. Environ. Med. 2015, 22, 259–264. [Google Scholar] [CrossRef]
- Eide, R.; Wesenberg, G.B.; Fosse, G. Mercury in primary teeth in preindustrial Norway. Scand. J. Dent. Res. 1993, 101, 1–4. [Google Scholar] [CrossRef]
- Tvinnereim, H.; Eide, R.; Riise, T. Heavy metals in human primary teeth: Some factors influencing the metal concentrations. Sci. Total Environ. 2000, 255, 21–27. [Google Scholar] [CrossRef]
- Eide, R.; Schiønning, J.D.; Ernst, E.; Hansen, I.M.; Wesenberg, G.R. Mercury content in rat teeth after administration of organic and inorganic mercury. The effects of interrupted exposure and of selenite. Acta Odontol. Scand. 1995, 53, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Giżejewska, A.; Spodniewska, A.; Barski, D. Concentration of lead, cadmium, and mercury in tissues of European beaver (Castor fiber) from the north-eastern Poland. J. Vet. Res. 2014, 58, 77–80. [Google Scholar] [CrossRef]
- Brodziak-Dopierała, B.; Fischer, A.; Chrzanowska, M.; Ahnert, B. Mercury Exposure from the Consumption of Dietary Supplements Containing Vegetable, Cod Liver, and Shark Liver Oils. Int. J. Environ. Res. Public Health 2023, 20, 2129. [Google Scholar] [CrossRef]
- Stanek, M.; Dąbrowski, J.; Różański, S.; Janicki, B.; Długosz, J. Heavy Metals Bioaccumulation in Tissues of Spiny-Cheek Crayfish (Orconectes limosus) from Lake Gopło: Effect of Age and Sex. Bull. Environ. Contam. Toxicol. 2017, 98, 740–746. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (n = 72) | L-G Copper District—No (n = 21) | L-G Copper District—Yes (n = 51) | p-Value |
---|---|---|---|---|
Gender: | 0.558 | |||
male | 17 (23.6) | 4 (19.1) | 13 (25.5) | |
female | 55 (76.4) | 17 (80.9) | 38 (74.5) | |
Age (years old) | 26.5 (16.0–45.0) | 25.0 (24.0–27.0) | 29.0 (22.0–32.0) | 0.261 |
Age (years old): | 0.080 | |||
16–26 | 36 (50.0) | 13 (61.9) | 23 (45.1) | |
27–37 | 30 (41.7) | 8 (38.1) | 22 (43.1) | |
38–45 | 6 (8.3) | 0 (0.0) | 6 (11.8) | |
Smoking | 0.590 | |||
no | 64 (88.9) | 18 (85.7) | 46 (90.2) | |
yes | 8 (11.1) | 3 (14.3) | 5 (9.8) | |
Occupation: | 0.172 | |||
student | 21 (29.2) | 5 (23.8) | 16 (31.4) | |
worker | 10 (13.9) | 1 (4.8) | 9 (17.6) | |
white collar worker | 41 (56.9) | 15 (71.4) | 26 (51.0) | |
Years of living in the L-G Copper Area (n = 49): | 1.000 | |||
≤20 years old | 18 (35.3) | - | 18 (35.3) | |
21–30 years old | 20 (39.2) | - | 20 (39.2) | |
≥31 years old | 13 (25.5) | - | 13 (25.5) | |
Thyroid and parathyroid glands diseases: | 0.971 | |||
no | 65 (90.3) | 19 (90.5) | 46 (90.2) | |
yes | 7 (9.7) | 2 (9.5) | 5 (9.8) | |
Cardiac diseases: | 0.531 | |||
no | 70 (97.2) | 20 (95.2) | 50 (98.0) | |
yes | 2 (2.8) | 1 (4.8) | 1 (2.0) | |
Dietary supplements: | 0.472 | |||
no | 49 (68.1) | 13 (61.9) | 36 (70.6) | |
yes | 23 (31.9) | 8 (38.1) | 15 (29.4) | |
Reason for extraction: | 0.003 * | |||
surgical | 57 (79.2) | 21 (100.0) | 36 (70.6) | |
orthodontic | 8 (11.1) | 0 (0.0) | 8 (15.7) | |
inflammation | 7 (9.7) | 0 (0.0) | 7 (13.7) | |
Vit. D3 (ng/mL) | 27.0 (9.9–72.0) | 27.8 (25.5–32.2) | 26.4 (18.5–28.4) | 0.134 |
Vit. D3 (ng/mL): | 0.189 | |||
<20—large deficiency | 19 (26.4) | 3 (14.3) | 16 (31.4) | |
20–29—deficiency | 36 (50.0) | 10 (47.6) | 26 (51.0) | |
30–50—norm | 11 (15.3) | 6 (28.6) | 5 (9.8) | |
51–100—above the norm | 6 (8.3) | 2 (9.5) | 4 (7.8) |
Variable | Total (n = 72) | L-G Copper District—No (n = 21) | L-G Copper District—Yes (n = 51) | p-Value |
---|---|---|---|---|
Hg (µg/g) | 0.367 (0.277–0.557) | 0.341 (0.287–0.480) | 0.389 (0.274–0.557) | 0.655 |
Predictor | Risk Estimate | SE | 95% Confidence Limits | Wald Test | p-Value | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Intercept | 3.64 | 0.87 | 1.92 | 5.35 | 17.33 | <0.0001 * |
Gender (for female) | −0.13 | 0.13 | −0.39 | 0.14 | 0.96 | 0.325 |
Age (for 16–26 years old) | −0.45 | 0.32 | −1.10 | 0.18 | 1.93 | 0.163 |
Age (for 27–37 years old) | 0.77 | 0.23 | 0.31 | 1.23 | 10.67 | 0.001 * |
Residence in the L-G Copper District (years) | −0.14 | 0.03 | −0.21 | −0.08 | 19.10 | <0.0001 * |
Residence in the L-G Copper District (for ≤20 years) | −2.49 | 0.56 | −3.60 | −1.38 | 19.32 | <0.0001 * |
Residence in the L-G Copper District (for 21–30 years) | −0.64 | 0.25 | −1.15 | −0.14 | 6.31 | 0.012 * |
Residence in the L-G Copper District (for >30 years) | 3.14 | 0.40 | 2.34 | 3.93 | 60.14 | <0.0001 * |
Reason for extraction (for orthodontic) | 1.21 | 0.26 | 0.68 | 1.73 | 20.50 | <0.0001 * |
Predictor | Risk Estimate | SE | 95% Confidence Limits | Wald Test | p-Value | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Intercept | 2.65 | 0.63 | 1.41 | 3.90 | 17.60 | <0.0001 |
Thyroid and parathyroid glands diseases | 0.71 | 0.41 | −0.11 | 1.53 | 2.87 | 0.090 |
Cardiac diseases | 2.27 | 0.32 | 1.62 | 2.91 | 47.35 | <0.0001 * |
Vit. D3 (for <20 ng/mL—large deficiency) | −0.60 | 0.73 | −2.04 | 0.83 | 0.68 | 0.408 |
Vit. D3: (for 20–29 ng/mL—deficiency) | −0.57 | 0.56 | −1.68 | 0.53 | 1.03 | 0.310 |
Vit. D3: (for 30–50 ng/mL—norm) | −0.81 | 0.61 | −2.01 | 0.38 | 1.76 | 0.184 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rayad, S.; Dobrzyński, M.; Kuźniarski, A.; Styczyńska, M.; Diakowska, D.; Gedrange, T.; Klimas, S.; Gębarowski, T.; Dominiak, M. Mercury Content in Impacted Wisdom Teeth from Patients of the Legnica–Głogów Copper Area—An In Vitro Pilot Study. J. Xenobiot. 2023, 13, 463-478. https://doi.org/10.3390/jox13030029
Rayad S, Dobrzyński M, Kuźniarski A, Styczyńska M, Diakowska D, Gedrange T, Klimas S, Gębarowski T, Dominiak M. Mercury Content in Impacted Wisdom Teeth from Patients of the Legnica–Głogów Copper Area—An In Vitro Pilot Study. Journal of Xenobiotics. 2023; 13(3):463-478. https://doi.org/10.3390/jox13030029
Chicago/Turabian StyleRayad, Sadri, Maciej Dobrzyński, Amadeusz Kuźniarski, Marzena Styczyńska, Dorota Diakowska, Tomasz Gedrange, Sylwia Klimas, Tomasz Gębarowski, and Marzena Dominiak. 2023. "Mercury Content in Impacted Wisdom Teeth from Patients of the Legnica–Głogów Copper Area—An In Vitro Pilot Study" Journal of Xenobiotics 13, no. 3: 463-478. https://doi.org/10.3390/jox13030029
APA StyleRayad, S., Dobrzyński, M., Kuźniarski, A., Styczyńska, M., Diakowska, D., Gedrange, T., Klimas, S., Gębarowski, T., & Dominiak, M. (2023). Mercury Content in Impacted Wisdom Teeth from Patients of the Legnica–Głogów Copper Area—An In Vitro Pilot Study. Journal of Xenobiotics, 13(3), 463-478. https://doi.org/10.3390/jox13030029