Plastic Analysis with a Plasmonic Nano-Gold Sensor Coated with Plastic-Binding Peptides
Abstract
:1. Introduction
2. Methods
2.1. Preparation of nAu Peptides
2.2. Assay for PE, PET, PP, and PS Nanoplastics
2.3. Application in Freshwater Mussels Caged in a Large Urban Area
2.4. Data Analysis
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Poll. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Diaz-Basantes, M.F.; Conesa, J.A.; Fullana, A. Microplastics in honey, beer, milk and refreshments in Ecuador as emerging contaminants. Sustainability 2020, 12, 5514. [Google Scholar] [CrossRef]
- Toussaint, B.; Raffael, B.; Angers-Loustau, A.; Gilliland, D.; Kestens, V.; Petrillo, M.; Rio-Echevarria, I.M.; Van den Eede, G. Review of micro- and nanoplastic contamination in the food chain. Food Addit. Contam. Part A 2019, 36, 639–673. [Google Scholar] [CrossRef] [PubMed]
- Amelia, T.S.M.; Khalik, W.M.A.W.M.; Ong, M.C.; Shao, Y.T.; Pan, H.-J.; Bhubalan, K. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog. Earth Planet Sci. 2021, 8, 12. [Google Scholar] [CrossRef]
- Park, W.J.; Hwangbo, M.; Chu, K.-H. Plastisphere and microorganisms involved in polyurethane biodegradation. Stoten 2023, 886, 163932. [Google Scholar] [CrossRef]
- Mikesková, H.; Novotný, Č.; Svobodová, K. Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Appl. Microbiol. Biotechnol. 2012, 95, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Barragan, J.; Dominguez-Malfavon, L.; Vargas-Suarez, M.; Gonzalez-Hernandez, R.; Aguilar-Osorio, G.; Loza-Tavera, H. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Appl. Env. Microbiol. 2016, 82, 5225–5235. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, R.-A.; Aristilde, L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. J. Appl. Microbiol. 2017, 123, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, K.; Lauvrak, V.; Babaie, E.; Eijsink, V.; Lindqvist, B.H. Adhesive peptides selected by phage display: Characterization, applications and similarities with fibrinogen. Pept. Res. 1996, 9, 269–278. [Google Scholar]
- Qiang, X.; Sun, K.; Xing, L.; Xu, Y.; Wang, H.; Zhou, Z.; Zhang, J.; Zhang, F.; Caliskan, B.; Wang, M.; et al. Discovery of a polystyrene binding peptide isolated from phage display library and its application in peptide immobilization. Sci. Rep. 2017, 7, 2673. [Google Scholar] [CrossRef]
- Vodnik, M.; Štrukelj, B.; Lunder, M. HWGMWSY, an unanticipated polystyrene binding peptide from random phage display libraries. Anal. Biochem. 2012, 424, 83–86. [Google Scholar] [CrossRef]
- Behera, A.; Mahapatra, S.R.; Majhi, S.; Misra, N.; Sharma, R.; Singh, J.; Singh, R.P.; Pandey, S.S.; Singh, K.R.B.; Kerry, R.G. Gold nanoparticle assisted colorimetric biosensors for rapid polyethylene terephthalate (PET) sensing for sustainable environment to monitor microplastics. Env. Res. 2023, 234, 116556. [Google Scholar] [CrossRef]
- Woo, H.; Kang, S.H.; Kwon, Y.; Choi, Y.; Kim, J.; Ha, D.H.; Tanaka, M.; Okochi, M.; Kim, J.S.; Kim, H.K.; et al. Sensitive and specific capture of polystyrene and polypropylene microplastics using engineered peptide biosensors. RSC Adv. 2022, 12, 7680. [Google Scholar] [CrossRef] [PubMed]
- Sathiyaraj, S.; Suriyakala, G.; Gandhi, A.D.; Babujanarthanam, R.; Almaary, K.S.; Chen, T.W. Synthesis, characterization, and antibacterial activity of biosynthesized gold nanoparticles. Bioint Res. Appl. Chem. 2020, 11, 9619–9962. [Google Scholar]
- Li, X.; Wu, Z.; Zhou, X.; Hu, J. Colorimetric response of peptide modified gold nanoparticles: An original assay for ultrasensitive silver detection. Biosens. Bioelectron. 2017, 92, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Gagné, F. Isolation and Quantification of Polystyrene Nanoplastics in Tissues by Low Pressure Size Exclusion Chromatography. J. Xenobiot. 2022, 12, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Gagné, F.; Roubeau-Dumont, E.; André, C.; Auclair, J. Micro and Nanoplastic Contamination and Its Effects on Freshwater Mussels Caged in an Urban Area. J. Xenobiot. 2023, 13, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- André, C.; Duy, S.V.; Sauvé, S.; Gagné, F. Comparative toxicity of urban wastewater and rainfall overflow in caged freshwater mussel Elliptio complanata. Front. Physiol. 2023, 14, 1233659. [Google Scholar] [CrossRef]
- Frings, C.S.; Fendley, T.W.; Dunn, R.T.; Queen, C.A. Improved determination of total serum lipids by the sulfo-phospho-vanillin reaction. Clin. Chem. 1972, 18, 673–674. [Google Scholar] [CrossRef]
- Gagné, F.; Auclair, J.; Quinn, B. Detection of polystyrene nanoplastics in biological samples based on the solvatochromic properties of Nile red: Application in Hydra attenuata exposed to nanoplastics. Env. Sci. Pollut. Res. Int. 2019, 26, 33524–33531. [Google Scholar] [CrossRef] [PubMed]
- Anh, N.H.; Doan, M.Q.; Dinh, N.X.; Huy, T.Q.; Tri, D.Q.; Loan, L.T.N.; Hao, B.V.; Le, A.T. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: Recent advances and future perspectives. RSC Adv. 2022, 12, 10950–10988. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Cai, W.; Li, J.; Wu, D. Visual monitoring of polystyrene nanoplastics < 100 nm in drinking water based on functionalized gold nanoparticles. Sens. Act. B Chem. 2023, 392, 134099. [Google Scholar]
- Jain, P.K.; Huang, W.; El-Sayed, M.A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 2007, 7, 2080–2088. [Google Scholar] [CrossRef]
- Jung, S.; Raghavendra, A.J.; Patri, A.K. Comprehensive analysis of common polymers using hyphenated TGA-FTIR-GC/MS and Raman spectroscopy towards a database for micro and nanoplastics identification, characterization, and quantitation. NanoImpact 2023, 30, 100467. [Google Scholar] [CrossRef] [PubMed]
- Okoffo, E.D.; Thomas, K.V. Mass quantification of nanoplastics at wastewater treatment plants by pyrolysis-gas chromatography-mass spectrometry. Water Res. 2024, 254, 121397. [Google Scholar] [CrossRef] [PubMed]
- Palos, R.; Gutiérrez, A.; Vela, F.J.; Olazar, M.; Arandes, J.M.; Bilbao, J. Waste refinery: The valorization of waste plastics and end-of-life tires in refinery units. A Review. Energy Fuels 2021, 35, 3529–3557. [Google Scholar] [CrossRef]
- Guselnikova, O.; Semyonov, O.; Sviridova, E.; Gulyaev, R.; Gorbunova, A.; Kogolev, D.; Trelin, A.; Yamauchi, Y.; Boukherroub, R.; Postnikov, P. “Functional upcycling” of polymer waste towards the design of new materials. Chem Soc Rev 2023, 52, 4755–4832. [Google Scholar] [CrossRef]
Plastic | Structural Unit | Peptide sequence | # Amino Acids/ Hydrophobicity (%)/Isoelectric Point/Mass 1 | Reference |
---|---|---|---|---|
Polystyrene (PS) | NH2-His-Trp-Gly-Met-Trp-Ser-Tyr-COOH | 7 43% 6.74 966 | [11] | |
Polyethylene terephthalate (PET) | NH2-Cys-Trp-Phe Ala-Trp-Lys-Thr-His-Pro-Ile-Leu-Arg-Met-COOH | 13 54% 9.51 1639 | From [12]; Cys was added at the amino end in this study | |
Polyethylene (PE) | NH2-Leu-Pro-Pro-Trp-Lys-His-Lys-Thr-Ser-Gly-Val-Ala-COOH | 12 67% 10 1320 | [13] | |
Polypropylene (PP) | NH2- Met-Pro-Ala-Val-Met-Ser-Ser-Ala-Gln-Val-Pro-Arg-COOH | 12 50% 9.5 1263 | [13] |
nAu–Peptides | PS | PET | PE | PP |
---|---|---|---|---|
PS peptide | -- | <1% 1 | 67% | 44% |
PET peptide | 28% | -- | 38% | 59% |
PE peptide | 60% | <1% | -- | 34% |
PP peptide | 50% | <1% | 39% | -- |
Sites | CF (Mussel g/cm) | DGI (g Digestive Gland/g Tissues) | GSI (g Gonad/g Tissues) | Lipids (ug Lipids/mg Proteins) | NR Shift 1 |
---|---|---|---|---|---|
Down City | 0.77± 0.03 | 0.033± 0.003 | 0.035± 0.003 * | 1.32± 0.22 | 0.025± 0.002 * |
Down Effluent | 0.73± 0.03 | 0.037± 0.002 | 0.052± 0.004 | 1.37± 0.33 | 0.02± 0.001 |
OVF1 | 0.73± 0.025 | 0.031± 0.003 * | 0.039± 0.004* | 1.05± 0.14 | 0.03± 0.003 * |
OVF2 | 0.77± 0.03 | 0.032± 0.002 | 0.039± 0.003 * | 0.82± 0.21 * | 0.018± 0.001 |
CF | DGI | GSI | NRshift | Lipids | PS | PE | PP | PET | |
---|---|---|---|---|---|---|---|---|---|
DGI | −0.15 | 1 | |||||||
GSI | −0.27 | 0.4 | 1 | ||||||
NRshift | 0.21 | −0.14 | −0.36 | 1 | |||||
Lipids | 0.24 | −0.07 | −0.36 | 0.49 | 1 | ||||
PS | −0.15 | 0.28 | 0.12 | 0 | 0.25 | 1 | |||
PE | 0.001 | 0.27 | 0.12 | 0.04 | 0.2 | −0.21 | 1 | ||
PP | 0.16 | 0.17 | −0.28 | 0.48 | 0.78 | 0.18 | 0.49 | 1 | |
PET | −0.05 | 0.39 | 0 | 0.25 | 0.24 | 0.02 | 0.30 | 0.45 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gagné, F.; Gauthier, M.; André, C. Plastic Analysis with a Plasmonic Nano-Gold Sensor Coated with Plastic-Binding Peptides. J. Xenobiot. 2024, 14, 690-700. https://doi.org/10.3390/jox14020040
Gagné F, Gauthier M, André C. Plastic Analysis with a Plasmonic Nano-Gold Sensor Coated with Plastic-Binding Peptides. Journal of Xenobiotics. 2024; 14(2):690-700. https://doi.org/10.3390/jox14020040
Chicago/Turabian StyleGagné, Francois, Maxime Gauthier, and Chantale André. 2024. "Plastic Analysis with a Plasmonic Nano-Gold Sensor Coated with Plastic-Binding Peptides" Journal of Xenobiotics 14, no. 2: 690-700. https://doi.org/10.3390/jox14020040
APA StyleGagné, F., Gauthier, M., & André, C. (2024). Plastic Analysis with a Plasmonic Nano-Gold Sensor Coated with Plastic-Binding Peptides. Journal of Xenobiotics, 14(2), 690-700. https://doi.org/10.3390/jox14020040