A Review on Fluoroquinolones’ Toxicity to Freshwater Organisms and a Risk Assessment
Abstract
:1. Introduction
2. Chemistry and Mode of Action of FQs
3. Sources and Presence of FQs in the Environment
4. Mechanisms of Toxicity of Fluoroquinolones in Non-Target Species
4.1. Genotoxicity
4.2. Degradation of the Extracellular Matrix
4.3. Toxicity to the Central Nervous System
5. Toxicity of FQs to Freshwater Organisms
5.1. Cyanobacteria
5.2. Unicellular Green Algae
5.3. Aquatic Plants
5.4. Crustaceans
5.5. Fish
5.6. Other Freshwater Organisms
6. Risk Assessment
7. Conclusions
- Their particular efficacy in treating a range of dangerous bacterial infections should be safeguarded, limiting the spread of drug resistance as much as possible;
- As with any class of antibiotics, limiting their use helps to maintain the ecological integrity of aquatic microbial communities;
- The extent of their removal by conventional wastewater treatment plants is unsatisfactory;
- Contamination of the freshwater environment is already widespread, and, in some cases, they achieve remarkably high levels;
- Their relative resistance to degradation combined with a strong tendency to adsorption favors their progressive accumulation in sediments;
- Their pronounced toxicity to organisms at basal trophic levels can have bottom-up repercussions in aquatic ecosystems;
- Their potential ability to disrupt aquatic plant communities may influence the structure of the habitats provided by plants to various organisms;
- Little is known about possible toxicological interactions amongst FQs or with other co-occurring contaminants of the freshwater environment;
- Their possible transgenerational and delayed toxicity increases the complexity of defining environmental safety thresholds;
- Given their ability to interact with the genome, even brief occasional exposure of freshwater organisms to FQs could have long-term consequences;
- The restriction of FQ use aligns with broader efforts to promote sustainable water management practices, emphasizing the protection and conservation of aquatic ecosystems for future generations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emmerson, A.M. The Quinolones: Decades of Development and Use. J. Antimicrob. Chemother. 2003, 51, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Marchant, J. When Antibiotics Turn Toxic. Nature 2018, 555, 431–433. [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.; Munteanu, A.-C.; Arbănași, E.-M.; Uivarosi, V. Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics 2023, 15, 804. [Google Scholar] [CrossRef] [PubMed]
- Idowu, T.; Schweizer, F. Ubiquitous Nature of Fluoroquinolones: The Oscillation between Antibacterial and Anticancer Activities. Antibiotics 2017, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; McDermott, P.; Walker, R. Pharmacology of the Fluoroquinolones: A Perspective for the Use in Domestic Animals. Vet. J. 2006, 172, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Schmerold, I.; Van Geijlswijk, I.; Gehring, R. European Regulations on the Use of Antibiotics in Veterinary Medicine. Eur. J. Pharm. Sci. 2023, 189, 106473. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M. Fluoroquinolones: Mechanism of Action, Classification, and Development of Resistance. Surv. Ophthalmol. 2004, 49, S73–S78. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.J.; Mosig, G. An ATP-Dependent Supercoiling Topoisomerase of Chlamydomonas reinhardtii Affects Accumulation of Specific Chforoplast Transcripts. Nucleic Acids Res. 1985, 13, 873–891. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.K.; Mitchenall, L.A.; Maxwell, A. Arabidopsis thaliana DNA Gyrase Is Targeted to Chloroplasts and Mitochondria. Proc. Natl. Acad. Sci. USA 2004, 101, 7821–7826. [Google Scholar] [CrossRef]
- Hangas, A.; Aasumets, K.; Kekäläinen, N.J.; Paloheinä, M.; Pohjoismäki, J.L.; Gerhold, J.M.; Goffart, S. Ciprofloxacin Impairs Mitochondrial DNA Replication Initiation through Inhibition of Topoisomerase 2. Nucleic Acids Res. 2018, 46, 9625–9636. [Google Scholar] [CrossRef]
- Mercer, M.A. Quinolones, Including Fluoroquinolones—Use in Animals 2022. Available online: https://www.msdvetmanual.com/pharmacology/antibacterial-agents/quinolones,-including-fluoroquinolones,-use-in-animals (accessed on 15 May 2024).
- Badal, S.; Her, Y.F.; Maher, L.J. Nonantibiotic Effects of Fluoroquinolones in Mammalian Cells. J. Biol. Chem. 2015, 290, 22287–22297. [Google Scholar] [CrossRef] [PubMed]
- Tennyson, L.E.; Averch, T.D. An Update on Fluoroquinolones: The Emergence of a Multisystem Toxicity Syndrome. Urol. Pract. 2017, 4, 383–387. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Fluoroquinolone and Quinolone Antibiotics: PRAC Recommends New Restrictions on Use; European Medicines Agency: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Ly, N.F.; Flach, C.; Lysen, T.S.; Markov, E.; Van Ballegooijen, H.; Rijnbeek, P.; Duarte-Salles, T.; Reyes, C.; John, L.H.; Karimi, L.; et al. Impact of European Union Label Changes for Fluoroquinolone-Containing Medicinal Products for Systemic and Inhalation Use: Post-Referral Prescribing Trends. Drug Saf. 2023, 46, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Sukul, P.; Spiteller, M. Fluoroquinolone Antibiotics in the Environment. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2007; Volume 191, pp. 131–162. ISBN 978-0-387-69162-6. [Google Scholar]
- Riaz, L.; Mahmood, T.; Khalid, A.; Rashid, A.; Ahmed Siddique, M.B.; Kamal, A.; Coyne, M.S. Fluoroquinolones (FQs) in the Environment: A Review on Their Abundance, Sorption and Toxicity in Soil. Chemosphere 2018, 191, 704–720. [Google Scholar] [CrossRef] [PubMed]
- Välitalo, P.; Kruglova, A.; Mikola, A.; Vahala, R. Toxicological Impacts of Antibiotics on Aquatic Micro-Organisms: A Mini-Review. Int. J. Hyg. Environ. Health 2017, 220, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Pietropoli, E.; Pauletto, M.; Tolosi, R.; Iori, S.; Lopparelli, R.M.; Montanucci, L.; Giantin, M.; Dacasto, M.; De Liguoro, M. An In Vivo Whole-Transcriptomic Approach to Assess Developmental and Reproductive Impairments Caused by Flumequine in Daphnia magna. Int. J. Mol. Sci. 2023, 24, 9396. [Google Scholar] [CrossRef] [PubMed]
- De Liguoro, M.; Maraj, S.; Merlanti, R. Transgenerational Toxicity of Flumequine over Four Generations of Daphnia magna. Ecotoxicol. Environ. Saf. 2019, 169, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Tolosi, R.; De Liguoro, M. Delayed Toxicity of Three Fluoroquinolones and Their Mixtures after Neonatal or Embryonic Exposure, in Daphnia magna. Ecotoxicol. Environ. Saf. 2021, 225, 112778. [Google Scholar] [CrossRef] [PubMed]
- German Environment Agency. Database—Pharmaceuticals in the Environment; Umweltbundesamt—UBA: Dessau-Roßlau, Germany, 2020. [Google Scholar]
- Olker, J.H.; Elonen, C.M.; Pilli, A.; Anderson, A.; Kinziger, B.; Erickson, S.; Skopinski, M.; Pomplun, A.; LaLone, C.A.; Russom, C.L.; et al. The ECOTOXicology Knowledgebase: A Curated Database of Ecologically Relevant Toxicity Tests to Support Environmental Research and Risk Assessment. Environ. Toxicol. Chem. 2022, 41, 1520–1539. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Hu, Y.; Zhao, K.; Li, C.; Liu, B.; Li, M.; Lyu, C.; Sun, L.; Zhong, S. Occurrence, Bioaccumulation, Metabolism and Ecotoxicity of Fluoroquinolones in the Aquatic Environment: A Review. Toxics 2023, 11, 966. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, L.; Qin, S.; Cui, J.; Liu, Y. Quinolones Antibiotics in the Baiyangdian Lake, China: Occurrence, Distribution, Predicted No-Effect Concentrations (PNECs) and Ecological Risks by Three Methods. Environ. Pollut. 2020, 256, 113458. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Liu, Q.; Pan, Y.; Xu, S.; Li, H.; Tang, J. The Research Status, Potential Hazards and Toxicological Mechanisms of Fluoroquinolone Antibiotics in the Environment. Antibiotics 2023, 12, 1058. [Google Scholar] [CrossRef] [PubMed]
- Thai, V.-A.; Dang, V.D.; Thuy, N.T.; Pandit, B.; Vo, T.-K.-Q.; Khedulkar, A.P. Fluoroquinolones: Fate, Effects on the Environment and Selected Removal Methods. J. Clean. Prod. 2023, 418, 137762. [Google Scholar] [CrossRef]
- Bhatt, S.; Chatterjee, S. Fluoroquinolone Antibiotics: Occurrence, Mode of Action, Resistance, Environmental Detection, and Remediation—A Comprehensive Review. Environ. Pollut. 2022, 315, 120440. [Google Scholar] [CrossRef]
- Teglia, C.M.; Perez, F.A.; Michlig, N.; Repetti, M.R.; Goicoechea, H.C.; Culzoni, M.J. Occurrence, Distribution, and Ecological Risk of Fluoroquinolones in Rivers and Wastewaters. Environ. Toxicol. Chem. 2019, 38, 2305–2313. [Google Scholar] [CrossRef] [PubMed]
- Van Doorslaer, X.; Dewulf, J.; Van Langenhove, H.; Demeestere, K. Fluoroquinolone Antibiotics: An Emerging Class of Environmental Micropollutants. Sci. Total Environ. 2014, 500–501, 250–269. [Google Scholar] [CrossRef]
- Rusu, A.; Lungu, I.-A.; Moldovan, O.-L.; Tanase, C.; Hancu, G. Structural Characterization of the Millennial Antibacterial (Fluoro)Quinolones—Shaping the Fifth Generation. Pharmaceutics 2021, 13, 1289. [Google Scholar] [CrossRef]
- Mathur, P.; Sanyal, D.; Callahan, D.L.; Conlan, X.A.; Pfeffer, F.M. Treatment Technologies to Mitigate the Harmful Effects of Recalcitrant Fluoroquinolone Antibiotics on the Environment and Human Health. Environ. Pollut. 2021, 291, 118233. [Google Scholar] [CrossRef]
- Guo, X.; Yan, Z.; Zhang, Y.; Kong, X.; Kong, D.; Shan, Z.; Wang, N. Removal Mechanisms for Extremely High-Level Fluoroquinolone Antibiotics in Pharmaceutical Wastewater Treatment Plants. Environ. Sci. Pollut. Res. 2017, 24, 8769–8777. [Google Scholar] [CrossRef]
- Parente, C.E.T.; Azeredo, A.; Vollú, R.E.; Zonta, E.; Azevedo-Silva, C.E.; Brito, E.M.S.; Seldin, L.; Torres, J.P.M.; Meire, R.O.; Malm, O. Fluoroquinolones in Agricultural Soils: Multi-Temporal Variation and Risks in Rio de Janeiro Upland Region. Chemosphere 2019, 219, 409–417. [Google Scholar] [CrossRef]
- Parente, C.E.T.; Brito, E.M.S.; Azeredo, A.; Meire, R.O.; Malm, O. Fluoroquinolone Antibiotics and Their Interactions in Agricultural Soils—A Review. Orbital Electron. J. Chem. 2019, 11, 42–52. [Google Scholar] [CrossRef]
- Nowara, A.; Burhenne, J.; Spiteller, M. Binding of Fluoroquinolone Carboxylic Acid Derivatives to Clay Minerals. J. Agric. Food Chem. 1997, 45, 1459–1463. [Google Scholar] [CrossRef]
- Franklin, A.M.; Williams, C.; Andrews, D.M.; Watson, J.E. Sorption and Desorption Behavior of Four Antibiotics at Concentrations Simulating Wastewater Reuse in Agricultural and Forested Soils. Chemosphere 2022, 289, 133038. [Google Scholar] [CrossRef] [PubMed]
- Maghsodian, Z.; Sanati, A.M.; Mashifana, T.; Sillanpää, M.; Feng, S.; Nhat, T.; Ramavandi, B. Occurrence and Distribution of Antibiotics in the Water, Sediment, and Biota of Freshwater and Marine Environments: A Review. Antibiotics 2022, 11, 1461. [Google Scholar] [CrossRef]
- Wu, R.; Ruan, Y.; Huang, G.; Li, J.; Lao, J.-Y.; Lin, H.; Liu, Y.; Cui, Y.; Zhang, K.; Wang, Q.; et al. Source Apportionment, Hydrodynamic Influence, and Environmental Stress of Pharmaceuticals in a Microtidal Estuary with Multiple Outlets in South China. Environ. Sci. Technol. 2022, 56, 11374–11386. [Google Scholar] [CrossRef] [PubMed]
- Golet, E.M.; Alder, A.C.; Giger, W. Environmental Exposure and Risk Assessment of Fluoroquinolone Antibacterial Agents in Wastewater and River Water of the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol. 2002, 36, 3645–3651. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Mo, Y.; Wu, Z.; Rad, S.; Song, X.; Zeng, H.; Bashir, S.; Kang, B.; Chen, Z. Occurrence, Distribution, and Health Risk Assessment of Quinolone Antibiotics in Water, Sediment, and Fish Species of Qingshitan Reservoir, South China. Sci. Rep. 2020, 10, 15777. [Google Scholar] [CrossRef]
- Fick, J.; Söderström, H.; Lindberg, R.H.; Phan, C.; Tysklind, M.; Larsson, D.G.J. Contamination of Surface, Ground, and Drinking Water from Pharmaceutical Production. Environ. Toxicol. Chem. 2009, 28, 2522–2527. [Google Scholar] [CrossRef] [PubMed]
- Gothwal, R. Shashidhar Occurrence of High Levels of Fluoroquinolones in Aquatic Environment Due to Effluent Discharges from Bulk Drug Manufacturers. J. Hazard. Toxic Radioact. Waste 2017, 21, 05016003. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; De Pedro, C.; Paxeus, N. Effluent from Drug Manufactures Contains Extremely High Levels of Pharmaceuticals. J. Hazard. Mater. 2007, 148, 751–755. [Google Scholar] [CrossRef]
- Le, T.X.; Munekage, Y. Residues of Selected Antibiotics in Water and Mud from Shrimp Ponds in Mangrove Areas in Viet Nam. Mar. Pollut. Bull. 2004, 49, 922–929. [Google Scholar] [CrossRef] [PubMed]
- López-Serna, R.; Pérez, S.; Ginebreda, A.; Petrović, M.; Barceló, D. Fully Automated Determination of 74 Pharmaceuticals in Environmental and Waste Waters by Online Solid Phase Extraction–Liquid Chromatography-Electrospray-Tandem Mass Spectrometry. Talanta 2010, 83, 410–424. [Google Scholar] [CrossRef] [PubMed]
- Yiruhan; Wang, Q.-J.; Mo, C.-H.; Li, Y.-W.; Gao, P.; Tai, Y.-P.; Zhang, Y.; Ruan, Z.-L.; Xu, J.-W. Determination of Four Fluoroquinolone Antibiotics in Tap Water in Guangzhou and Macao. Environ. Pollut. 2010, 158, 2350–2358. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Shi, Y.; Li, W.; Liu, J.; Cai, Y. Occurrence, Distribution and Bioaccumulation of Antibiotics in the Haihe River in China. J. Environ. Monit. 2012, 14, 1248. [Google Scholar] [CrossRef] [PubMed]
- Al Aukidy, M.; Verlicchi, P.; Jelic, A.; Petrovic, M.; Barcelò, D. Monitoring Release of Pharmaceutical Compounds: Occurrence and Environmental Risk Assessment of Two WWTP Effluents and Their Receiving Bodies in the Po Valley, Italy. Sci. Total Environ. 2012, 438, 15–25. [Google Scholar] [CrossRef]
- Alexy, R.; Sommer, A.; Lange, F.T.; Kümmerer, K. Local Use of Antibiotics and Their Input and Fate in a Small Sewage Treatment Plant—Significance of Balancing and Analysis on a Local Scale vs. Nationwide Scale. Acta Hydrochim. Hydrobiol. 2006, 34, 587–592. [Google Scholar] [CrossRef]
- Alygizakis, N.A.; Besselink, H.; Paulus, G.K.; Oswald, P.; Hornstra, L.M.; Oswaldova, M.; Medema, G.; Thomaidis, N.S.; Behnisch, P.A.; Slobodnik, J. Characterization of Wastewater Effluents in the Danube River Basin with Chemical Screening, in Vitro Bioassays and Antibiotic Resistant Genes Analysis. Environ. Int. 2019, 127, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, R.; Raffaele, M.; Nicklas, P. Pharmaceuticals in STP Effluents and Their Solar Photodegradation in Aquatic Environment. Chemosphere 2003, 50, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Andrieu, M.; Rico, A.; Phu, T.M.; Huong, D.T.T.; Phuong, N.T.; Van Den Brink, P.J. Ecological Risk Assessment of the Antibiotic Enrofloxacin Applied to Pangasius Catfish Farms in the Mekong Delta, Vietnam. Chemosphere 2015, 119, 407–414. [Google Scholar] [CrossRef]
- Archana, G.; Dhodapkar, R.; Kumar, A. Offline Solid-Phase Extraction for Preconcentration of Pharmaceuticals and Personal Care Products in Environmental Water and Their Simultaneous Determination Using the Reversed Phase High-Performance Liquid Chromatography Method. Environ. Monit. Assess. 2016, 188, 512. [Google Scholar] [CrossRef]
- Archana, G.; Dhodapkar, R.; Kumar, A. Ecotoxicological Risk Assessment and Seasonal Variation of Some Pharmaceuticals and Personal Care Products in the Sewage Treatment Plant and Surface Water Bodies (Lakes). Environ. Monit. Assess. 2017, 189, 446. [Google Scholar] [CrossRef]
- Aydin, S.; Aydin, M.E.; Ulvi, A.; Kilic, H. Antibiotics in Hospital Effluents: Occurrence, Contribution to Urban Wastewater, Removal in a Wastewater Treatment Plant, and Environmental Risk Assessment. Environ. Sci. Pollut. Res. 2019, 26, 544–558. [Google Scholar] [CrossRef]
- Azuma, T.; Ishiuchi, H.; Inoyama, T.; Teranishi, Y.; Yamaoka, M.; Sato, T.; Mino, Y. Occurrence and Fate of Selected Anticancer, Antimicrobial, and Psychotropic Pharmaceuticals in an Urban River in a Subcatchment of the Yodo River Basin, Japan. Environ. Sci. Pollut. Res. 2015, 22, 18676–18686. [Google Scholar] [CrossRef]
- Bai, Y.; Meng, W.; Xu, J.; Zhang, Y.; Guo, C. Occurrence, Distribution and Bioaccumulation of Antibiotics in the Liao River Basin in China. Environ. Sci. Process. Impacts 2014, 16, 586. [Google Scholar] [CrossRef]
- Batt, A.L.; Aga, D.S. Simultaneous Analysis of Multiple Classes of Antibiotics by Ion Trap LC/MS/MS for Assessing Surface Water and Groundwater Contamination. Anal. Chem. 2005, 77, 2940–2947. [Google Scholar] [CrossRef]
- Batt, A.L.; Bruce, I.B.; Aga, D.S. Evaluating the Vulnerability of Surface Waters to Antibiotic Contamination from Varying Wastewater Treatment Plant Discharges. Environ. Pollut. 2006, 142, 295–302. [Google Scholar] [CrossRef]
- Bielen, A.; Šimatović, A.; Kosić-Vukšić, J.; Senta, I.; Ahel, M.; Babić, S.; Jurina, T.; González Plaza, J.J.; Milaković, M.; Udiković-Kolić, N. Negative Environmental Impacts of Antibiotic-Contaminated Effluents from Pharmaceutical Industries. Water Res. 2017, 126, 79–87. [Google Scholar] [CrossRef]
- Biel-Maeso, M.; Corada-Fernández, C.; Lara-Martín, P.A. Monitoring the Occurrence of Pharmaceuticals in Soils Irrigated with Reclaimed Wastewater. Environ. Pollut. 2018, 235, 312–321. [Google Scholar] [CrossRef]
- Blair, B.D.; Crago, J.P.; Hedman, C.J.; Treguer, R.J.F.; Magruder, C.; Royer, L.S.; Klaper, R.D. Evaluation of a Model for the Removal of Pharmaceuticals, Personal Care Products, and Hormones from Wastewater. Sci. Total Environ. 2013, 444, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Bonvin, F.; Rutler, R.; Chèvre, N.; Halder, J.; Kohn, T. Spatial and Temporal Presence of a Wastewater-Derived Micropollutant Plume in Lake Geneva. Environ. Sci. Technol. 2011, 45, 4702–4709. [Google Scholar] [CrossRef] [PubMed]
- Martínez Bueno, M.J.; Agüera, A.; Gómez, M.J.; Hernando, M.D.; García-Reyes, J.F.; Fernández-Alba, A.R. Application of Liquid Chromatography/Quadrupole-Linear Ion Trap Mass Spectrometry and Time-of-Flight Mass Spectrometry to the Determination of Pharmaceuticals and Related Contaminants in Wastewater. Anal. Chem. 2007, 79, 9372–9384. [Google Scholar] [CrossRef]
- Butkovskyi, A.; Hernandez Leal, L.; Rijnaarts, H.H.M.; Zeeman, G. Fate of Pharmaceuticals in Full-Scale Source Separated Sanitation System. Water Res. 2015, 85, 384–392. [Google Scholar] [CrossRef]
- Calamari, D.; Zuccato, E.; Castiglioni, S.; Bagnati, R.; Fanelli, R. Strategic Survey of Therapeutic Drugs in the Rivers Po and Lambro in Northern Italy. Environ. Sci. Technol. 2003, 37, 1241–1248. [Google Scholar] [CrossRef]
- Carpenter, C.M.G.; Helbling, D.E. Widespread Micropollutant Monitoring in the Hudson River Estuary Reveals Spatiotemporal Micropollutant Clusters and Their Sources. Environ. Sci. Technol. 2018, 52, 6187–6196. [Google Scholar] [CrossRef]
- Castiglioni, S.; Bagnati, R.; Calamari, D.; Fanelli, R.; Zuccato, E. A Multiresidue Analytical Method Using Solid-Phase Extraction and High-Pressure Liquid Chromatography Tandem Mass Spectrometry to Measure Pharmaceuticals of Different Therapeutic Classes in Urban Wastewaters. J. Chromatogr. A 2005, 1092, 206–215. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, X.; Zhao, S.; Cui, B.; Bai, J.; Li, Z. Influence of the Natural Colloids on the Multi-Phase Distributions of Antibiotics in the Surface Water from the Largest Lake in North China. Sci. Total Environ. 2017, 578, 649–659. [Google Scholar] [CrossRef]
- Christian, T.; Schneider, R.J.; Färber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E. Determination of Antibiotic Residues in Manure, Soil, and Surface Waters. Acta Hydrochim. Hydrobiol. 2003, 31, 36–44. [Google Scholar] [CrossRef]
- Chung, H.S.; Choi, J.; Abd El-Aty, A.M.; Lee, Y.; Lee, H.S.; Kim, S.; Jung, H.; Kang, T.; Shin, H.; Shim, J. Simultaneous Determination of Seven Multiclass Veterinary Antibiotics in Surface Water Samples in the Republic of Korea Using Liquid Chromatography with Tandem Mass Spectrometry. J. Sep. Sci. 2016, 39, 4688–4699. [Google Scholar] [CrossRef]
- Ata, R.; Yıldız Töre, G. Characterization and Removal of Antibiotic Residues by NFC-Doped Photocatalytic Oxidation from Domestic and Industrial Secondary Treated Wastewaters in Meric-Ergene Basin and Reuse Assessment for Irrigation. J. Environ. Manag. 2019, 233, 673–680. [Google Scholar] [CrossRef]
- Čizmić, M.; Babić, S.; Kaštelan-Macan, M. Multi-Class Determination of Pharmaceuticals in Wastewaters by Solid-Phase Extraction and Liquid Chromatography Tandem Mass Spectrometry with Matrix Effect Study. Environ. Sci. Pollut. Res. 2017, 24, 20521–20539. [Google Scholar] [CrossRef]
- Coetsier, C.M.; Spinelli, S.; Lin, L.; Roig, B.; Touraud, E. Discharge of Pharmaceutical Products (PPs) through a Conventional Biological Sewage Treatment Plant: MECs vs PECs? Environ. Int. 2009, 35, 787–792. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, K.; Huang, Q.; Yu, Y.; Peng, X. An Indirect Competitive Enzyme-Linked Immunosorbent Assay for Determination of Norfloxacin in Waters Using a Specific Polyclonal Antibody. Anal. Chim. Acta 2011, 688, 84–89. [Google Scholar] [CrossRef]
- Da Le, N.; Hoang, A.Q.; Hoang, T.T.H.; Nguyen, T.A.H.; Duong, T.T.; Pham, T.M.H.; Nguyen, T.D.; Hoang, V.C.; Phung, T.X.B.; Le, H.T.; et al. Antibiotic and Antiparasitic Residues in Surface Water of Urban Rivers in the Red River Delta (Hanoi, Vietnam): Concentrations, Profiles, Source Estimation, and Risk Assessment. Environ. Sci. Pollut. Res. 2021, 28, 10622–10632. [Google Scholar] [CrossRef]
- De Jesus Gaffney, V.; Cardoso, V.V.; Cardoso, E.; Teixeira, A.P.; Martins, J.; Benoliel, M.J.; Almeida, C.M.M. Occurrence and Behaviour of Pharmaceutical Compounds in a Portuguese Wastewater Treatment Plant: Removal Efficiency through Conventional Treatment Processes. Environ. Sci. Pollut. Res. 2017, 24, 14717–14734. [Google Scholar] [CrossRef]
- Tuc Dinh, Q.; Alliot, F.; Moreau-Guigon, E.; Eurin, J.; Chevreuil, M.; Labadie, P. Measurement of Trace Levels of Antibiotics in River Water Using On-Line Enrichment and Triple-Quadrupole LC–MS/MS. Talanta 2011, 85, 1238–1245. [Google Scholar] [CrossRef]
- Farrokh Shad, M.; Juby, G.J.G.; Delagah, S.; Sharbatmaleki, M. Evaluating Occurrence of Contaminants of Emerging Concerns in MF/RO Treatment of Primary Effluent for Water Reuse—Pilot Study. J. Water Reuse Desalination 2019, 9, 350–371. [Google Scholar] [CrossRef]
- Feitosa-Felizzola, J.; Chiron, S. Occurrence and Distribution of Selected Antibiotics in a Small Mediterranean Stream (Arc River, Southern France). J. Hydrol. 2009, 364, 50–57. [Google Scholar] [CrossRef]
- Fenech, C.; Nolan, K.; Rock, L.; Morrissey, A. An SPE LC–MS/MS Method for the Analysis of Human and Veterinary Chemical Markers within Surface Waters: An Environmental Forensics Application. Environ. Pollut. 2013, 181, 250–256. [Google Scholar] [CrossRef]
- Ferdig, M.; Kaleta, A.; Buchberger, W. Improved Liquid Chromatographic Determination of Nine Currently Used (Fluoro)Quinolones with Fluorescence and Mass Spectrometric Detection for Environmental Samples. J. Sep. Sci. 2005, 28, 1448–1456. [Google Scholar] [CrossRef]
- Fick, J.; Lindberg, R.H.; Kaj, L.; Brorström-Lundén, E. Results from the Swedish National Screening Programme 2010; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2011; p. 56. [Google Scholar]
- Finnegan, D.P.; Simonson, L.A.; Meyer, M.T. Occurrence of Antibiotic Compounds in Source Water and Finished Drinking Water from the Upper Scioto River Basin, Ohio, 2005–6; U.S. Geological Survey Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2010; p. 16. [Google Scholar]
- Fonseca, E.; Hernández, F.; Ibáñez, M.; Rico, A.; Pitarch, E.; Bijlsma, L. Occurrence and Ecological Risks of Pharmaceuticals in a Mediterranean River in Eastern Spain. Environ. Int. 2020, 144, 106004. [Google Scholar] [CrossRef]
- Gbylik-Sikorska, M.; Posyniak, A.; Mitrowska, K.; Gajda, A.; Błądek, T.; Śniegocki, T.; Żmudzki, J. Occurrence of Veterinary Antibiotics and Chemotherapeutics in Fresh Water, Sediment, and Fish of the Rivers and Lakes in Poland. Bull. Vet. Inst. Pulawy 2014, 58, 399–404. [Google Scholar] [CrossRef]
- Ghosh, G.C.; Okuda, T.; Yamashita, N.; Tanaka, H. Occurrence and Elimination of Antibiotics at Four Sewage Treatment Plants in Japan and Their Effects on Bacterial Ammonia Oxidation. Water Sci. Technol. 2009, 59, 779–786. [Google Scholar] [CrossRef]
- Golet, E.M.; Alder, A.C.; Hartmann, A.; Ternes, T.A.; Giger, W. Trace Determination of Fluoroquinolone Antibacterial Agents in Urban Wastewater by Solid-Phase Extraction and Liquid Chromatography with Fluorescence Detection. Anal. Chem. 2001, 73, 3632–3638. [Google Scholar] [CrossRef]
- Golovko, O.; Kumar, V.; Fedorova, G.; Randak, T.; Grabic, R. Seasonal Changes in Antibiotics, Antidepressants/Psychiatric Drugs, Antihistamines and Lipid Regulators in a Wastewater Treatment Plant. Chemosphere 2014, 111, 418–426. [Google Scholar] [CrossRef]
- Grabic, R.; Fick, J.; Lindberg, R.H.; Fedorova, G.; Tysklind, M. Multi-Residue Method for Trace Level Determination of Pharmaceuticals in Environmental Samples Using Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. Talanta 2012, 100, 183–195. [Google Scholar] [CrossRef]
- Gracia-Lor, E.; Sancho, J.V.; Hernández, F. Multi-Class Determination of around 50 Pharmaceuticals, Including 26 Antibiotics, in Environmental and Wastewater Samples by Ultra-High Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2011, 1218, 2264–2275. [Google Scholar] [CrossRef]
- Gros, M.; Petrović, M.; Barceló, D. Tracing Pharmaceutical Residues of Different Therapeutic Classes in Environmental Waters by Using Liquid Chromatography/Quadrupole-Linear Ion Trap Mass Spectrometry and Automated Library Searching. Anal. Chem. 2009, 81, 898–912. [Google Scholar] [CrossRef]
- He, X.; Wang, Z.; Nie, X.; Yang, Y.; Pan, D.; Leung, A.O.W.; Cheng, Z.; Yang, Y.; Li, K.; Chen, K. Residues of Fluoroquinolones in Marine Aquaculture Environment of the Pearl River Delta, South China. Environ. Geochem. Health 2012, 34, 323–335. [Google Scholar] [CrossRef]
- Iglesias, A.; Nebot, C.; Vázquez, B.; Coronel-Olivares, C.; Abuín, C.; Cepeda, A. Monitoring the Presence of 13 Active Compounds in Surface Water Collected from Rural Areas in Northwestern Spain. Int. J. Environ. Res. Public. Health 2014, 11, 5251–5272. [Google Scholar] [CrossRef]
- Jiang, J.-Q.; Zhou, Z.; Sharma, V.K. Occurrence, Transportation, Monitoring and Treatment of Emerging Micro-Pollutants in Waste Water—A Review from Global Views. Microchem. J. 2013, 110, 292–300. [Google Scholar] [CrossRef]
- Fang, Y.; Karnjanapiboonwong, A.; Chase, D.A.; Wang, J.; Morse, A.N.; Anderson, T.A. Occurrence, Fate, and Persistence of Gemfibrozil in Water and Soil. Environ. Toxicol. Chem. 2012, 31, 550–555. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Gall, H.E.; Elkin, K.R.; Ayers, B.; Veith, T.L.; Miller, M.; Jacob, S.; Hayden, K.R.; Watson, J.E.; Elliott, H.A. Fate of Pharmaceuticals in a Spray-Irrigation System: From Wastewater to Groundwater. Sci. Total Environ. 2019, 654, 197–208. [Google Scholar] [CrossRef]
- Kim, J.-W.; Jang, H.-S.; Kim, J.-G.; Ishibashi, H.; Hirano, M.; Nasu, K.; Ichikawa, N.; Takao, Y.; Shinohara, R.; Arizono, K. Occurrence of Pharmaceutical and Personal Care Products (PPCPs) in Surface Water from Mankyung River, South Korea. J. Health Sci. 2009, 55, 249–258. [Google Scholar] [CrossRef]
- Köck-Schulmeyer, M.; Ginebreda, A.; Postigo, C.; López-Serna, R.; Pérez, S.; Brix, R.; Llorca, M.; Alda, M.L.D.; Petrović, M.; Munné, A.; et al. Wastewater Reuse in Mediterranean Semi-Arid Areas: The Impact of Discharges of Tertiary Treated Sewage on the Load of Polar Micro Pollutants in the Llobregat River (NE Spain). Chemosphere 2011, 82, 670–678. [Google Scholar] [CrossRef]
- Kot-Wasik, A.; Jakimska, A.; Śliwka-Kaszyńska, M. Occurrence and Seasonal Variations of 25 Pharmaceutical Residues in Wastewater and Drinking Water Treatment Plants. Environ. Monit. Assess. 2016, 188, 661. [Google Scholar] [CrossRef]
- Krakkó, D.; Licul-Kucera, V.; Záray, G.; Mihucz, V.G. Single-Run Ultra-High Performance Liquid Chromatography for Quantitative Determination of Ultra-Traces of Ten Popular Active Pharmaceutical Ingredients by Quadrupole Time-of-Flight Mass Spectrometry after Offline Preconcentration by Solid Phase Extraction from Drinking and River Waters as Well as Treated Wastewater. Microchem. J. 2019, 148, 108–119. [Google Scholar] [CrossRef]
- Lara-Martín, P.A.; González-Mazo, E.; Petrovic, M.; Barceló, D.; Brownawell, B.J. Occurrence, Distribution and Partitioning of Nonionic Surfactants and Pharmaceuticals in the Urbanized Long Island Sound Estuary (NY). Mar. Pollut. Bull. 2014, 85, 710–719. [Google Scholar] [CrossRef]
- Lépesová, K.; Kraková, L.; Pangallo, D.; Medveďová, A.; Olejníková, P.; Mackuľak, T.; Tichý, J.; Grabic, R.; Birošová, L. Prevalence of Antibiotic-Resistant Coliform Bacteria, Enterococcus Spp. and Staphylococcus Spp. in Wastewater Sewerage Biofilm. J. Glob. Antimicrob. Resist. 2018, 14, 145–151. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence of Antibiotics in Water, Sediments, Aquatic Plants, and Animals from Baiyangdian Lake in North China. Chemosphere 2012, 89, 1307–1315. [Google Scholar] [CrossRef]
- Lin, A.Y.-C.; Yu, T.-H.; Lin, C.-F. Pharmaceutical Contamination in Residential, Industrial, and Agricultural Waste Streams: Risk to Aqueous Environments in Taiwan. Chemosphere 2008, 74, 131–141. [Google Scholar] [CrossRef]
- Lin, H.; Li, H.; Chen, L.; Li, L.; Yin, L.; Lee, H.; Yang, Z. Mass Loading and Emission of Thirty-Seven Pharmaceuticals in a Typical Municipal Wastewater Treatment Plant in Hunan Province, Southern China. Ecotoxicol. Environ. Saf. 2018, 147, 530–536. [Google Scholar] [CrossRef]
- Lindberg, R.H.; Olofsson, U.; Rendahl, P.; Johansson, M.I.; Tysklind, M.; Andersson, B.A.V. Behavior of Fluoroquinolones and Trimethoprim during Mechanical, Chemical, and Active Sludge Treatment of Sewage Water and Digestion of Sludge. Environ. Sci. Technol. 2006, 40, 1042–1048. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre; Institute for Environment and Sustainability. EU Wide Monitoring Survey on Waste Water Treatment Plant Effluents.; Publications Office: Luxembourg, 2012. [Google Scholar]
- Loper, C.A.; Crawford, J.K.; Otto, K.L.; Manning, R.L.; Meyer, M.T.; Furlong, E.T. Concentrations of Selected Pharmaceuticals and Antibiotics in South-Central Pennsylvania Waters, March through September 2006; USGS Publications Warehouse: Reston, VA, USA, 2007. [Google Scholar]
- López-Serna, R.; Petrović, M.; Barceló, D. Development of a Fast Instrumental Method for the Analysis of Pharmaceuticals in Environmental and Wastewaters Based on Ultra High Performance Liquid Chromatography (UHPLC)–Tandem Mass Spectrometry (MS/MS). Chemosphere 2011, 85, 1390–1399. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, L.; Rysz, M.; Wang, Y.; Zhang, H.; Alvarez, P.J.J. Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011, 45, 1827–1833. [Google Scholar] [CrossRef]
- Ma, N.; Tong, L.; Li, Y.; Yang, C.; Tan, Q.; He, J. Distribution of Antibiotics in Lake Water-Groundwater—Sediment System in Chenhu Lake Area. Environ. Res. 2022, 204, 112343. [Google Scholar] [CrossRef]
- Bueno, M.J.M.; Gomez, M.J.; Herrera, S.; Hernando, M.D.; Agüera, A.; Fernández-Alba, A.R. Occurrence and Persistence of Organic Emerging Contaminants and Priority Pollutants in Five Sewage Treatment Plants of Spain: Two Years Pilot Survey Monitoring. Environ. Pollut. 2012, 164, 267–273. [Google Scholar] [CrossRef]
- Massey, L.B.; Haggard, B.E.; Galloway, J.M.; Loftin, K.A.; Meyer, M.T.; Green, W.R. Antibiotic Fate and Transport in Three Effluent-Dominated Ozark Streams. Ecol. Eng. 2010, 36, 930–938. [Google Scholar] [CrossRef]
- Minh, T.B.; Leung, H.W.; Loi, I.H.; Chan, W.H.; So, M.K.; Mao, J.Q.; Choi, D.; Lam, J.C.W.; Zheng, G.; Martin, M.; et al. Antibiotics in the Hong Kong Metropolitan Area: Ubiquitous Distribution and Fate in Victoria Harbour. Mar. Pollut. Bull. 2009, 58, 1052–1062. [Google Scholar] [CrossRef]
- Miossec, C.; Lanceleur, L.; Monperrus, M. Multi-residue Analysis of 44 Pharmaceutical Compounds in Environmental Water Samples by Solid-phase Extraction Coupled to Liquid Chromatography-tandem Mass Spectrometry. J. Sep. Sci. 2019, 42, 1853–1866. [Google Scholar] [CrossRef]
- Mompelat, S.; Thomas, O.; Le Bot, B. Contamination Levels of Human Pharmaceutical Compounds in French Surface and Drinking Water. J. Environ. Monit. 2011, 13, 2929. [Google Scholar] [CrossRef]
- Morosini, C.; Marsoni, M.; Torretta, V.; Conti, F.; Ragazzi, M.; Rada, E.; Cioca, G. Factors Affecting Spatial and Temporal Concentration Variability of Pharmaceuticals: Comparison between Two WWTPs. Sustainability 2017, 9, 1466. [Google Scholar] [CrossRef]
- Mu, R.; Shi, H.; Adams, C.; Eichholz, T.; Ma, Y. Detection, Occurrence, and Removal of Selected Pharmaceuticals in Missouri Source and Finished Drinking Waters. Urban Water J. 2017, 14, 704–712. [Google Scholar] [CrossRef]
- Mutiyar, P.K.; Mittal, A.K. Risk Assessment of Antibiotic Residues in Different Water Matrices in India: Key Issues and Challenges. Environ. Sci. Pollut. Res. 2014, 21, 7723–7736. [Google Scholar] [CrossRef] [PubMed]
- Nageswara Rao, R.; Venkateswarlu, N.; Narsimha, R. Determination of Antibiotics in Aquatic Environment by Solid-Phase Extraction Followed by Liquid Chromatography–Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 2008, 1187, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Nakada, N.; Komori, K.; Suzuki, Y.; Konishi, C.; Houwa, I.; Tanaka, H. Occurrence of 70 Pharmaceutical and Personal Care Products in Tone River Basin in Japan. Water Sci. Technol. 2007, 56, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Panthi, S.; Sapkota, A.R.; Raspanti, G.; Allard, S.M.; Bui, A.; Craddock, H.A.; Murray, R.; Zhu, L.; East, C.; Handy, E.; et al. Pharmaceuticals, Herbicides, and Disinfectants in Agricultural Water Sources. Environ. Res. 2019, 174, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal Occurrence, Removal, Mass Loading and Environmental Risk Assessment of 55 Pharmaceuticals and Personal Care Products in a Municipal Wastewater Treatment Plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, L.; Munoz, J.-F.; Pons, M.-N.; Yvon, J.; Dauchy, X.; France, X.; Le, N.D.; France-Lanord, C.; Görner, T. Occurrence of Eight Household Micropollutants in Urban Wastewater and Their Fate in a Wastewater Treatment Plant. Statistical Evaluation. Sci. Total Environ. 2014, 481, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Wahlberg, C.; Björlenius, B.; Paxéus, N. Läkemedelsrester i Stockholms vattenmiljö; Stockholm Vatten: Stockholm, Sweden, 2010; p. 46. [Google Scholar]
- Pena, A.; Chmielova, D.; Lino, C.M.; Solich, P. Determination of Fluoroquinolone Antibiotics in Surface Waters from Mondego River by High Performance Liquid Chromatography Using a Monolithic Column. J. Sep. Sci. 2007, 30, 2924–2928. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhang, K.; Tang, C.; Huang, Q.; Yu, Y.; Cui, J. Distribution Pattern, Behavior, and Fate of Antibacterials in Urban Aquatic Environments in South China. J. Environ. Monit. 2011, 13, 446–454. [Google Scholar] [CrossRef]
- Pereira, A.M.P.T.; Silva, L.J.G.; Lino, C.M.; Meisel, L.M.; Pena, A. Assessing Environmental Risk of Pharmaceuticals in Portugal: An Approach for the Selection of the Portuguese Monitoring Stations in Line with Directive 2013/39/EU. Chemosphere 2016, 144, 2507–2515. [Google Scholar] [CrossRef] [PubMed]
- Pinnekamp, J.; Beier, S.; Cramer, C.; Schröderh, H.; Mauer, C.; Selke, D. Eliminierung von Spurenstoffen Aus Krankenhausabwässern Mit Membrantechnik Und Weitergehenden Behandlungsverfahren—Pilotprojekt Kreiskrankenhaus Waldbröl; RWTH Aachen: Aachen, Germany, 2009; p. 232. [Google Scholar]
- Prieto, A.; Schrader, S.; Bauer, C.; Möder, M. Synthesis of a Molecularly Imprinted Polymer and Its Application for Microextraction by Packed Sorbent for the Determination of Fluoroquinolone Related Compounds in Water. Anal. Chim. Acta 2011, 685, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Rico, A.; Oliveira, R.; McDonough, S.; Matser, A.; Khatikarn, J.; Satapornvanit, K.; Nogueira, A.J.A.; Soares, A.M.V.M.; Domingues, I.; Van Den Brink, P.J. Use, Fate and Ecological Risks of Antibiotics Applied in Tilapia Cage Farming in Thailand. Environ. Pollut. 2014, 191, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Rico, A.; Arenas-Sánchez, A.; Alonso-Alonso, C.; López-Heras, I.; Nozal, L.; Rivas-Tabares, D.; Vighi, M. Identification of Contaminants of Concern in the Upper Tagus River Basin (Central Spain). Part 1: Screening, Quantitative Analysis and Comparison of Sampling Methods. Sci. Total Environ. 2019, 666, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Varela Della Giustina, S.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic Residues in Final Effluents of European Wastewater Treatment Plants and Their Impact on the Aquatic Environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef] [PubMed]
- Rosal, R.; Rodríguez, A.; Perdigón-Melón, J.A.; Petre, A.; García-Calvo, E.; Gómez, M.J.; Agüera, A.; Fernández-Alba, A.R. Occurrence of Emerging Pollutants in Urban Wastewater and Their Removal through Biological Treatment Followed by Ozonation. Water Res. 2010, 44, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.H.M.L.M.; Gros, M.; Rodriguez-Mozaz, S.; Delerue-Matos, C.; Pena, A.; Barceló, D.; Montenegro, M.C.B.S.M. Contribution of Hospital Effluents to the Load of Pharmaceuticals in Urban Wastewaters: Identification of Ecologically Relevant Pharmaceuticals. Sci. Total Environ. 2013, 461–462, 302–316. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.M.; Bečanová, J.; Scheringer, M.; Sharma, A.; Bharat, G.K.; Whitehead, P.G.; Klánová, J.; Nizzetto, L. Health and Ecological Risk Assessment of Emerging Contaminants (Pharmaceuticals, Personal Care Products, and Artificial Sweeteners) in Surface and Groundwater (Drinking Water) in the Ganges River Basin, India. Sci. Total Environ. 2019, 646, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, J.; Zhuo, L.; Yan, X.; Cai, F.; Luo, W.; Ren, M.; Liu, Q.; Yu, Y. Antibiotics in Wastewater from Multiple Sources and Surface Water of the Yangtze River in Chongqing in China. Environ. Monit. Assess. 2020, 192, 159. [Google Scholar] [CrossRef]
- Sim, W.-J.; Lee, J.-W.; Oh, J.-E. Occurrence and Fate of Pharmaceuticals in Wastewater Treatment Plants and Rivers in Korea. Environ. Pollut. 2010, 158, 1938–1947. [Google Scholar] [CrossRef]
- Sousa, M.A.; Gonçalves, C.; Vilar, V.J.P.; Boaventura, R.A.R.; Alpendurada, M.F. Suspended TiO2-Assisted Photocatalytic Degradation of Emerging Contaminants in a Municipal WWTP Effluent Using a Solar Pilot Plant with CPCs. Chem. Eng. J. 2012, 198–199, 301–309. [Google Scholar] [CrossRef]
- Spongberg, A.L.; Witter, J.D. Pharmaceutical Compounds in the Wastewater Process Stream in Northwest Ohio. Sci. Total Environ. 2008, 397, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Sturini, M.; Speltini, A.; Pretali, L.; Fasani, E.; Profumo, A. Solid-phase Extraction and HPLC Determination of Fluoroquinolones in Surface Waters. J. Sep. Sci. 2009, 32, 3020–3028. [Google Scholar] [CrossRef] [PubMed]
- Takasu, H.; Suzuki, S.; Reungsang, A.; Viet, P.H. Fluoroquinolone (FQ) Contamination Does Not Correlate with Occurrence of FQ-Resistant Bacteria in Aquatic Environments of Vietnam and Thailand. Microbes Environ. 2011, 26, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Tamtam, F.; Mercier, F.; Le Bot, B.; Eurin, J.; Tuc Dinh, Q.; Clément, M.; Chevreuil, M. Occurrence and Fate of Antibiotics in the Seine River in Various Hydrological Conditions. Sci. Total Environ. 2008, 393, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Tewari, S.; Jindal, R.; Kho, Y.L.; Eo, S.; Choi, K. Major Pharmaceutical Residues in Wastewater Treatment Plants and Receiving Waters in Bangkok, Thailand, and Associated Ecological Risks. Chemosphere 2013, 91, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Zhuo, X.; Guo, Y. Occurrence and Risk Assessment of Four Typical Fluoroquinolone Antibiotics in Raw and Treated Sewage and in Receiving Waters in Hangzhou, China. J. Agric. Food Chem. 2011, 59, 7303–7309. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Roig, P.; Andreu, V.; Onghena, M.; Blasco, C.; Picó, Y. Assessment of the Occurrence and Distribution of Pharmaceuticals in a Mediterranean Wetland (L’Albufera, Valencia, Spain) by LC-MS/MS. Anal. Bioanal. Chem. 2011, 400, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Roig, P.; Andreu, V.; Blasco, C.; Picó, Y. Risk Assessment on the Presence of Pharmaceuticals in Sediments, Soils and Waters of the Pego–Oliva Marshlands (Valencia, Eastern Spain). Sci. Total Environ. 2012, 440, 24–32. [Google Scholar] [CrossRef]
- Velpandian, T.; Halder, N.; Nath, M.; Das, U.; Moksha, L.; Gowtham, L.; Batta, S.P. Un-Segregated Waste Disposal: An Alarming Threat of Antimicrobials in Surface and Ground Water Sources in Delhi. Environ. Sci. Pollut. Res. 2018, 25, 29518–29528. [Google Scholar] [CrossRef]
- Vergeynst, L.; Haeck, A.; De Wispelaere, P.; Van Langenhove, H.; Demeestere, K. Multi-Residue Analysis of Pharmaceuticals in Wastewater by Liquid Chromatography–Magnetic Sector Mass Spectrometry: Method Quality Assessment and Application in a Belgian Case Study. Chemosphere 2015, 119, S2–S8. [Google Scholar] [CrossRef] [PubMed]
- Vieno, N.M.; Tuhkanen, T.; Kronberg, L. Analysis of Neutral and Basic Pharmaceuticals in Sewage Treatment Plants and in Recipient Rivers Using Solid Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry Detection. J. Chromatogr. A 2006, 1134, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Vulliet, E.; Cren-Olivé, C. Screening of Pharmaceuticals and Hormones at the Regional Scale, in Surface and Groundwaters Intended to Human Consumption. Environ. Pollut. 2011, 159, 2929–2934. [Google Scholar] [CrossRef]
- Wiest, L.; Chonova, T.; Bergé, A.; Baudot, R.; Bessueille-Barbier, F.; Ayouni-Derouiche, L.; Vulliet, E. Two-Year Survey of Specific Hospital Wastewater Treatment and Its Impact on Pharmaceutical Discharges. Environ. Sci. Pollut. Res. 2018, 25, 9207–9218. [Google Scholar] [CrossRef]
- Wu, M.; Que, C.; Tang, L.; Xu, H.; Xiang, J.; Wang, J.; Shi, W.; Xu, G. Distribution, Fate, and Risk Assessment of Antibiotics in Five Wastewater Treatment Plants in Shanghai, China. Environ. Sci. Pollut. Res. 2016, 23, 18055–18063. [Google Scholar] [CrossRef]
- Xiao, Y.; Chang, H.; Jia, A.; Hu, J. Trace Analysis of Quinolone and Fluoroquinolone Antibiotics from Wastewaters by Liquid Chromatography–Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2008, 1214, 100–108. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, G.; Zou, S.; Li, X.; Liu, Y. Determination of Selected Antibiotics in the Victoria Harbour and the Pearl River, South China Using High-Performance Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Environ. Pollut. 2007, 145, 672–679. [Google Scholar] [CrossRef]
- Yang, X.; Flowers, R.C.; Weinberg, H.S.; Singer, P.C. Occurrence and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in an Advanced Wastewater Reclamation Plant. Water Res. 2011, 45, 5218–5228. [Google Scholar] [CrossRef]
- Yao, L.; Wang, Y.; Tong, L.; Deng, Y.; Li, Y.; Gan, Y.; Guo, W.; Dong, C.; Duan, Y.; Zhao, K. Occurrence and Risk Assessment of Antibiotics in Surface Water and Groundwater from Different Depths of Aquifers: A Case Study at Jianghan Plain, Central China. Ecotoxicol. Environ. Saf. 2017, 135, 236–242. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, G.; Wang, C.; Lu, N.; Yuan, X.; Zhu, X. Pollution Characteristics of Antibiotics and Antibiotic Resistance of Coliform Bacteria in the Yitong River, China. Environ. Monit. Assess. 2019, 191, 516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, G.; Zheng, Q.; Tang, J.; Chen, Y.; Xu, W.; Zou, Y.; Chen, X. Occurrence and Risks of Antibiotics in the Laizhou Bay, China: Impacts of River Discharge. Ecotoxicol. Environ. Saf. 2012, 80, 208–215. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, P.; Feng, Y.; Yang, F. Fate of Antibiotics during Wastewater Treatment and Antibiotic Distribution in the Effluent-Receiving Waters of the Yellow Sea, Northern China. Mar. Pollut. Bull. 2013, 73, 282–290. [Google Scholar] [CrossRef]
- Zhou, J.L.; Maskaoui, K.; Lufadeju, A. Optimization of Antibiotic Analysis in Water by Solid-Phase Extraction and High Performance Liquid Chromatography–Mass Spectrometry/Mass Spectrometry. Anal. Chim. Acta 2012, 731, 32–39. [Google Scholar] [CrossRef]
- Zou, S.; Xu, W.; Zhang, R.; Tang, J.; Chen, Y.; Zhang, G. Occurrence and Distribution of Antibiotics in Coastal Water of the Bohai Bay, China: Impacts of River Discharge and Aquaculture Activities. Environ. Pollut. 2011, 159, 2913–2920. [Google Scholar] [CrossRef]
- Zuccato, E.; Castiglioni, S.; Fanelli, R. Identification of the Pharmaceuticals for Human Use Contaminating the Italian Aquatic Environment. J. Hazard. Mater. 2005, 122, 205–209. [Google Scholar] [CrossRef] [PubMed]
- 166. Nordic Council of Ministers. PPCP Monitoring in the Nordic Countries—Status Report. Nordic Council of Ministers: Copenhagen, Denmark, 2012.
- Barber, L.B.; Keefe, S.H.; Kolpin, D.W.; Schnoebelen, D.J.; Flynn, J.L.; Brown, G.K.; Furlong, E.T.; Glassmeyer, S.T.; Gray, J.L.; Meyer, M.T.; et al. Lagrangian Sampling of Wastewater Treatment Plant Effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the Summer of 2003 and Spring of 2005—Hydrological and Water-Quality Data; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2011. [Google Scholar]
- Xu, Y.; Chen, T.; Wang, Y.; Tao, H.; Liu, S.; Shi, W. The Occurrence and Removal of Selected Fluoroquinolones in Urban Drinking Water Treatment Plants. Environ. Monit. Assess. 2015, 187, 729. [Google Scholar] [CrossRef] [PubMed]
- Benito-Peña, E.; Urraca, J.L.; Sellergren, B.; Moreno-Bondi, M.C. Solid-Phase Extraction of Fluoroquinolones from Aqueous Samples Using a Water-Compatible Stochiometrically Imprinted Polymer. J. Chromatogr. A 2008, 1208, 62–70. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Xu, Y.; Du, X.; Sun, X.; Sun, L.; Wang, H.; Zhao, Q.; Yu, A.; Zhang, H.; et al. Determination of Fluoroquinolone Antibiotics in Environmental Water Samples Based on Magnetic Molecularly Imprinted Polymer Extraction Followed by Liquid Chromatography–Tandem Mass Spectrometry. Anal. Chim. Acta 2010, 662, 31–38. [Google Scholar] [CrossRef]
- Azevedo, F.C.R.; Vaz, I.C.D.; Barbosa, F.A.R.; Magalhães, S.M.S. Toxicological Effects of Ciprofloxacin and Chlorhexidine on Growth and Chlorophylla Synthesis of Freshwater Cyanobacteria. Braz. J. Pharm. Sci. 2019, 55, e17661. [Google Scholar] [CrossRef]
- Angeles, L.F.; Islam, S.; Aldstadt, J.; Saqeeb, K.N.; Alam, M.; Khan, M.A.; Johura, F.-T.; Ahmed, S.I.; Aga, D.S. Retrospective Suspect Screening Reveals Previously Ignored Antibiotics, Antifungal Compounds, and Metabolites in Bangladesh Surface Waters. Sci. Total Environ. 2020, 712, 136285. [Google Scholar] [CrossRef]
- Su, D.; Ben, W.; Strobel, B.W.; Qiang, Z. Impacts of Wastewater Treatment Plant Upgrades on the Distribution and Risks of Pharmaceuticals in Receiving Rivers. J. Hazard. Mater. 2021, 406, 124331. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Chen, G.; Liu, Y.; Li, M.; Liu, X. Occurrence and Risk Assessment of Fluoroquinolone Antibiotics in Reclaimed Water and Receiving Groundwater with Different Replenishment Pathways. Sci. Total Environ. 2020, 738, 139802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bai, J.; Zhang, K.; Wang, Y.; Xiao, R.; Campos, M.; Acuña, J.; Jorquera, M.A. Occurrence, Bioaccumulation and Ecological Risks of Antibiotics in the Water-Plant-Sediment Systems in Different Functional Areas of the Largest Shallow Lake in North China: Impacts of River Input and Historical Agricultural Activities. Sci. Total Environ. 2023, 857, 159260. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Lin, C.; Lei, K.; Xin, M.; Gu, X.; Lian, M.; Wang, B.; Liu, X.; Ouyang, W.; He, M. Profiling of the Spatiotemporal Distribution, Risks, and Prioritization of Antibiotics in the Waters of Laizhou Bay, Northern China. J. Hazard. Mater. 2022, 424, 127487. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liu, G.; Arif, M.; Shi, X.; Wang, S. Occurrence and Risk Assessment of Antibiotics in the Surface Water of Chaohu Lake and Its Tributaries in China. Sci. Total Environ. 2022, 807, 151040. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, M.; Guo, C.; An, D.; Xu, J.; Zhang, Y.; Xi, B. Distribution and Ecological Risk of Antibiotics in a Typical Effluent–Receiving River (Wangyang River) in North China. Chemosphere 2014, 112, 267–274. [Google Scholar] [CrossRef]
- Guo, X.; Song, R.; Lu, S.; Liu, X.; Chen, J.; Wan, Z.; Bi, B. Multi-Media Occurrence of Antibiotics and Antibiotic Resistance Genes in East Dongting Lake. Front. Environ. Sci. 2022, 10, 866332. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Q.; Wan, J.; Yang, S.; Wang, Y.; Fan, H. Occurrence and Risk Assessment of Antibiotics in Multifunctional Reservoirs in Dongguan, China. Environ. Sci. Pollut. Res. 2020, 27, 13565–13574. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, L.; Wang, Q.; Zeng, H.; Xu, J.; Chen, Z. Antibiotics in Aquaculture Ponds from Guilin, South of China: Occurrence, Distribution, and Health Risk Assessment. Environ. Res. 2022, 204, 112084. [Google Scholar] [CrossRef]
- Wang, C.; Lu, Y.; Sun, B.; Zhang, M.; Wang, R.; Li, X.; Mao, R.; Cao, Z.; Song, S. Contamination, Transport, and Ecological Risks of Pharmaceuticals and Personal Care Products in a Large Irrigation Region. Sci. Total Environ. 2022, 851, 158179. [Google Scholar] [CrossRef]
- Liu, J.; Deng, W.-J.; Ying, G.-G.; Tsang, E.P.K.; Hong, H.-C. Occurrence and Distribution of Antibiotics in Surface Water. Ecotoxicology 2022, 31, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, X.; Lu, S.; Zhang, J.; Wang, W. Occurrence of Typical Antibiotics in Nansi Lake’s Inflowing Rivers and Antibiotic Source Contribution to Nansi Lake Based on Principal Component Analysis-Multiple Linear Regression Model. Chemosphere 2020, 242, 125269. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, Y.; Liu, S.; Xiao, Q.; Liang, W.; Song, Y. Contamination, Distribution, and Risk Assessment of Antibiotics in the Urban Surface Water of the Pearl River in Guangzhou, South China. Environ. Monit. Assess. 2021, 193, 98. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, Y.; Chen, Y.; Hassan, M.; Zhang, X.; Zhang, B.; Gin, K.Y.-H.; He, Y. Multi-Phase Distribution, Spatiotemporal Variation and Risk Assessment of Antibiotics in a Typical Urban-Rural Watershed. Ecotoxicol. Environ. Saf. 2020, 206, 111156. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Song, S.; Chen, X.; Shi, Y.; Cui, H.; Liu, Y.; Yang, S. Source-Specific Ecological Risks and Critical Source Identification of PPCPs in Surface Water: Comparing Urban and Rural Areas. Sci. Total Environ. 2023, 854, 158792. [Google Scholar] [CrossRef] [PubMed]
- Ci, M.; Zhang, G.; Yan, X.; Dong, W.; Xu, W.; Wang, W.; Fan, Y. Occurrence of Antibiotics in the Xiaoqing River Basin and Antibiotic Source Contribution-a Case Study of Jinan City, China. Environ. Sci. Pollut. Res. 2021, 28, 25241–25254. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cui, M.; Zhang, H. Spatial and Temporal Variations of Antibiotics in a Tidal River. Environ. Monit. Assess. 2020, 192, 336. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Su, Z.; Reguyal, F.; Bian, R.; Li, W.; Yu, H.; Sun, Y.; Zhuang, Y.; Shang, W. Seasonal Occurrence of Multiple Classes of Antibiotics in East China Rivers and Their Association with Suspended Particulate Matter. Sci. Total Environ. 2022, 853, 158579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Lu, S.; Wang, Y.; Liu, X.; Liu, Y.; Xu, J.; Zhang, T.; Wang, Z.; Yang, Y. Occurrence of Antibiotics and Antibiotic Resistance Genes and Their Correlations in Lower Yangtze River, China. Environ. Pollut. 2020, 257, 113365. [Google Scholar] [CrossRef]
- Feng, J.; Liu, Q.; Ru, X.; Xi, N.; Sun, J. Occurrence and Distribution of Priority Pharmaceuticals in the Yellow River and the Huai River in Henan, China. Environ. Sci. Pollut. Res. 2020, 27, 16816–16826. [Google Scholar] [CrossRef]
- Malev, O.; Babić, S.; Sima Cota, A.; Stipaničev, D.; Repec, S.; Drnić, M.; Lovrić, M.; Bojanić, K.; Radić Brkanac, S.; Čož-Rakovac, R.; et al. Combining Short-Term Bioassays Using Fish and Crustacean Model Organisms with ToxCast in Vitro Data and Broad-Spectrum Chemical Analysis for Environmental Risk Assessment of the River Water (Sava, Croatia). Environ. Pollut. 2022, 292, 118440. [Google Scholar] [CrossRef] [PubMed]
- Diwan, V.; Hanna, N.; Purohit, M.; Chandran, S.; Riggi, E.; Parashar, V.; Tamhankar, A.; Stålsby Lundborg, C. Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India. Int. J. Environ. Res. Public. Health 2018, 15, 1281. [Google Scholar] [CrossRef] [PubMed]
- Riva, F.; Zuccato, E.; Davoli, E.; Fattore, E.; Castiglioni, S. Risk Assessment of a Mixture of Emerging Contaminants in Surface Water in a Highly Urbanized Area in Italy. J. Hazard. Mater. 2019, 361, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Zuccato, E.; Castiglioni, S.; Bagnati, R.; Melis, M.; Fanelli, R. Source, Occurrence and Fate of Antibiotics in the Italian Aquatic Environment. J. Hazard. Mater. 2010, 179, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Adachi, F.; Yamamoto, A.; Takakura, K.-I.; Kawahara, R. Occurrence of Fluoroquinolones and Fluoroquinolone-Resistance Genes in the Aquatic Environment. Sci. Total Environ. 2013, 444, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.J.; Paíga, P.; Silva, A.; Llaguno, C.P.; Carvalho, M.; Vázquez, F.M.; Delerue-Matos, C. Antibiotics and Antidepressants Occurrence in Surface Waters and Sediments Collected in the North of Portugal. Chemosphere 2020, 239, 124729. [Google Scholar] [CrossRef] [PubMed]
- Arun, S.; Xin, L.; Gaonkar, O.; Neppolian, B.; Zhang, G.; Chakraborty, P. Antibiotics in Sewage Treatment Plants, Receiving Water Bodies and Groundwater of Chennai City and the Suburb, South India: Occurrence, Removal Efficiencies, and Risk Assessment. Sci. Total Environ. 2022, 851, 158195. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Suthar, S. Occurrence, Seasonal Variations, and Ecological Risk of Pharmaceuticals and Personal Care Products in River Ganges at Two Holy Cities of India. Chemosphere 2021, 268, 129331. [Google Scholar] [CrossRef]
- Low, K.; Chai, L.; Lee, C.; Zhang, G.; Zhang, R.; Vahab, V.; Bong, C. Prevalence and Risk Assessment of Antibiotics in Riverine Estuarine Waters of Larut and Sangga Besar River, Perak. J. Oceanol. Limnol. 2021, 39, 122–134. [Google Scholar] [CrossRef]
- Truong, T.; Hoang, T.L.; Tran, L.T.; Pham, T.P.T.; Le, T.-H. Prevalence of Antibiotic Resistance Genes in the Saigon River Impacted by Anthropogenic Activities. Water 2021, 13, 2234. [Google Scholar] [CrossRef]
- Giebułtowicz, J.; Nałęcz-Jawecki, G.; Harnisz, M.; Kucharski, D.; Korzeniewska, E.; Płaza, G. Environmental Risk and Risk of Resistance Selection Due to Antimicrobials’ Occurrence in Two Polish Wastewater Treatment Plants and Receiving Surface Water. Molecules 2020, 25, 1470. [Google Scholar] [CrossRef]
- Serra-Compte, A.; Pikkemaat, M.G.; Elferink, A.; Almeida, D.; Diogène, J.; Campillo, J.A.; Llorca, M.; Álvarez-Muñoz, D.; Barceló, D.; Rodríguez-Mozaz, S. Combining an Effect-Based Methodology with Chemical Analysis for Antibiotics Determination in Wastewater and Receiving Freshwater and Marine Environment. Environ. Pollut. 2021, 271, 116313. [Google Scholar] [CrossRef] [PubMed]
- Gozzo, S.; Moles, S.; Kińska, K.; Ormad, M.P.; Mosteo, R.; Gómez, J.; Laborda, F.; Szpunar, J. Screening for Antibiotics and Their Degradation Products in Surface and Wastewaters of the POCTEFA Territory by Solid-Phase Extraction-UPLC-Electrospray MS/MS. Water 2022, 15, 14. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Dang, J.; Guo, H.; Zhu, Y.; Han, W. Occurrence, Distribution, and Partitioning of Antibiotics in Surface Water and Sediment in a Typical Tributary of Yellow River, China. Environ. Sci. Pollut. Res. 2021, 28, 28207–28221. [Google Scholar] [CrossRef]
- Dong, J.; Yan, D.; Mo, K.; Chen, Q.; Zhang, J.; Chen, Y.; Wang, Z. Antibiotics along an Alpine River and in the Receiving Lake with a Catchment Dominated by Grazing Husbandry. J. Environ. Sci. 2022, 115, 374–382. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, D.; Li, X.; Wu, Q.; Ding, P.; Shen, L.; Yang, J.; Hu, G.; Wu, J.; Zhang, L. Occurrence, Fate, and Risk Assessment of Antibiotics in Typical Pharmaceutical Manufactories and Receiving Water Bodies from Different Regions. PLoS ONE 2023, 18, e0270945. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Feng, M.; Chen, J.; Shen, W.; Zhang, S. Occurrence of Antibiotics and Antibiotic Resistance Genes and Their Correlations in River-Type Drinking Water Source, China. Environ. Sci. Pollut. Res. 2021, 28, 42339–42352. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Huang, L.; Gao, Z.; Lin, W.; Ren, Y. Comparative Analysis of the Removal and Transformation of 10 Typical Pharmaceutical and Personal Care Products in Secondary Treatment of Sewage: A Case Study of Two Biological Treatment Processes. J. Environ. Chem. Eng. 2022, 10, 107638. [Google Scholar] [CrossRef]
- Hanna, N.; Purohit, M.; Diwan, V.; Chandran, S.P.; Riggi, E.; Parashar, V.; Tamhankar, A.J.; Lundborg, C.S. Monitoring of Water Quality, Antibiotic Residues, and Antibiotic-Resistant Escherichia coli in the Kshipra River in India over a 3-Year Period. Int. J. Environ. Res. Public. Health 2020, 17, 7706. [Google Scholar] [CrossRef]
- Lenart-Boroń, A.; Prajsnar, J.; Guzik, M.; Boroń, P.; Chmiel, M. How Much of Antibiotics Can Enter Surface Water with Treated Wastewater and How It Affects the Resistance of Waterborne Bacteria: A Case Study of the Białka River Sewage Treatment Plant. Environ. Res. 2020, 191, 110037. [Google Scholar] [CrossRef]
- Kolpin, D.; Skopec, M.; Meyer, M.; Furlong, E.; Zaugg, S. Urban Contribution of Pharmaceuticals and Other Organic Wastewater Contaminants to Streams during Differing Flow Conditions. Sci. Total Environ. 2004, 328, 119–130. [Google Scholar] [CrossRef]
- Mai, Z.; Xiong, X.; Hu, H.; Jia, J.; Wu, C.; Wang, G. Occurrence, Distribution, and Ecological Risks of Antibiotics in Honghu Lake and Surrounding Aquaculture Ponds, China. Environ. Sci. Pollut. Res. 2023, 30, 50732–50742. [Google Scholar] [CrossRef]
- Gray, A.D.; Todd, D.; Hershey, A.E. The Seasonal Distribution and Concentration of Antibiotics in Rural Streams and Drinking Wells in the Piedmont of North Carolina. Sci. Total Environ. 2020, 710, 136286. [Google Scholar] [CrossRef]
- Gray, A. The Use of Non-Target High-Resolution Mass Spectrometry Screening to Detect the Presence of Antibiotic Residues in Urban Streams of Greensboro North Carolina. J. Environ. Health Sci. Eng. 2021, 19, 1313–1321. [Google Scholar] [CrossRef]
- Nakata, H.; Kannan, K.; Jones, P.D.; Giesy, J.P. Determination of Fluoroquinolone Antibiotics in Wastewater Effluents by Liquid Chromatography–Mass Spectrometry and Fluorescence Detection. Chemosphere 2005, 58, 759–766. [Google Scholar] [CrossRef]
- Chen, C.X.; Aris, A.; Yong, E.L.; Noor, Z.Z. Evaluation of the Occurrence of Antibiotics at Different Treatment Stages of Decentralised and Conventional Sewage Treatment Plants. Int. J. Environ. Sci. Technol. 2022, 19, 5547–5562. [Google Scholar] [CrossRef]
- Jia, D.; You, X.; Tang, M.; Lyu, Y.; Hu, J.; Sun, W. Single and Combined Genotoxicity of Metals and Fluoroquinolones to Zebrafish Embryos at Environmentally Relevant Concentrations. Aquat. Toxicol. 2023, 258, 106495. [Google Scholar] [CrossRef]
- Robinson, D.I. Control of Genotoxic Impurities in Active Pharmaceutical Ingredients: A Review and Perspective. Org. Process Res. Dev. 2010, 14, 946–959. [Google Scholar] [CrossRef]
- Turkez, H.; Arslan, M.E.; Ozdemir, O. Genotoxicity Testing: Progress and Prospects for the next Decade. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Mukherjee, S.; Mandal, S.M. Fluoroquinolone Antibiotics Show Genotoxic Effect through DNA-Binding and Oxidative Damage. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117634. [Google Scholar] [CrossRef] [PubMed]
- Thomé, S.; Bizarro, C.R.; Lehmann, M.; Abreu, B.R.R.D.; Andrade, H.H.R.D.; Cunha, K.S.; Dihl, R.R. Recombinagenic and Mutagenic Activities of Fluoroquinolones in Drosophila melanogaster. Mutat. Res. Toxicol. Environ. Mutagen. 2012, 742, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-H.; Wei, X.-L.; Xu, Y.-C.; Zhang, D.-G.; Zhao, T.; Zheng, H.; Luo, Z. Waterborne Enrofloxacin Exposure Activated Oxidative Stress and MAPK Pathway, Induced Apoptosis and Resulted in Immune Dysfunction in the Gills of Yellow Catfish Pelteobagrus fulvidraco. Aquaculture 2022, 547, 737541. [Google Scholar] [CrossRef]
- Nunes, B.; Leal, C.; Rodrigues, S.; Antunes, S.C. Assessment of Ecotoxicological Effects of Ciprofloxacin in Daphnia magna: Life-History Traits, Biochemical and Genotoxic Effects. Water Sci. Technol. 2018, 2017, 835–844. [Google Scholar] [CrossRef]
- Domagala, J.M.; Hagen, S.E. Structure-Activity Relationships of the Quinolone Antibacterials in the New Millennium: Some Things Change and Some Do Not. In Quinolone Antimicrobial Agents; Hooper, D.C., Rubinstein, E., Eds.; ASM Press: Washington, DC, USA, 2014; pp. 1–18. ISBN 978-1-68367-220-3. [Google Scholar]
- Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone Antibiotics. MedChemComm 2019, 10, 1719–1739. [Google Scholar] [CrossRef]
- Fengxian, C.; Reti, H. Analysis of Positions and Substituents on Genotoxicity of Fluoroquinolones with Quantitative Structure-Activity Relationship and 3D Pharmacophore Model. Ecotoxicol. Environ. Saf. 2017, 136, 111–118. [Google Scholar] [CrossRef]
- Menon, A.; Pettinari, L.; Martinelli, C.; Colombo, G.; Portinaro, N.; Dalle-Donne, I.; d’Agostino, M.C.; Gagliano, N. New Insights in Extracellular Matrix Remodeling and Collagen Turnover Related Pathways in Cultured Human Tenocytes after Ciprofloxacin Administration. Muscles Ligaments Tendons J. 2013, 3, 122–131. [Google Scholar]
- Guzzardi, D.G.; Teng, G.; Kang, S.; Geeraert, P.J.; Pattar, S.S.; Svystonyuk, D.A.; Belke, D.D.; Fedak, P.W.M. Induction of Human Aortic Myofibroblast-Mediated Extracellular Matrix Dysregulation: A Potential Mechanism of Fluoroquinolone-Associated Aortopathy. J. Thorac. Cardiovasc. Surg. 2019, 157, 109–119.e2. [Google Scholar] [CrossRef]
- Bennett, A.C.; Bennett, C.L.; Witherspoon, B.J.; Knopf, K.B. An Evaluation of Reports of Ciprofloxacin, Levofloxacin, and Moxifloxacin-Association Neuropsychiatric Toxicities, Long-Term Disability, and Aortic Aneurysms/Dissections Disseminated by the Food and Drug Administration and the European Medicines Agency. Expert Opin. Drug Saf. 2019, 18, 1055–1063. [Google Scholar] [CrossRef]
- Orobello, N.C.; Dirain, C.O.; Schultz, G.; Milne-Davies, B.A.; Ng, M.R.A.; Antonelli, P.J. Ciprofloxacin Decreases Collagen in Mouse Tympanic Membrane Fibroblasts. Otolaryngol. Neck Surg. 2016, 155, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Sendzik, J.; Shakibaei, M.; Schäfer-Korting, M.; Lode, H.; Stahlmann, R. Synergistic Effects of Dexamethasone and Quinolones on Human-Derived Tendon Cells. Int. J. Antimicrob. Agents 2010, 35, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Etminan, M.; Forooghian, F.; Brophy, J.M.; Bird, S.T.; Maberley, D. Oral Fluoroquinolones and the Risk of Retinal Detachment. JAMA 2012, 307, 1414. [Google Scholar] [CrossRef] [PubMed]
- Raguideau, F.; Lemaitre, M.; Dray-Spira, R.; Zureik, M. Association Between Oral Fluoroquinolone Use and Retinal Detachment. JAMA Ophthalmol. 2016, 134, 415. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Deng, H.; Zhang, Q.; Gao, P.; Wu, L. Environmentally Relevant Levels of BPA and NOR Disturb Early Skeletal Development in Zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 271, 109662. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Zhang, R.; Shao, J.; Zhang, W.; Cai, L.; Sun, W. Exposure to Trace Levels of Metals and Fluoroquinolones Increases Inflammation and Tumorigenesis Risk of Zebrafish Embryos. Environ. Sci. Ecotechnology 2022, 10, 100162. [Google Scholar] [CrossRef] [PubMed]
- Akahane, K.; Sekiguchi, M.; Une, T.; Osada, Y. Structure-Epileptogenicity Relationship of Quinolones with Special Reference to Their Interaction with Gamma-Aminobutyric Acid Receptor Sites. Antimicrob. Agents Chemother. 1989, 33, 1704–1708. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Han, Y.; Liu, Y.; Zhang, J.; Hu, C. Relationship Between Fluoroquinolone Structure and Neurotoxicity Revealed by Zebrafish Neurobehavior. Chem. Res. Toxicol. 2018, 31, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Mehlhorn, A.J.; Brown, D.A. Safety Concerns with Fluoroquinolones. Ann. Pharmacother. 2007, 41, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Nazabal, E.; Álvarez-Pérez, P.; Sánchez-Vidal, E. Síndrome confusional agudo por levofloxacino. Enferm. Infecc. Microbiol. Clínica 2013, 31, 704–705. [Google Scholar] [CrossRef]
- Xi, J.; Liu, J.; He, S.; Shen, W.; Wei, C.; Li, K.; Zhang, Y.; Yue, J.; Yang, Z. Effects of Norfloxacin Exposure on Neurodevelopment of Zebrafish (Danio rerio) Embryos. NeuroToxicology 2019, 72, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ebert, I.; Bachmann, J.; Kühnen, U.; Küster, A.; Kussatz, C.; Maletzki, D.; Schlüter, C. Toxicity of the Fluoroquinolone Antibiotics Enrofloxacin and Ciprofloxacin to Photoautotrophic Aquatic Organisms. Environ. Toxicol. Chem. 2011, 30, 2786–2792. [Google Scholar] [CrossRef]
- González-Pleiter, M.; Gonzalo, S.; Rodea-Palomares, I.; Leganés, F.; Rosal, R.; Boltes, K.; Marco, E.; Fernández-Piñas, F. Toxicity of Five Antibiotics and Their Mixtures towards Photosynthetic Aquatic Organisms: Implications for Environmental Risk Assessment. Water Res. 2013, 47, 2050–2064. [Google Scholar] [CrossRef]
- Robinson, A.A.; Belden, J.B.; Lydy, M.J. Toxicity of Fluoroquinolone Antibiotics to Aquatic Organisms. Environ. Toxicol. Chem. 2005, 24, 423–430. [Google Scholar] [CrossRef]
- Halling-Sorensen, B.; Lützhøft, H.; Andersen, H.R.; Ingerslev, F. Environmental Risk Assessment of Antibiotics: Comparison of Mecillinam, Trimethoprim and Ciprofloxacin. J. Antimicrob. Chemother. 2000, 46, 53–58. [Google Scholar] [CrossRef]
- Lützhøft, H.-C.H.; Halling-Sørensen, B.; Jørgensen, S.E. Algal Toxicity of Antibacterial Agents Applied in Danish Fish Farming. Arch. Environ. Contam. Toxicol. 1999, 36, 1–6. [Google Scholar] [CrossRef]
- Wan, L.; Wu, Y.; Zhang, B.; Yang, W.; Ding, H.; Zhang, W. Effects of Moxifloxacin and Gatifloxacin Stress on Growth, Photosynthesis, Antioxidant Responses, and Microcystin Release in Microcystis aeruginosa. J. Hazard. Mater. 2021, 409, 124518. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, K.; Juneau, P.; Huang, P.; Lian, Y.; Zheng, X.; Zhong, Q.; Zhang, W.; Xiao, F.; Wu, B.; et al. Light Modulates the Effect of Antibiotic Norfloxacin on Photosynthetic Processes of Microcystis aeruginosa. Aquat. Toxicol. 2021, 235, 105826. [Google Scholar] [CrossRef]
- Magdaleno, A.; Saenz, M.E.; Juárez, A.B.; Moretton, J. Effects of Six Antibiotics and Their Binary Mixtures on Growth of Pseudokirchneriella subcapitata. Ecotoxicol. Environ. Saf. 2015, 113, 72–78. [Google Scholar] [CrossRef]
- Martins, N.; Pereira, R.; Abrantes, N.; Pereira, J.; Gonçalves, F.; Marques, C.R. Ecotoxicological Effects of Ciprofloxacin on Freshwater Species: Data Integration and Derivation of Toxicity Thresholds for Risk Assessment. Ecotoxicology 2012, 21, 1167–1176. [Google Scholar] [CrossRef]
- Yang, L.; Ying, G.; Su, H.; Stauber, J.L.; Adams, M.S.; Binet, M.T. Growth-inhibiting Effects of 12 Antibacterial Agents and Their Mixtures on the Freshwater Microalga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 2008, 27, 1201–1208. [Google Scholar] [CrossRef]
- Fu, L.; Huang, T.; Wang, S.; Wang, X.; Su, L.; Li, C.; Zhao, Y. Toxicity of 13 Different Antibiotics towards Freshwater Green Algae Pseudokirchneriella subcapitata and Their Modes of Action. Chemosphere 2017, 168, 217–222. [Google Scholar] [CrossRef]
- Zounková, R.; Klimešová, Z.; Nepejchalová, L.; Hilscherová, K.; Bláha, L. Complex Evaluation of Ecotoxicity and Genotoxicity of Antimicrobials Oxytetracycline and Flumequine Used in Aquaculture. Environ. Toxicol. Chem. 2011, 30, 1184–1189. [Google Scholar] [CrossRef]
- Van Der Grinten, E.; Pikkemaat, M.G.; Van Den Brandhof, E.-J.; Stroomberg, G.J.; Kraak, M.H.S. Comparing the Sensitivity of Algal, Cyanobacterial and Bacterial Bioassays to Different Groups of Antibiotics. Chemosphere 2010, 80, 1–6. [Google Scholar] [CrossRef]
- Christensen, A.M.; Ingerslev, F.; Baun, A. Ecotoxicity of Mixtures of Antibiotics Used in Aquacultures. Environ. Toxicol. Chem. 2006, 25, 2208–2215. [Google Scholar] [CrossRef]
- Yamashita, N.; Yasojima, M.; Nakada, N.; Miyajima, K.; Komori, K.; Suzuki, Y.; Tanaka, H. Effects of Antibacterial Agents, Levofloxacin and Clarithromycin, on Aquatic Organisms. Water Sci. Technol. 2006, 53, 65–72. [Google Scholar] [CrossRef]
- Eguchi, K.; Nagase, H.; Ozawa, M.; Endoh, Y.S.; Goto, K.; Hirata, K.; Miyamoto, K.; Yoshimura, H. Evaluation of Antimicrobial Agents for Veterinary Use in the Ecotoxicity Test Using Microalgae. Chemosphere 2004, 57, 1733–1738. [Google Scholar] [CrossRef]
- Isidori, M.; Lavorgna, M.; Nardelli, A.; Pascarella, L.; Parrella, A. Toxic and Genotoxic Evaluation of Six Antibiotics on Non-Target Organisms. Sci. Total Environ. 2005, 346, 87–98. [Google Scholar] [CrossRef]
- Ferrari, B.; Mons, R.; Vollat, B.; Fraysse, B.; Paxēaus, N.; Giudice, R.L.; Pollio, A.; Garric, J. Environmental Risk Assessment of Six Human Pharmaceuticals: Are the Current Environmental Risk Assessment Procedures Sufficient for the Protection of the Aquatic Environment? Environ. Toxicol. Chem. 2004, 23, 1344–1354. [Google Scholar] [CrossRef]
- Wan, L.; Wu, Y.; Zhang, Y.; Zhang, W. Toxicity, Biodegradation of Moxifloxacin and Gatifloxacin on Chlamydomonas reinhardtii and Their Metabolic Fate. Ecotoxicol. Environ. Saf. 2022, 240, 113711. [Google Scholar] [CrossRef]
- Geiger, E.; Hornek-Gausterer, R.; Saçan, M.T. Single and Mixture Toxicity of Pharmaceuticals and Chlorophenols to Freshwater Algae Chlorella vulgaris. Ecotoxicol. Environ. Saf. 2016, 129, 189–198. [Google Scholar] [CrossRef]
- Nie, X.; Wang, X.; Chen, J.; Zitko, V.; An, T. Response of the Freshwater Alga Chlorella vulgaris to Trichloroisocyanuric Acid and Ciprofloxacin. Environ. Toxicol. Chem. 2008, 27, 168–173. [Google Scholar] [CrossRef]
- Li, Z.; Gao, X.; Bao, J.; Li, S.; Wang, X.; Li, Z.; Zhu, L. Evaluation of Growth and Antioxidant Responses of Freshwater Microalgae Chlorella sorokiniana and Scenedesmus dimorphus under Exposure of Moxifloxacin. Sci. Total Environ. 2023, 858, 159788. [Google Scholar] [CrossRef]
- Backhaus, T.; Faust, M.; Junghans, M.; Scholze, M.; Grimme, H. Low Algal Toxicities of Quinolones Confirm Their Specific Molecular Mechanism of Action. In Proceedings of the 11th Annual Meeting of SETAC Europe, Madrid, Spain, 6–10 May 2001. [Google Scholar]
- Qin, H.; Chen, L.; Lu, N.; Zhao, Y.; Yuan, X. Toxic Effects of Enrofloxacin on Scenedesmus obliquus. Front. Environ. Sci. Eng. 2012, 6, 107–116. [Google Scholar] [CrossRef]
- Nie, X.; Gu, J.; Lu, J.; Pan, W.; Yang, Y. Effects of Norfloxacin and Butylated Hydroxyanisole on the Freshwater Microalga Scenedesmus obliquus. Ecotoxicology 2009, 18, 677–684. [Google Scholar] [CrossRef]
- Lu, J.Y.; Li, X.; Yang, Y.T.; Nie, X.P. Toxic effects of nutylated hydroxyanisole and norfloxacin on aquatic organisms. Ecol. Sci. 2007, 26, 55–58. [Google Scholar]
- Brain, R.A.; Johnson, D.J.; Richards, S.M.; Sanderson, H.; Sibley, P.K.; Solomon, K.R. Effects of 25 Pharmaceutical Compounds to Lemna gibba Using a Seven-day Static-renewal Test. Environ. Toxicol. Chem. 2004, 23, 371–382. [Google Scholar] [CrossRef]
- Brooks, B.W.; Maul, J.D.; Belden, J.B. Antibiotics in Aquatic and Terrestrial Ecosystems. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 210–217. ISBN 978-0-08-045405-4. [Google Scholar]
- Eluk, D.; Nagel, O.; Gagneten, A.; Reno, U.; Althaus, R. Toxicity of Fluoroquinolones on the Cladoceran Daphnia magna. Water Environ. Res. 2021, 93, 2914–2930. [Google Scholar] [CrossRef]
- Dionísio, R.; Daniel, D.; Alkimin, G.D.D.; Nunes, B. Multi-Parametric Analysis of Ciprofloxacin Toxicity at Ecologically Relevant Levels: Short- and Long-Term Effects on Daphnia magna. Environ. Toxicol. Pharmacol. 2020, 74, 103295. [Google Scholar] [CrossRef]
- Dalla Bona, M.; Di Leva, V.; De Liguoro, M. The Sensitivity of Daphnia magna and Daphnia curvirostris to 10 Veterinary Antibacterials and to Some of Their Binary Mixtures. Chemosphere 2014, 115, 67–74. [Google Scholar] [CrossRef]
- Mala, A.A.; Dutta, J. Acute and Chronic Toxicity of Fluoroquinolone Antibiotics through Fresh Water Cladoceron Daphnia magna. Indian J. Ecol. 2019, 46, 874–879. [Google Scholar]
- Kergaravat, S.V.; Hernández, S.R.; Gagneten, A.M. Second-, Third- and Fourth-Generation Quinolones: Ecotoxicity Effects on Daphnia and Ceriodaphnia Species. Chemosphere 2021, 262, 127823. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Chen, J.; Li, X.; Zhang, S.; Yao, H.; Peijnenburg, W.J.G.M. Effects of Lomefloxacin on Survival, Growth and Reproduction of Daphnia magna under Simulated Sunlight Radiation. Ecotoxicol. Environ. Saf. 2018, 166, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ma, Y.; Yao, S.; Zhang, J.; Hu, C. In Vivo and in Silico Evaluations of Survival and Cardiac Developmental Toxicity of Quinolone Antibiotics in Zebrafish Embryos (Danio rerio). Environ. Pollut. 2021, 277, 116779. [Google Scholar] [CrossRef] [PubMed]
- Özhan Turhan, D. Evaluation of Teratogenic and Toxic Effects of Enrofloxacin-Based Antibiotic on Zebrafish (Danio rerio) Larvae with Biochemical and Developmental Markers. Chem. Ecol. 2021, 37, 704–714. [Google Scholar] [CrossRef]
- Lancieri, M.; Cozzolino, S.; Filosa, S.; Motta, C.M.; Tammaro, S.; Gaudio, L.; Migliore, L. Toxicity and Teratogenic Effects of Flumequine on Danio rerio Embryos. Fresenius Environ. Bullettin 2002, 11, 642–646. [Google Scholar]
- Sharma, L.; Siedlewicz, G.; Pazdro, K. The Toxic Effects of Antibiotics on Freshwater and Marine Photosynthetic Microorganisms: State of the Art. Plants 2021, 10, 591. [Google Scholar] [CrossRef]
- Aderemi, A.O.; Novais, S.C.; Lemos, M.F.L.; Alves, L.M.; Hunter, C.; Pahl, O. Oxidative Stress Responses and Cellular Energy Allocation Changes in Microalgae Following Exposure to Widely Used Human Antibiotics. Aquat. Toxicol. 2018, 203, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Mater, N.; Geret, F.; Castillo, L.; Faucet-Marquis, V.; Albasi, C.; Pfohl-Leszkowicz, A. In Vitro Tests Aiding Ecological Risk Assessment of Ciprofloxacin, Tamoxifen and Cyclophosphamide in Range of Concentrations Released in Hospital Wastewater and Surface Water. Environ. Int. 2014, 63, 191–200. [Google Scholar] [CrossRef]
- Liu, B.; Nie, X.; Liu, W.; Snoeijs, P.; Guan, C.; Tsui, M.T.K. Toxic Effects of Erythromycin, Ciprofloxacin and Sulfamethoxazole on Photosynthetic Apparatus in Selenastrum capricornutum. Ecotoxicol. Environ. Saf. 2011, 74, 1027–1035. [Google Scholar] [CrossRef]
- Henderson, K.L.; Coats, J.R. (Eds.) Veterinary Pharmaceuticals in the Environment; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2010; Volume 1018, ISBN 978-0-8412-6962-0. [Google Scholar]
- Migliore, L.; Cozzolino, S.; Fiori, M. Phytotoxicity to and Uptake of Flumequine Used in Intensive Aquaculture on the Aquatic Weed, Lythrum salicaria L. Chemosphere 2000, 40, 741–750. [Google Scholar] [CrossRef]
- Nunes, B.; Veiga, V.; Frankenbach, S.; Serôdio, J.; Pinto, G. Evaluation of Physiological Changes Induced by the Fluoroquinolone Antibiotic Ciprofloxacin in the Freshwater Macrophyte Species Lemna minor and Lemna gibba. Environ. Toxicol. Pharmacol. 2019, 72, 103242. [Google Scholar] [CrossRef]
- Weber, K.P.; Mitzel, M.R.; Slawson, R.M.; Legge, R.L. Effect of Ciprofloxacin on Microbiological Development in Wetland Mesocosms. Water Res. 2011, 45, 3185–3196. [Google Scholar] [CrossRef]
- Pan, Y.; Yan, S.; Li, R.; Hu, Y.; Chang, X. Lethal/Sublethal Responses of Daphnia magna to Acute Norfloxacin Contamination and Changes in Phytoplankton-Zooplankton Interactions Induced by This Antibiotic. Sci. Rep. 2017, 7, 40385. [Google Scholar] [CrossRef] [PubMed]
- Dalla Bona, M.; Lizzi, F.; Borgato, A.; De Liguoro, M. Increasing Toxicity of Enrofloxacin over Four Generations of Daphnia magna. Ecotoxicol. Environ. Saf. 2016, 132, 397–402. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Zhuang, H.; Li, X.; Gao, X.; An, Z.; Liu, X.; Yang, H.; Wei, W.; Zhang, X. Excessive Use of Enrofloxacin Leads to Growth Inhibition of Juvenile Giant Freshwater Prawn Macrobrachium rosenbergii. Ecotoxicol. Environ. Saf. 2019, 169, 344–352. [Google Scholar] [CrossRef]
- Kim, J.-W.; Ishibashi, H.; Yamauchi, R.; Ichikawa, N.; Takao, Y.; Hirano, M.; Koga, M.; Arizono, K. Acute Toxicity of Pharmaceutical and Personal Care Products on Freshwater Crustacean (Thamnocephalus platyurus) and Fish (Oryzias latipes). J. Toxicol. Sci. 2009, 34, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Pietropoli, E.; Pauletto, M.; Iori, S.; Tolosi, R.; Giantin, M.; Dacasto, M.; De Liguoro, M. Transgenerational Effects of the Fluoroquinolone Flumequine in D. Magna: An In Vivo Whole-Transcriptomic Investigation. In Proceedings of the 34th Annual Meeting of SETAC Europe, Seville, Spain, 5–9 May 2024. [Google Scholar]
- Jager, T. Identifying and Predicting Delayed Mortality with Toxicokinetic–Toxicodynamic Models. Environ. Toxicol. Chem. 2024, 43, 1030–1035. [Google Scholar] [CrossRef]
- Shen, R.; Yu, Y.; Lan, R.; Yu, R.; Yuan, Z.; Xia, Z. The Cardiovascular Toxicity Induced by High Doses of Gatifloxacin and Ciprofloxacin in Zebrafish. Environ. Pollut. 2019, 254, 112861. [Google Scholar] [CrossRef]
- Nogueira, A.F.; Pinto, G.; Correia, B.; Nunes, B. Embryonic Development, Locomotor Behavior, Biochemical, and Epigenetic Effects of the Pharmaceutical Drugs Paracetamol and Ciprofloxacin in Larvae and Embryos of Danio rerio When Exposed to Environmental Realistic Levels of Both Drugs. Environ. Toxicol. 2019, 34, 1177–1190. [Google Scholar] [CrossRef]
- Liu, J.; Lu, G.; Wu, D.; Yan, Z. A Multi-Biomarker Assessment of Single and Combined Effects of Norfloxacin and Sulfamethoxazole on Male Goldfish (Carassius auratus). Ecotoxicol. Environ. Saf. 2014, 102, 12–17. [Google Scholar] [CrossRef]
- Liang, X.; Wang, L.; Ou, R.; Nie, X.; Yang, Y.; Wang, F.; Li, K. Effects of Norfloxacin on Hepatic Genes Expression of P450 Isoforms (CYP1A and CYP3A), GST and P-Glycoprotein (P-Gp) in Swordtail Fish (Xiphophorus helleri). Ecotoxicology 2015, 24, 1566–1573. [Google Scholar] [CrossRef]
- Liang, X.; Wang, F.; Li, K.; Nie, X.; Fang, H. Effects of Norfloxacin Nicotinate on the Early Life Stage of Zebrafish (Danio rerio): Developmental Toxicity, Oxidative Stress and Immunotoxicity. Fish Shellfish. Immunol. 2020, 96, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-L.; Li, P.; Zhang, S.-Q.; He, S.-W.; Xing, S.-Y.; Cao, Z.-H.; Lu, R.; Li, Z.-H. Effects of Environmental Norfloxacin Concentrations on the Intestinal Health and Function of Juvenile Common Carp and Potential Risk to Humans. Environ. Pollut. 2021, 287, 117612. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xu, X.; Wei, X.; Wan, J.; Zhang, Y. Biomarker Effects in Carassius auratus Exposure to Ofloxacin, Sulfamethoxazole and Ibuprofen. Int. J. Environ. Res. Public. Health 2019, 16, 1628. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, C.; Liu, X.; Lee, S.; Kho, Y.; Kim, W.-K.; Kim, P.; Choi, K. Ecological Risk Assessment of Amoxicillin, Enrofloxacin, and Neomycin: Are Their Current Levels in the Freshwater Environment Safe? Toxics 2021, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, K. Hazard Assessment of Commonly Used Agricultural Antibiotics on Aquatic Ecosystems. Ecotoxicology 2008, 17, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Yin, X.; Shi, M.; Dahlgren, R.A.; Wang, H. Toxicity Assessment of Combined Fluoroquinolone and Tetracycline Exposure in Zebrafish (Danio rerio): Toxicology Assessment of Fluoroquinolone and Tetracycline in Zebrafish. Environ. Toxicol. 2016, 31, 736–750. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Sun, Q.; Liu, Y.; Li, L.; Yang, X. Acute Toxicity, Bioaccumulation, and Bioreduction of Two Antibiotics, Norfloxacin and Ofloxacin, in the Snail Bellamya aeruginosa. Water. Air. Soil Pollut. 2020, 231, 96. [Google Scholar] [CrossRef]
- Gilroy, È.A.M.; Klinck, J.S.; Campbell, S.D.; McInnis, R.; Gillis, P.L.; De Solla, S.R. Toxicity and Bioconcentration of the Pharmaceuticals Moxifloxacin, Rosuvastatin, and Drospirenone to the Unionid Mussel Lampsilis siliquoidea. Sci. Total Environ. 2014, 487, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Nentwig, G. Another Example of Effects of Pharmaceuticals on Aquatic Invertebrates: Fluoxetine and Ciprofloxacin. In Pharmaceuticals in the Environment; Kümmerer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 205–222. ISBN 978-3-540-74663-8. [Google Scholar]
- Richards, S.M.; Cole, S.E. A Toxicity and Hazard Assessment of Fourteen Pharmaceuticals to Xenopus laevis Larvae. Ecotoxicology 2006, 15, 647–656. [Google Scholar] [CrossRef]
- Giddings, J.M.; Wirtz, J.; Campana, D.; Dobbs, M. Derivation of Combined Species Sensitivity Distributions for Acute Toxicity of Pyrethroids to Aquatic Animals. Ecotoxicology 2019, 28, 242–250. [Google Scholar] [CrossRef]
- USEPA SSD Generator V1. Available online: https://www.epa.gov/caddis/download-software (accessed on 15 May 2024).
- Nie, X.P.; Lu, J.Y.; Li, X.; Yang, Y.F. Toxic Effects of Norfloxacin to the Growth and the Activity of Antioxidase of Chlorella pyrenoidosa. Asian J. Ecotoxicol. 2007, 2, 327–332. [Google Scholar]
- Spurgeon, D.; Lahive, E.; Robinson, A.; Short, S.; Kille, P. Species Sensitivity to Toxic Substances: Evolution, Ecology and Applications. Front. Environ. Sci. 2020, 8, 588380. [Google Scholar] [CrossRef]
- Sorgog, K.; Kamo, M. Quantifying the Precision of Ecological Risk: Conventional Assessment Factor Method vs. Species Sensitivity Distribution Method. Ecotoxicol. Environ. Saf. 2019, 183, 109494. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.10: Characterisation of Dose [Concentration]-Response for Environment; European Chemicals Agency: Helsinki, Finland, 2008. [Google Scholar]
- OECD Test No. 203: Fish, Acute Toxicity Test; OECD Guidelines for the Testing of Chemicals; Section 2; OECD: Paris, France, 2019; ISBN 978-92-64-06996-1.
- European Medicines Agency’s Committee for Medicinal Products for Veterinary Use (CVMP). Guideline on Environmental Impact Assessment for Veterinary Medicinal Products in Support of the VICH Guidelines GL6 and GL38; 2005. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-environmental-impact-assessment-veterinary-medicinal-products-support-vich-guidelines-gl6-and-gl38_en.pdf (accessed on 15 May 2024).
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic Use in Aquaculture, Policies and Regulation, Health and Environmental Risks: A Review of the Top 15 Major Producers. Rev. Aquac. 2020, 12, 640–663. [Google Scholar] [CrossRef]
- Al-Omar, M.A. Ciprofloxacin: Drug Metabolism and Pharmacokinetic Profile. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2005; Volume 31, pp. 209–214. ISBN 978-0-12-260831-5. [Google Scholar]
- Sukul, P.; Lamshöft, M.; Kusari, S.; Zühlke, S.; Spiteller, M. Metabolism and Excretion Kinetics of 14C-Labeled and Non-Labeled Difloxacin in Pigs after Oral Administration, and Antimicrobial Activity of Manure Containing Difloxacin and Its Metabolites. Environ. Res. 2009, 109, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Junza, A.; Barbosa, S.; Codony, M.R.; Jubert, A.; Barbosa, J.; Barrón, D. Identification of Metabolites and Thermal Transformation Products of Quinolones in Raw Cow’s Milk by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2014, 62, 2008–2021. [Google Scholar] [CrossRef] [PubMed]
- Rusch, M.; Spielmeyer, A.; Zorn, H.; Hamscher, G. Degradation and Transformation of Fluoroquinolones by Microorganisms with Special Emphasis on Ciprofloxacin. Appl. Microbiol. Biotechnol. 2019, 103, 6933–6948. [Google Scholar] [CrossRef]
- Li, Y.; Niu, J.; Wang, W. Photolysis of Enrofloxacin in Aqueous Systems under Simulated Sunlight Irradiation: Kinetics, Mechanism and Toxicity of Photolysis Products. Chemosphere 2011, 85, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Loewe, S.; Muischnek, H. Über Kombinationswirkungen: Mitteilung: Hilfsmittel der Fragestellung. Arch. Für Exp. Pathol. Pharmakol. 1926, 114, 313–326. [Google Scholar] [CrossRef]
- Backhaus, T.; Scholze, M.; Grimme, L.H. The Single Substance and Mixture Toxicity of Quinolones to the Bioluminescent Bacterium Vibrio fischeri. Aquat. Toxicol. 2000, 49, 49–61. [Google Scholar] [CrossRef]
- Cedergreen, N. Quantifying Synergy: A Systematic Review of Mixture Toxicity Studies within Environmental Toxicology. PLoS ONE 2014, 9, e96580. [Google Scholar] [CrossRef] [PubMed]
- Khadra, A.; Pinelli, E.; Lacroix, M.Z.; Bousquet-Melou, A.; Hamdi, H.; Merlina, G.; Guiresse, M.; Hafidi, M. Assessment of the Genotoxicity of Quinolone and Fluoroquinolones Contaminated Soil with the Vicia faba Micronucleus Test. Ecotoxicol. Environ. Saf. 2012, 76, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Covich, A.P.; Palmer, M.A.; Crowl, T.A. The Role of Benthic Invertebrate Species in Freshwater Ecosystems. BioScience 1999, 49, 119. [Google Scholar] [CrossRef]
Taxa/Species | Fluoroquinolones | EC50 | Duration | Endpoint | Parameter | Reference |
---|---|---|---|---|---|---|
Cyanobacteria | ||||||
Anabaena flos-aquae | ciprofloxacin | 0.0102 | 72 h | Yield inhibition | Cells number | Ebert et al., 2011 [243] |
enrofloxacin | 0.173 | 72 h | Yield inhibition | Cells number | Ebert et al., 2011 [243] | |
(Anabaena CPB4337) | levofloxacin | 4.8 | 72 h | Reduced luminescence | Luminescence | González-Pleiter et al., 2013 [244] |
norfloxacin | 5.6 | 72 h | Reduced luminescence | Luminescence | González-Pleiter et al., 2013 [244] | |
Microcystis aeruginosa | ciprofloxacin | 0.017 | 5 d | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] |
0.005 | 72 h | Growth rate inhibition | Absorbance | Halling-Sorensen et al., 2000 [246] | ||
clinafloxacin | 0.103 | 5 d | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
enrofloxacin | 0.049 | 5 d | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
flumequine | 1.960 | 5 d | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
7 d | Growth rate inhibition | Fluorescence | Lützhøft et al., 1999 [247] | |||
gatifloxacin | 0.02530 | 96 h | Growth rate inhibition | Fluorescence | Wan et al., 2021 [248] | |
levofloxacin | 0.0079 | 5 d | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
lomefloxacin | 0.186 | 5 d | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
moxifloxacin | 0.06034 | 96 h | Growth rate inhibition | Fluorescence | Wan et al., 2021 [248] | |
norfloxacin | 0.03479 | 72 h | Growth rate inhibition | Fluorescence | Zhao et al., 2021 [249] | |
ofloxacin | 0.021 | 5 d | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
sarafloxacin | 0.015 | 7 d | Growth rate inhibition | Fluorescence | Lützhøft et al., 1999 [247] | |
Microcystis panniformis | ciprofloxacin | 0.01356 | 96 h | Growth rate inhibition | Cells number | Azevedo et al., 2019 [171] |
Unicellular green algae | ||||||
Raphidocelis subcapitata | ciprofloxacin | 11.3 | 72 h | Growth rate inhibition | Absorbance | Magdaleno et al., 2015 [250] |
2.97 | 72 h | Growth rate inhibition | Absorbance | Halling-Sorensen et al., 2000 [246] | ||
4.83 | 96 h | Growth rate inhibition | Cells number | Martins et al., 2012 [251] | ||
18.7 | 72 h | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | ||
6.7 | 72 h | Yield inhibition | Absorbance | Yang et al., 2008 [252] | ||
7.082 | 96 h | Growth rate inhibition | Absorbance | Fu et al., 2017 [253] | ||
clinafloxacin | 1.1 | 72 h | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
enrofloxacin | 3.1 | 72 h | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
flumequine | 5 | 72 h | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
5 | 72 h | Growth rate inhibition | Fluorescence | Lützhøft et al., 1999 [247] | ||
2.6 | 96 h | Growth rate inhibition | Absorbance | Zounková et al., 2011 [254] | ||
16 | 24 h | Yield inhibition | Fluorescence | Van Der Grinten et al., 2010 [255] | ||
8.1 | 48 h | Growth rate inhibition | Fluorescence | Christensen et al., 2006 [256] | ||
levofloxacin | 7.4 | 72 h | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
1.2 | 96 h | Growth rate inhibition | Absorbance | Yamashita et al., 2006 [257] | ||
lomefloxacin | 22.7 | 72 h | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
norfloxacin | 16.6 | 72 h | Growth rate inhibition | Cells count | Eguchi et al., 2004 [258] | |
18 | 72 h | Yield inhibition | Absorbance | Yang et al., 2008 [252] | ||
59.404 | 96 h | Growth rate inhibition | Absorbance | Fu et al., 2017 [253] | ||
ofloxacin | 12.1 | 72 h | Growth rate inhibition | Fluorescence | Robinson et al., 2005 [245] | |
4.241 | 96 h | Growth rate inhibition | Absorbance | Fu et al., 2017 [253] | ||
1.44 | 72 h | Growth rate inhibition | Cells number | Isidori et al., 2005 [259] | ||
4.74 | 96 h | Growth rate inhibition | Cells number | Ferrari et al., 2004 [260] | ||
sarafloxacin | 16 | 72 h | Growth rate inhibition | Fluorescence | Lützhøft et al., 1999 [247] | |
Chlamydomonas reinhardtii | gatifloxacin | 83.04 | 7 d | Growth rate inhibition | Absorbance | Wan et al., 2022 [261] |
moxifloxacin | 12.65 | 7 d | Growth rate inhibition | Absorbance | Wan et al., 2022 [261] | |
Chlorella vulgaris | ciprofloxacin | 29.09 | 96 h | Growth rate inhibition | Absorbance | Geiger et al., 2016 [262] |
20.6 | 96 h | Growth rate inhibition | Cells number | Nie et al., 2008 [263] | ||
norfloxacin | 10.4 | 72 h | Growth rate inhibition | Cells count | Eguchi et al., 2004 [258] | |
Chlorella sorokiniana | moxifloxacin | 28 | 96 h | Growth rate inhibition | Absorbance | Li et al., 2023 [264] |
Chlorella sp. | ciprofloxacin | 23 | 72 h | Growth rate inhibition | Cells number | Andrieu et al., 2015 [53] |
enrofloxacin | 111 | 72 h | Growth rate inhibition | Cells number | Andrieu et al., 2015 [53] | |
Desmodesmus subspicatus | enrofloxacin | 5.568 | 72 h | Yield inhibition | Cells number | Ebert et al., 2011 [243] |
Scenedesmus vacuolatus | flumequine | 3.7 | 24 h | Growth rate inhibition | Cells number | Backhaus et al., 2001 [265] |
lomefloxacin | 58 | 24 h | Growth rate inhibition | Cells number | Backhaus et al., 2001 [265] | |
norfloxacin | 69.6 | 24 h | Growth rate inhibition | Cells number | Backhaus et al., 2001 [265] | |
ofloxacin | 82.8 | 24 h | Growth rate inhibition | Cells number | Backhaus et al., 2001 [265] | |
Scenedesmus obliquus | enrofloxacin | 45.10 | 96 h | Growth rate inhibition | Absorbance | Qin et al., 2012 [266] |
norfloxacin | 38.49 | 96 h | Growth rate inhibition | Cells number | Nie et al., 2009 [267] | |
50.18 | 96 h | Growth rate inhibition | Cells number | Lu et al., 2007 [268] | ||
Scenedesmus dimorphus | moxifloxacin | 26 | 96 h | Growth rate inhibition | Absorbance | Li et al., 2023 [264] |
Aquatic plants | ||||||
Lemna minor | ciprofloxacin | 0.0625 | 7 d | Yield inhibition | Dry weight | Ebert et al., 2011 [243] |
0.203 | 7 d | Growth rate inhibition | Fronds number | Robinson et al., 2005 [245] | ||
clinafloxacin | 0.062 | 7 d | Growth rate inhibition | Fronds number | Robinson et al., 2005 [245] | |
enrofloxacin | 0.107 | 7 d | Yield inhibition | Dry weight | Ebert et al., 2011 [243] | |
0.114 | 7 d | Growth rate inhibition | Fronds number | Robinson et al., 2005 [245] | ||
flumequine | 2.470 | 7 d | Growth rate inhibition | Fronds number | Robinson et al., 2005 [245] | |
3.0 | 7 d | Yield inhibition | Fronds number | Zounková et al., 2011 [254] | ||
levofloxacin | 0.051 | 7 d | Growth rate inhibition | Fronds number | Robinson et al., 2005 [245] | |
lomefloxacin | 0.106 | 7 d | Growth rate inhibition | Fronds number | Robinson et al., 2005 [245] | |
ofloxacin | 0.126 | 7 d | Growth rate inhibition | Fronds number | Robinson et al., 2005 [245] | |
Lemna gibba | ciprofloxacin | 0.698 | 7 d | Yield inhibition | Wet weight | Brain et al., 2004 [269] |
levofloxacin | 0.532 | 7 d | Yield inhibition | Wet weight | Brain et al., 2004 [269] | |
lomefloxacin | 0.185 | 7 d | Yield inhibition | Wet weight | Brain et al., 2004 [269] | |
norfloxacin | 0.913 | 7 d | Yield inhibition | Fronds number | Brooks et al., 2008 [270] | |
ofloxacin | 0.532 | 7 d | Yield inhibition | Wet weight | Brain et al., 2004 [269] | |
Crustaceans | ||||||
Daphnia magna | ciprofloxacin | 7.2 | 48 h | Immobilization | Imm. number | Eluk et al., 2021 [271] |
36.493 | 48 h | Immobilization | Imm. number | Dionísio et al., 2020 [272] | ||
87.14 | 48 h | Immobilization | Imm. number | Dalla Bona et al., 2014 [273] | ||
enrofloxacin | 7.9 | 48 h | Immobilization | Imm. number | Eluk et al., 2021 [271] | |
16.72 | 48 h | Immobilization | Imm. number | Tolosi & De Liguoro 2021 [21] | ||
3.13 | 48 h + 10 d | Delayed immobilization | Imm. number | Tolosi & De Liguoro 2021 [21] | ||
16.34 | 48 h | Immobilization | Imm. number | Dalla Bona et al., 2014 [273] | ||
flumequine | 7.18 | 48 h + 10 d | Delayed immobilization | Imm. number | Tolosi & De Liguoro 2021 [21] | |
gatifloxacin | 330.8 | 48 h | Immobilization | Imm. number | Mala & Dutta 2019 [274] | |
gemifloxacin | 489.2 | 48 h | Immobilization | Imm. number | Mala & Dutta 2019 [274] | |
levofloxacin | 28 | 48 h | Immobilization | Imm. number | Kergaravat et al., 2021 [275] | |
19.5 | 48 h | Immobilization | Imm. number | Eluk et al., 2021 [271] | ||
15.11 | 48 h | Delayed immobilization | Imm. number | Tolosi & De Liguoro 2021 [21] | ||
lomefloxacin | 166 | 48 h | Immobilization | Imm. number | Luo et al., 2018 [276] | |
marbofloxacin | 5.4 | 48 h | Immobilization | Imm. number | Eluk et al., 2021 [271] | |
moxifloxacin | 14 | 48 h | Immobilization | Imm. number | Kergaravat et al., 2021 [275] | |
norfloxacin | 8.7 | 48 h | Immobilization | Imm. number | Eluk et al., 2021 [271] | |
ofloxacin | 31.75 | 48 h | Immobilization | Imm. number | Isidori et al., 2005 [259] | |
36 | 48 h | Immobilization | Imm. number | Eluk et al., 2021 [271] | ||
Daphnia curvirostris | ciprofloxacin | 4.45 | 48 h | Immobilization | Imm. number | Dalla Bona et al., 2014 [273] |
enrofloxacin | 4.33 | 48 h | Immobilization | Imm. number | Dalla Bona et al., 2014 [273] | |
Ceriodaphnia dubia | ciprofloxacin | 36 | 48 h | Immobilization | Imm. number | Kergaravat et al., 2021 [275] |
enrofloxacin | 60 | 48 h | Immobilization | Imm. number | Kergaravat et al., 2021 [275] | |
levofloxacin | 35 | 48 h | Immobilization | Imm. number | Kergaravat et al., 2021 [275] | |
marbofloxacin | 31 | 48 h | Immobilization | Imm. number | Kergaravat et al., 2021 [275] | |
moxifloxacin | 29 | 48 h | Immobilization | Imm. number | Kergaravat et al., 2021 [275] | |
norfloxacin | 73 | 48 h | Immobilization | Imm. number | Kergaravat et al., 2021 [275] | |
ofloxacin | 17.41 | 7 d | Immobilization | Imm. number | Isidori et al., 2005 [259] | |
Moina macrocopa | ciprofloxacin | 71.2 | 48 h | Immobilization | Imm. number | Andrieu et al., 2015 [53] |
enrofloxacin | 69.1 | 48 h | Immobilization | Imm. number | Andrieu et al., 2015 [53] | |
Fish | ||||||
Danio rerio | ciprofloxacin | 620 | 66 h | Embryonic mortality | Dead number | Han et al., 2021 [277] |
enrofloxacin | 150 | 96 h | Embryonic mortality | Dead number | Özhan Turhan 2021 [278] | |
flumequine | 40 | 48 h | Embryonic mortality | Dead number | Lancieri et al., 2002 [279] | |
gatifloxacin | 4393 | 66 h | Embryonic mortality | Dead number | Han et al., 2021 [277] | |
levofloxacin | 5437 | 66 h | Embryonic mortality | Dead number | Han et al., 2021 [277] | |
lomefloxacin | 1430 | 66 h | Embryonic mortality | Dead number | Han et al., 2021 [277] | |
moxifloxacin | 609 | 66 h | Embryonic mortality | Dead number | Han et al., 2021 [277] | |
norfloxacin | 1311 | 66 h | Embryonic mortality | Dead number | Han et al., 2021 [277] |
Cip | Cli | Enr | Flu | Gat | Lev | Lom | Mox | Nor | Ofl | Sar | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chlorella sp. | 2600.58 (3) | 2265.31 (1) | 464.01 | 397.59 | 1021.03 | |||||||
Scenedesmus obliquus | 920.41 (1) | 976.62 | 948.10 | |||||||||
Chlamydomonas reinhardtii | 3282.21 (1) | 209 | 828.21 | |||||||||
Scenedesmus dimorphus | 430.89 | 430.89 | ||||||||||
Scenedesmus vacuolatus | 6.63 (1) | 311.83 | 1546.67 | 3942.86 | 335.09 | |||||||
Raphidocelis subcapitata | 744.7 (7) | 68.57 (1) | 63.27 (1) | 10.92 (5) | 372.49 (2) | 122.04 | 513 | 206.01 | 1066.67 | 178.16 | ||
Desmodesmus subspicatus | 113.63 (1) | 113.63 | ||||||||||
Anabaena flos-aquae | 1.08 (1) | 3.53 (1) | 600.00 (1) | 124.44 | 23.10 | |||||||
Lemna gibba | 75.71 (1) | 66.50 (1) | 0.52 | 20.29 | 33.24 | 17.76 | ||||||
Lemna minor | 39.41 (3) | 6.00 (1) | 2.25 (2) | 4.88 (2) | 6.38 (1) | 0.57 | 6 | 4.78 | ||||
Microcystis panniformis | 1.47 (1) | 1.47 | ||||||||||
Microcystis aeruginosa | 1 (2) | 1 (1) | 1 (1) | 1 (2) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauletto, M.; De Liguoro, M. A Review on Fluoroquinolones’ Toxicity to Freshwater Organisms and a Risk Assessment. J. Xenobiot. 2024, 14, 717-752. https://doi.org/10.3390/jox14020042
Pauletto M, De Liguoro M. A Review on Fluoroquinolones’ Toxicity to Freshwater Organisms and a Risk Assessment. Journal of Xenobiotics. 2024; 14(2):717-752. https://doi.org/10.3390/jox14020042
Chicago/Turabian StylePauletto, Marianna, and Marco De Liguoro. 2024. "A Review on Fluoroquinolones’ Toxicity to Freshwater Organisms and a Risk Assessment" Journal of Xenobiotics 14, no. 2: 717-752. https://doi.org/10.3390/jox14020042
APA StylePauletto, M., & De Liguoro, M. (2024). A Review on Fluoroquinolones’ Toxicity to Freshwater Organisms and a Risk Assessment. Journal of Xenobiotics, 14(2), 717-752. https://doi.org/10.3390/jox14020042