Tracing Pharmaceuticals in Water Systems: Focus on Neurodegenerative and Psychiatric Treatments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mass Spectrometry Optimization
3.2. Chromatographic Conditions Optimization
3.3. Validation of the Method Developed
3.4. Concentration Found in Surface Waters and Wastewater Analysis
3.5. Concentration Detected in Micrograms per Liter Levels
3.6. Pharmaceutical Metabolites
3.7. Risk Assessment
3.8. Pharmaceutical Literature Research: Key Findings and Information
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owens, B. Pharmaceuticals in the Environment: A Growing Problem. 2015. Available online: https://pharmaceutical-journal.com/article/feature/pharmaceuticals-in-the-environment-a-growing-problem (accessed on 5 October 2021).
- Ginebreda, A.; Muñoz, I.; López de Alda, M.; Brix, R.; López-Doval, J.; Barceló, D. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ. Int. 2010, 36, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Jorge, S.; Silva, J.G.; Delerue-Matos, C. Presence of pharmaceuticals in the Lis river (Portugal): Sources, fate and seasonal variation. Sci. Total Environ. 2016, 573, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Tanabe, S.; Iwata, H.; Tatsukawa, R.; Subramanian, A.N.; Mohan, D.; Venugopalan, V.K. Seasonal variation of persistent organochlorine insecticide residues in Vellar River waters in Tamil Nadu, South India. Environ. Pollut. 1990, 67, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, S.; Pose-Juan, E.; Herrero-Hernández, E.; Álvarez-Martín, A.; Sánchez-Martín, M.J.; Rodríguez-Cruz, S. Pesticide residues in groundwaters and soils of agricultural areas in the Águeda River Basin from Spain and Portugal. Int. J. Environ. Anal. Chem. 2013, 93, 1585–1601. [Google Scholar] [CrossRef]
- Zhou, H.; Ying, T.; Wang, X.; Liu, J. Occurrence and preliminarily environmental risk assessment of selected pharmaceuticals in the urban rivers, China. Sci. Rep. 2016, 6, 34928. [Google Scholar] [CrossRef]
- Liu, N.; Jin, X.; Yan, Z.; Luo, Y.; Feng, C.; Fu, Z.; Tang, Z.; Wu, F.; Giesy, J.P. Occurrence and multiple-level ecological risk assessment of pharmaceuticals and personal care products (PPCPs) in two shallow lakes of China. Environ. Sci. Eur. 2020, 32, 69–79. [Google Scholar] [CrossRef]
- Battaglin, W.A.; Bradley, P.M.; Iwanowicz, L.; Journey, C.A.; Walsh, H.L.; Blazer, V.S. Pharmaceuticals, hormones, pesticides, and other bioactive contaminants in water, sediment, and tissue from Rocky Mountain National Park, 2012–2013. Sci. Total Environ. 2018, 643, 651–673. [Google Scholar] [CrossRef]
- Lolić, A.; Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Correia, M.; Delerue-Matos, C. Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: Occurrence and environmental risk. Sci. Total Environ. 2015, 508, 240–250. [Google Scholar] [CrossRef]
- Vieno, N.; Hallgren, P.; Wallberg, P.; Pyhälä, M.; Zandaryaa, S. Pharmaceuticals in the Aquatic Environment of the Baltic Sea Region: A Status Report; Pyhälä, M., Zandaryaa, S., Eds.; UNESCO: Paris, France, 2017; Volume 1. [Google Scholar]
- Heberer, T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol. 2002, 266, 175–189. [Google Scholar] [CrossRef]
- Vazquez-Roig, P.; Andreu, V.; Blasco, C.; Picó, Y. Risk assessment on the presence of pharmaceuticals in sediments, soils and waters of the Pego-Oliva Marshlands (Valencia, eastern Spain). Sci. Total Environ. 2012, 440, 24–32. [Google Scholar] [CrossRef]
- Bahlmann, A.; Brack, W.; Schneider, R.J.; Krauss, M. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Res. 2014, 57, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Barczyk, Z.A.; Rucklidge, J.J.; Eggleston, M.; Mulder, R.T. Psychotropic Medication Prescription Rates and Trends for New Zealand Children and Adolescents 2008–2016. J. Child Adolesc. Psychopharmacol. 2020, 30, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Tian, R.; Ren, P.; Zhou, W.; Wang, P.; Luo, M.; Jin, S. Parkinson’s disease and Alzheimer’s disease: A Mendelian randomization study. BMC Med. Genet. 2018, 19, 215. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.-S.; Yang, J.-J.; Metcalfe, C.D. Carbamazepine and Its Metabolites in Wastewater and in Biosolids in a Municipal Wastewater Treatment Plant. Environ. Sci. Technol. 2005, 39, 7469–7475. [Google Scholar] [CrossRef]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; Carvalho, M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci. Total Environ. 2019, 648, 582–600. [Google Scholar] [CrossRef]
- Paíga, P.; Correia-Sá, L.; Correia, M.; Figueiredo, S.; Vieira, J.; Jorge, S.; Silva, J.G.; Delerue-Matos, C. Temporal Analysis of Pharmaceuticals as Emerging Contaminants in Surface Water and Wastewater Samples: A Case Study. J. Xenobiot. 2024, 14, 873–892. [Google Scholar] [CrossRef]
- Paíga, P.; Lolić, A.; Hellebuyck, F.; Santos, L.H.M.L.M.; Correia, M.; Delerue-Matos, C. Development of a SPE–UHPLC–MS/MS methodology for the determination of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawater. J. Pharm. Biomed. Anal. 2015, 106, 61–70. [Google Scholar] [CrossRef]
- Renew, J.E.; Huang, C.H. Simultaneous determination offluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography–electrospray mass spectrometry. J. Chromatogr. A 2004, 1042, 113–121. [Google Scholar] [CrossRef]
- Silva, V.G.; Silva, R.O.; Damasceno, S.R.B.; Carvalho, N.S.; Prudêncio, R.S.; Aragão, K.S.; Guimarães, M.A.; Campos, S.A.; Véras, L.M.C.; Godejohann, M.; et al. Anti-inflammatory and Antinociceptive Activity of Epiisopiloturine, an Imidazole Alkaloid Isolated from Pilocarpus microphyllus. J. Nat. Prod. 2013, 76, 1071–1077. [Google Scholar] [CrossRef]
- Winkler, M.; Lawrence, J.R.; Neu, T.R. Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. Water Res. 2001, 35, 3197–3205. [Google Scholar] [CrossRef]
- Worldometers Information. Available online: https://www.worldometers.info/world-population/ (accessed on 16 April 2024).
- Khavinson, V.; Popovich, I.; Mikhailova, O. Towards realization of longer life. Acta Biomed. 2020, 91, e2020054. [Google Scholar]
- Word Health Organization (WHO). Available online: https://www.who.int/news-room/fact-sheets/detail/mental-health-of-older-adults (accessed on 16 April 2024).
- Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Environ. Factors Neurodegener. 2015, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Argaluza, J.; Domingo-Echaburu, S.; Orive, G.; Medrano, J.; Hernandez, R.; Lertxundi, U. Environmental pollution with psychiatric drugs. World J. Psychiatry 2021, 11, 791–804. [Google Scholar] [CrossRef]
- Martínez, S.A.H.; Melchor-Martínez, E.M.; González-González, R.B.; Sosa-Hernández, J.E.; Araújo, R.G.; Rodríguez-Hernández, J.A.; Barceló, D.; Parra-Saldívar, R.; Iqbal, H.M.N. Environmental concerns and bioaccumulation of psychiatric drugs in water bodies—Conventional versus biocatalytic systems of mitigation. Environ. Res. 2023, 229, 115892. [Google Scholar] [CrossRef] [PubMed]
- Santana-Viera, S.; Pintado-Herrera, M.G.; Zoraida, S.-F.; Santana-Rodríguez, J.J. Analysis of psychoactive substances and metabolites in sludges, soils, sediments and biota: A review. Environ. Chem. Lett. 2023, 21, 2311–2335. [Google Scholar] [CrossRef]
- Paíga, P.; Santos, L.H.M.L.M.; Delerue-Matos, C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC–MS/MS. J. Pharm. Biomed. Anal. 2017, 135, 75–86. [Google Scholar] [CrossRef]
- Mohamadpour, F.; Mohamadpour, F.E.R. Photodegradation of six selected antipsychiatric drugs; carbamazepine, sertraline, amisulpride, amitriptyline, diazepam, and alprazolam in environment: Efficiency, pathway, and mechanism—A review. Sustain. Environ. Res. 2024, 34, 8. [Google Scholar] [CrossRef]
- Ghosh, G.C.; Nakada, N.; Yamashita, N.; Tanaka, H. Occurrence and fate of oseltamivir carboxylate (Tamiflu) and amantadine in sewage treatment plants. Chemosphere 2010, 81, 13–17. [Google Scholar] [CrossRef]
- Azuma, T.; Nakada, N.; Yamashita, N.; Tanaka, H. Mass balance of anti-influenza drugs discharged into the Yodo River system, Japan, under an influenza outbreak. Chemosphere 2013, 93, 1672–1677. [Google Scholar] [CrossRef]
- Azuma, T.; Nakada, N.; Yamashita, N.; Tanaka, H. Optimisation of the analysis of anti-influenza drugs in wastewater and surface water. Int. J. Environ. Anal. Chem. 2014, 94, 853–862. [Google Scholar] [CrossRef]
- Azuma, T.; Ishida, M.; Hisamatsu, K.; Yunoki, A.; Otomo, K.; Kunitou, M.; Shimizu, M.; Hosomaru, K.; Mikata, S.; Mino, Y. Fate of new three anti-influenza drugs and one prodrug in the water environment. Chemosphere 2017, 169, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Simazaki, D.; Kubota, R.; Suzukic, T.; Akiba, M.; Nishimura, T.; Kunikane, S. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Res. 2015, 76, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Vergeynst, L.; Haeck, A.; De Wispelaere, P.; Van Langenhove, H.; Demeestere, K. Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography–magnetic sector mass spectrometry: Method quality assessment and application in a Belgian case study. Chemosphere 2015, 119, S2–S8. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, M.; Borova, V.; Boix, C.; Aalizadeh, R.; Bade, R.; Thomaidis, N.S.; Hernández, F. UHPLC-QTOF MS screening of pharmaceuticals and their metabolitesin treated wastewater samples from Athens. J. Hazard. Mater. 2017, 323, 26–35. [Google Scholar] [CrossRef]
- Peng, Y.; Fang, W.; Krauss, M.; Brack, W.; Wang, Z.; Li, F.; Zhang, X. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): Occurrence, distribution, ecological risk. Environ. Pollut. 2018, 241, 484–493. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, C.; Han, D.; Gong, X.; Zhang, X.; Huang, H.; Jiang, F.; Cui, Y.; Zheng, W.; Tian, X. Analysis of amantadine in Laminaria Japonica and seawater of Daqin Island by ultra high performance liquid chromatography with positive electrospray ionization tandem mass spectrometry. J. Chromatogr. B 2019, 1126–1127, 121697. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Bletsou, A.A.; Damalas, D.E.; Aalizadeh, R.; Alygizakis, N.A.; Singer, H.P.; Hollender, J.; Thomaidis, N.S. Wide-scope target screening of>2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard. Mater. 2020, 387, 121712. [Google Scholar] [CrossRef]
- González-Gaya, B.; Lopez-Herguedas, N.; Santamaria, A.; Mijangos, F.; Etxebarria, N.; Olivares, M.; Prieto, A.; Zuloaga, O. Suspect screening workflow comparison for the analysis of organic xenobiotics in environmental water samples. Chemosphere 2021, 274, 129964. [Google Scholar] [CrossRef]
- Zou, J.; Yao, B.; Yan, S.; Song, W. Determination of trace organic contaminants by a novel mixed-mode online solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry. Environ. Pollut. 2022, 303, 119112. [Google Scholar] [CrossRef]
- Chen, M.; Hong, Y.; Jinc, X.; Guo, C.; Zhao, X.; Liu, N.; Lu, H.; Liu, Y.; Xu, J. Ranking the risks of eighty pharmaceuticals in surface water of amegacity: A multilevel optimization strategy. Sci. Total Environ. 2023, 878, 163184. [Google Scholar] [CrossRef]
- Gómez-Navarro, O.; Labad, F.; Manjarrés-López, D.P.; Pérez, S.; Montemurro, N. HRMS-Targeted-DIA methodology for quantification of wastewater-borne pollutants in surface water. MethodsX 2023, 10, 102093. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Herguedas, N.; Irazola, M.; Alvarez-Mora, I.; Orive, G.; Lertxundi, U.; Olivares, M.; Zuloaga, O.; Prieto, A. Comprehensive micropollutant characterization of wastewater during~COVID-19 crisis in 2020: Suspect screening and environmental risk prioritization strategy. Sci. Total Environ. 2023, 873, 162281. [Google Scholar] [CrossRef] [PubMed]
- Chepchirchir, R.; Mwalimu, R.; Tanui, I.C.; Kiprop, A.; Krauss, M.; Brack, W.; Kandie, F. Occurrence, removal and risk assessment of chemicals of emerging concern in selected rivers and wastewater treatment plants in western Kenya. Sci. Total Environ. 2024, 948, 174982. [Google Scholar] [CrossRef] [PubMed]
- Hailu, K.; Kebede, S.; Birhanu, B.; Lapworth, D. Tracing contaminants of emerging concern in the Awash River basin, Ethiopia. J. Hydrol. Reg. Stud. 2024, 54, 101869. [Google Scholar] [CrossRef]
- Tanui, I.C.; Kandie, F.; Krauss, M.; Piotrowska, A.; Kiprop, A.; Shahid, N.; Liess, M.; Brack, W. Seasonal hot spots of pollution and risks in Western Kenya: Aspatial-temporal analysis of almost 800 organic micropollutants. Sci. Total Environ. 2024, 949, 175036. [Google Scholar] [CrossRef]
- Ng, K.; Alygizakis, N.; Nika, M.-C.; Galan, A.; Oswald, P.; Oswaldova, M.; Čirka, Ľ.; Kunkel, U.; Macherius, A.; Sengl, M.; et al. Wide-scope target screening characterization of legacy and emerging contaminants in the Danube River Basin by liquid and gas chromatography coupled with high-resolution mass spectrometry. Water Res. 2023, 230, 119539. [Google Scholar] [CrossRef]
- Oliveira, T.S.; Murphy, M.; Mendola, N.; Wong, V.; Carlson, D.; Waring, L. Characterization of Pharmaceuticals and Personal Care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS. Sci. Total Environ. 2015, 518–519, 459–478. [Google Scholar] [CrossRef]
- Brieudes, V.; Lardy-Fontan, S.; Vaslin-Reimann, S.; Budzinski, H.; Lalerea, B. Development of a multi-residue method for scrutinizing psychotropiccompounds in natural waters. J. Chromatogr. B 2017, 1047, 160–172. [Google Scholar] [CrossRef]
- Dehm, J.; Singh, S.; Ferreira, M.; Piovano, S.; Fick, J. Screening of pharmaceuticals in coastal waters of the southern coast of Viti Levu in Fiji, South Pacific. Chemosphere 2021, 276, 130161. [Google Scholar] [CrossRef]
- Martínez-Piernas, A.B.; Plaza-Bolaños, P.; Gilabert, A.; Agüera, A. Application of a fast and sensitive method for the determination of contaminants of emerging concern in wastewater using a quick, easy, cheap, effective, rugged and safe-based extraction and liquid chromatography coupled to mass spectrometry. J. Chromatogr. A 2021, 1653, 462396. [Google Scholar] [CrossRef]
- Ugolini, V.; Lai, F.Y. Novel, alternative analytical methodology for determination of antimicrobial chemicals in aquatic environments and public use assessment: Extraction sorbent, microbiological sensitivity, stability, and applicability. Anal. Chim. Acta 2024, 1286, 342029. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yao, H.; Xu, W.; Liu, G.; Wang, X.; Tu, Y.; Shi, P.; Yu, N.; Li, A.; Wei, S. Suspect screening and risk assessment of pollutants in the wastewater from a chemical industry park in China. Environ. Pollut. 2020, 263, 114493. [Google Scholar] [CrossRef] [PubMed]
- Celiz, M.D.; Tso, J.; Aga, D.S. Pharmaceutical metabolites in the environment: Analytical challenges and ecological risks. Critical Review. Environ. Toxicol. Chem. 2009, 28, 2473–2484. [Google Scholar] [CrossRef]
- Verster, J.C.; Koenig, J. Caffeine intake and its sources: A review of national representative studies. Food Sci. Nutr. 2017, 58, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Edwards, Q.A.; Kulikov, S.M.; Garner-O’Neale, L.D. Caffeine in surface and wastewaters in Barbados, West Indies. SpringerPlus 2015, 4, 57. [Google Scholar] [CrossRef]
- Mahoney, C.; Giles, G.; Marriott, B.; Judelson, D.; Glickman, E.; Geiselman, P.; Lieberman, H. Intake of caffeine from all sources and reasons for use by college students. Clin. Nutr. 2019, 38, 668–675. [Google Scholar] [CrossRef]
- Paíga, P.; Ramos, S.; Jorge, S.; Gabriel Silva, J.; Delerue-Matos, C. Monitoring survey of caffeine in surface waters (Lis River) and wastewaters located at Leiria Town in Portugal. Environ. Sci. Pollut. Res. 2019, 26, 33440–33450. [Google Scholar] [CrossRef]
- Buerge, I.J.; Poiger, T.; Muller, M.D.; Buser, H.-R. Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environ. Sci. Technol. 2003, 37, 691–700. [Google Scholar] [CrossRef]
- Paíga, P.; Delerue-Matos, C. Anthropogenic contamination of Portuguese coastal waters during the bathing season: Assessment using caffeine as a chemical marker. Mar. Pollut. Bull. 2017, 120, 355–363. [Google Scholar] [CrossRef]
- Paíga, P.; Santos, L.H.M.L.M.; Amorim, C.; Araújo, A.; Montenegro, M.C.S.M.; Pena, A.; Delerue-Matos, C. Pilot monitoring study of ibuprofen in surface waters of north of Portugal. Environ. Sci. Pollut. Res. 2013, 20, 2410–2420. [Google Scholar] [CrossRef]
- Halwatura, L.M.; Aga, D.S. Broad-range extraction of highly polar to non-polar organic contaminants for inclusive target analysis and suspect screening of environmental samples. Sci. Total Environ. 2023, 893, 164707. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Stravs, M.A.; Hollender, J. How Wastewater Reflects Human Metabolism Suspect Screening of Pharmaceutical Metabolites in Wastewater Influent. Environ. Sci. Technol. Lett. 2024, 58, 9828–9839. [Google Scholar] [CrossRef]
- Manjarrés-López, D.P.; Montemurro, N.; Ulrich, N.; Ebert, R.-U.; Jahnke, A.; Pérez, S. Assessment, distribution, and ecological risk of contaminants of emerging concern in a surface water-sediment-fish system impacted by wastewater. Sci. Total Environ. 2024, 935, 173358. [Google Scholar] [CrossRef] [PubMed]
- Richards, L.A.; Guo, S.; Lapworth, D.J.; White, D.; Civil, W.; Wilson, G.J.L.; Lu, C.; Kumar, A.; Ghosh, A.; Khamis, K.; et al. Emerging organic contaminants in the River Ganga and key tributaries in the middle Gangetic Plain, India: Characterization, distribution & controls. Environ. Pollut. 2023, 327, 121626. [Google Scholar] [PubMed]
- Kümmerer, K. The presence of pharmaceuticals in the environment due to human use—Present knowledge and future challenges. J. Environ. Manag. 2009, 90, 2354–2366. [Google Scholar] [CrossRef]
- Schultz, M.M.; Furlong, E.T.; Kolpin, D.W.; Werner, S.L.; Schoenfuss, H.L.; Barber, L.B.; Vajda, A.M. Anti-depressant pharmaceuticals in two U.S. effluent-impacted streams: Occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environ. Sci. Technol. 2010, 44, 1918–1925. [Google Scholar] [CrossRef]
- van Harten, J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin. Pharmacokinet. 1993, 24, 203–220. [Google Scholar] [CrossRef]
- Vasskog, T.; Berger, U.; Samuelsen, P.J.; Kallenborn, R.; Jensen, E. Selective serotonin reuptake inhibitors in sewage influents and effluents from Tromsø, Norway. J. Chromatogr. A 2006, 1115, 187–195. [Google Scholar] [CrossRef]
- Gros, M.; Petrović, M.; Barceló, D. Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 2006, 70, 678–690. [Google Scholar] [CrossRef]
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef]
- Gros, M.; Rodríguez-Mozaz, S.; Barceló, D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J. Chromatogr. A 2012, 1248, 104–121. [Google Scholar] [PubMed]
- Jelic, A.; Gros, M.; Ginebreda, A.; Cespedes-Sánchez, R.; Ventura, F.; Petrovic, M.; Barcelo, D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 2011, 45, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.M. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2017, 197, 19–31. [Google Scholar] [CrossRef] [PubMed]
Compounds | Concentration (ng/L) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AO1 | AO2 | AO3 | AO4 | AO5 | S1 | S2 | S3 | S4 | S5 | R1 | R2 | R3 | R4 | R5 | E1 | E2 | E3 | E4 | E5 | I1 | I2 | I3 | I4 | I5 | |
Carbamazepine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 52.0 | 20.5 | 48.5 | 26.7 | 108 | 11.4 | 17.6 | 19.0 | 150 | 1347 | 1005 | 599 | 318 | 446 | 1144 | 565 | 220 | 372 | 497 |
RSD (%) | 5.38 | 1.34 | 1.21 | 1.87 | 3.30 | 4.91 | 1.43 | 4.06 | 0.898 | 7.36 | 0.0341 | 1.55 | 1.32 | 2.98 | 0.618 | 2.91 | 2.34 | 6.12 | 9.41 | ||||||
Citalopram N-oxide | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Citalopram propionic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 35.1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | <MDL | 46.7 |
RSD (%) | 3.58 | 13.2 | |||||||||||||||||||||||
Citalopram | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | 38.6 | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | n.d. | n.d. | n.d. |
RSD (%) | 5.39 | ||||||||||||||||||||||||
Desmethylcitalopram | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | n.d. | 38.0 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | 0.729 | ||||||||||||||||||||||||
O-Desmethylvenlafaxine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 35.5 | n.d. | n.d. | n.d. | 381 | 44.9 | 20.6 | 21.2 | 203 | 5227 | 4143 | 3583 | 1850 | 2938 | 4027 | 1949 | 821 | 1506 | 2609 |
RSD (%) | 1.27 | 11.3 | 11.1 | 1.13 | 2.78 | 1.50 | 3.04 | 6.94 | 5.41 | 8.66 | 12.4 | 0.174 | 3.05 | 6.50 | 18.2 | 2.32 | |||||||||
Diazepam | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 20.6 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | 1.05 | ||||||||||||||||||||||||
Didemethylcitalopram | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
10,11-Epoxycarbamazepine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 25.7 | n.d. | n.d. | n.d. | n.d. | n.d. | 68.4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | 10.2 | 1.23 | |||||||||||||||||||||||
Fluoxetine | 5.62 | 15.7 | 5.55 | 5.35 | 5.67 | 5.64 | 5.60 | 5.63 | 6.02 | 5.77 | 5.82 | 5.54 | 5.79 | 6.16 | 8.06 | 17.1 | 14.3 | 60.3 | 20.2 | 14.2 | 58.5 | 99.0 | 28.9 | 29.6 | 29.7 |
RSD (%) | 0.203 | 9.65 | 2.76 | 6.12 | 0.604 | 0.723 | 1.72 | 1.16 | 3.09 | 4.86 | 3.42 | 9.40 | 3.89 | 5.00 | 1.86 | 4.22 | 10.1 | 12.1 | 3.52 | 10.5 | 12.2 | 1.91 | 0.206 | 1.58 | 2.12 |
Norfluoxetine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Paroxetine | n.d. | <MDL | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Sertraline | n.d. | 4.28 | <MDL | n.d. | 6.41 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 27.4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | 11.67 | 3.73 | 18.6 | ||||||||||||||||||||||
Trazodone | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | <MDL | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | <MDL | 92.9 | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL | <MDL |
RSD (%) | 9.0 | ||||||||||||||||||||||||
Venlafaxine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 10.9 | n.d. | n.d. | n.d. | 70.4 | 26.9 | 22.1 | 24.0 | 65.1 | 862 | 665 | 513 | 393 | 506 | 773 | 460 | 87.5 | 330 | 481 |
RSD (%) | 4.90 | 4.18 | 2.48 | 9.19 | 0.949 | 1.58 | 10.4 | 2.66 | 1.76 | 3.56 | 7.78 | 0.501 | 1.84 | 5.39 | 7.68 | 4.17 | |||||||||
Amantadine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 9.75 | n.d. | n.d. | n.d. | n.d. | 149 | 95.9 | 97.5 | 109 | 49.0 | 55.4 | n.d. | n.d. | n.d. | 206 |
RSD (%) | 8.82 | 11.7 | 2.49 | 4.97 | 1.68 | 17.2 | 15.1 | 16.9 | |||||||||||||||||
Apormorphine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Benserazide | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Carbidopa | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Donepezil | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Entacapone | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 37.1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | 0.944 | ||||||||||||||||||||||||
Galantamine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Pramipexole | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Rasagiline | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Rivastigmine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 37.0 | 22.8 | 9.68 | 2.79 | 14.6 | n.d. | n.d. | n.d. | n.d. | 15.0 |
RSD (%) | 7.14 | 6.67 | 17.5 | 23.3 | 2.44 | 1.79 | |||||||||||||||||||
Ropinirole | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | n.d. |
RSD (%) | |||||||||||||||||||||||||
Rotigotine | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Safinamide | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Selegiline | <MDL | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | <MDL | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
RSD (%) | |||||||||||||||||||||||||
Caffeine | 72.3 | 44.8 | 29.8 | 85.7 | 34.3 | n.d. | 33.2 | 31.5 | 86.3 | 33.2 | 630 | 121 | 31.6 | 122 | 213 | 12,018 | 9164 | 318 | 130 | 76,991 | 9802 | 57,640 | 38,001 | 448 | 536 |
RSD (%) | 8.38 | 6.48 | 15.1 | 6.44 | 5.83 | 0.479 | 4.64 | 1.72 | 16.4 | 14.5 | 6.23 | 13.2 | 1.91 | 6.36 | 6.21 | 0.0249 | 2.12 | 1.49 | 4.90 | 3.37 | 7.91 | 7.70 | 17.0 | 0.638 |
Compound | Concentration (ng/L) (Note: INA, Information Not Available) | |||||||
---|---|---|---|---|---|---|---|---|
Hospital Effluent | WWTP Influent | WWTP Effluent | River | Ocean | Estuary | Groundwater | Drinking Water | |
Amantadine | n.d.−580 [32,34,37,41,46,47,50,56] | n.d.−19,800 [32,33,34,35,37,38,41,42,43,46,47,50,56,65,67] | nd.−1084 [33,34,35,39,42,43,44,47,48,49,50,56,67,68] | 1.99–2.45 [40] | n.d. [42] | n.d.−82 [43,50] | n.d.−21 [36,48] | |
Benserazide | n.d. [50] | n.d. [50] | 1.80–30.2 [50] | n.d. [50] | ||||
Donepesil | n.d.−50 [51] | n.d. [51] | n.d. [51,54] | n.d. [52] | 9.7–180 [53] | |||
Entacapone | n.d. [55] | n.d. [55] | n.d. [55] | n.d. [55] | ||||
Galantamine | n.d. [50] | n.d. [50] | n.d. [50,52] | n.d. [50] | ||||
Rivastigmine | INA−n.d. [50,56] | INA−n.d. [50,56] | INA−<LOQ-0.79 [50,52,56] | n.d. [50] | ||||
Ropinirole | n.d.−6 [42,46,50] | n.d−29 [42,46,50] | n.d. [42,50] | n.d. [42,50] | ||||
Caffeine | 45,740–325,000 [51] | n.d.−830,659 [41,46,47,50,51,65] | n.d.−170,889 [41,42,46,47,50,51,67] | n.d.−666 [39,42,47,49,50,67,68] | 28 [42] | 0.39–3.80 [50] | ||
Carbamazepine | 20–620 [51] | n.d.−1610 [37,41,46,47,50,51,65] | n.d.−1700 [37,38,41,42,43,46,47,50,51,54] | n.d.−210 [39,42,43,47,48,49,50,52,68] | 1.2–8.9 [53] | n.d. [42] | 0.10–170 [43,50] | n.d.−10 [36,48] |
Citalopram | n.d.−700 [41,50,65] | n.d.−235 [38,41,50,54,67] | n.d.−180 [44,49,50,52,67,68] | 7.0–85 [53] | n.d. [50] | |||
Ctalopram N-oxide | n.d.−13.0 [50] | n.d.−5.10 [50] | n.d. [50] | n.d. [50] | ||||
Desmethylcitalopram | 30–210 [51] | n.d.−40 [50,51] | n.d.−121 [50,51,67] | n.d.−93.1 [50,52,67] | n.d. [50] | |||
O-Desmethylvenlafaxine | 620–2500 [51] | n.d.−1480 [41,47,50,51] | n.d.−2758 [41,47,50,51,67] | n.d.−2077 [44,47,49,50,52,67] | n.d. [50] | |||
Diazepam | n.d.−20 [41,46,50] | n.d.−11.6 [41,42,46,50,54,67] | n.d.−100 [39,42,50,67,68] | n.d. [42] | n.d. [50] | |||
10,11-Epoxycarbamazepine | 40–100 [51] | 1.40–70 [41,50,51] | 2–60 [41,50,51] | n.d. [50] | <LOQ−1.40 [50] | |||
Fluoxetine | 20–230 [51] | 6.10–100 [41,50,51] | n.d.−130 [41,50,51] | n.d.−0.84 [44,49,50,52,54,68] | n.d. [53] | n.d. [50] | ||
Norfluoxetine | n.d.−30 [51] | n.d. [50,51] | n.d. [50,51] | n.d. [50,52] | n.d. [50] | |||
Paroxetine | n.d.−380 [51] | n.d. [37,46,50,51] | n.d.−<MQL [37,42,46,50,51,54] | n.d.−0.04 [39,42,44,50,52,68] | 11–370 [53] | n.d. [46] | ||
Sertraline | 20–150 [51] | 0.53–140 [41,46,50,51] | n.d.−80 [41,42,46,50,51] | n.d.−1.12 [39,41,42,44,49,50,52,68] | 12–140 [53] | n.d. [42] | ||
Trazodone | 30–1160 [50] | n.d.−80 [50,51] | n.d.−58 [50,51,54] | n.d.−0.08 [44,50] | ||||
Venlafaxine | 170–660 [51] | n.d.−1450 [37,41,50,51,65] | 0.21–1000 [37,38,41,43,50,51,54,67] | n.d.−20 [43,44,50,52,68] | 5.7–758 [53,67] | 0.21–1000 [37,38,41,43,50,51,54,67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paíga, P.; Delerue-Matos, C. Tracing Pharmaceuticals in Water Systems: Focus on Neurodegenerative and Psychiatric Treatments. J. Xenobiot. 2024, 14, 1807-1825. https://doi.org/10.3390/jox14040096
Paíga P, Delerue-Matos C. Tracing Pharmaceuticals in Water Systems: Focus on Neurodegenerative and Psychiatric Treatments. Journal of Xenobiotics. 2024; 14(4):1807-1825. https://doi.org/10.3390/jox14040096
Chicago/Turabian StylePaíga, Paula, and Cristina Delerue-Matos. 2024. "Tracing Pharmaceuticals in Water Systems: Focus on Neurodegenerative and Psychiatric Treatments" Journal of Xenobiotics 14, no. 4: 1807-1825. https://doi.org/10.3390/jox14040096
APA StylePaíga, P., & Delerue-Matos, C. (2024). Tracing Pharmaceuticals in Water Systems: Focus on Neurodegenerative and Psychiatric Treatments. Journal of Xenobiotics, 14(4), 1807-1825. https://doi.org/10.3390/jox14040096