Toxicity of Crude Oil Wastewater Treated with Nano-ZnO as a Photocatalyst on Labeo rohita: A Biochemical and Physiological Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Water-Soluble Fraction of Crude Oil (WSFO)
2.2. Treatment of WSFO
2.2.1. Treatment with Gravity Separation Method
2.2.2. Treatment with Nano-ZnO as Photocatalyst
2.3. Analysis of Oil Concentration in Water
2.4. Fish
2.5. Experimental Design
2.6. Blood Biochemical Parameters
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arrigo, F.; De Marchi, L.; Meucci, V.; Piccione, G.; Soares, A.M.; Faggio, C.; Freitas, R. Mytilus galloprovincialis: A valuable bioindicator species for understanding the effects of diclofenac under warming conditions. Sci. Total Environ. 2024, 946, 173809. [Google Scholar] [CrossRef]
- Banaee, M.; Beitsayah, A.; Zeidi, A.; Haghi, B.N.; Piccione, G.; Faggio, C.; Multisanti, C.R.; Impellitteri, F. Toxicity of cigarette butts (CBs) leachate on Nile tilapia (Oreochromis niloticus): Blood biochemical parameters, oxidative stress biomarkers, and metabolic profile. Ecotoxicol. Environ. Saf. 2024, 279, 116514. [Google Scholar] [CrossRef]
- Banaee, M.; Multisanti, C.R.; Impellitteri, F.; Piccione, G.; Faggio, C. Environmental toxicology of microplastic particles on fish: A review. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2025, 287, 110042. [Google Scholar] [CrossRef]
- Chandrasekaran, T.S.; Milton, J.; Santhanabharathi, B.; Pradhoshini, K.P.; Cojandaraj, L.; Priyadharshini, M.; Ahmed, M.S.; Musthafa, M.S.; Balaji, P.; Faggio, C. Heavy metals toxicity in edible bivalves and risk exposure to humans through its consumption from Adyar Estuary, Tamilnadu, India–A baseline study. Reg. Stud. Mar. Sci. 2024, 79, 103854. [Google Scholar] [CrossRef]
- Darvishi, Y.; Pourkhabbaz, H.; Pastorino, P.; Esposito, G.; Banaee, M.; Faggio, C. Bioaccumulation Patterns of Trace Elements in Jellyfish (Crambionella orsini and Cassiopea andromeda) from Northwestern Coastal Waters of the Persian Gulf. J. Mar. Sci. Eng. 2024, 12, 1938. [Google Scholar] [CrossRef]
- Ejaz, A.; Ullah, S.; Ijaz, S.; Bilal, M.; Banaee, M.; Mosotto, C.; Faggio, C. Bioaccumulation and Health Risk Assessment of Heavy Metals in Labeo rohita and Mystus seenghala from Jhelum River, Punjab, Pakistan. Water 2024, 16, 2994. [Google Scholar] [CrossRef]
- Martyniuk, V.; Matskiv, T.; Yunko, K.; Khoma, V.; Gnatyshyna, L.; Faggio, C.; Stoliar, O. Reductive stress and cytotoxicity in the swollen river mussel (Unio tumidus) exposed to microplastics and salinomycin. Environ. Pollut. 2024, 350, 123724. [Google Scholar] [CrossRef]
- Bado-Nilles, A.; Quentel, C.; Thomas-Guyon, H.; Le Floch, S. Effects of two oils and 16 pure polycyclic aromatic hydrocarbons on plasmatic immune parameters in the European sea bass, Dicentrarchus labrax (Linné). Toxicol. Vitr. 2009, 23, 235–241. [Google Scholar] [CrossRef]
- Dalvand, N.; Sobhanardakani, S.; Kiani Sadr, M.; Cheraghi, M.; Lorestani, B. Concentrations, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in household dust samples, the case of city of Khorramabad, Iran. Polycycl. Aromat. Compd. 2024, 44, 3043–3060. [Google Scholar] [CrossRef]
- Keshavarzifard, M.; Moore, F.; Keshavarzi, B.; Sharifi, R. Distribution, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in intertidal sediment of Asaluyeh, Persian Gulf. Environ. Geochem. Health 2018, 40, 721–735. [Google Scholar] [CrossRef]
- Mehr, M.R.; Keshavarzi, B.; Moore, F.; Fooladivanda, S.; Sorooshian, A.; Biester, H. Spatial distribution, environmental risk and sources of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in surface sediments-northwest of Persian Gulf. Cont. Shelf Res. 2020, 193, 104036. [Google Scholar] [CrossRef]
- Sayed, A.E.-D.H.; Khalil, N.S.A.; Alghriany, A.A.; Abdel-Ghaffar, S.K.; Hussein, A.A. Prefeeding of Clarias gariepinus with Spirulina platensis counteracts petroleum hydrocarbons-induced hepato-and nephrotoxicity. Sci. Rep. 2024, 14, 7219. [Google Scholar] [CrossRef]
- Sharifi, R.; Keshavarzifard, M.; Sharifinia, M.; Zakaria, M.P.; Mehr, M.R.; Abbasi, S.; Yap, C.K.; Yousefi, M.R.; Masood, N.; Magam, S.M. Source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the coastal ecosystem of the Brunei Bay, Brunei. Mar. Pollut. Bull. 2022, 181, 113913. [Google Scholar] [CrossRef]
- Zheng, R.; Fang, C.; Hong, F.; Zhang, M.; Gao, F.; Zhang, Y.; Bo, J. An innovative classification system for ranking the biological effects of marine aromatic hydrocarbons based on fish embryotoxicity. Acta Oceanol. Sin. 2024, 43, 153–162. [Google Scholar] [CrossRef]
- Baig, U.; Al-Kuhaili, M.; Dastageer, M. Remediation of crude oil contaminated oily wastewater using nanostructured ZnO-decorated ceramic membrane: Membrane fouling and their mitigation using photo-catalytic self-cleaning process. Desalination 2025, 597, 118333. [Google Scholar] [CrossRef]
- Hassanshahian, M.; Amirinejad, N.; Askarinejad Behzadi, M. Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study. J. Environ. Health Sci. Eng. 2020, 18, 1415–1435. [Google Scholar] [CrossRef] [PubMed]
- Kharey, G.S.; Palace, V.; Whyte, L.; Greer, C.W. Influence of heavy Canadian crude oil on pristine freshwater boreal lake ecosystems in an experimental oil spill. FEMS Microbiol. Ecol. 2024, 100, fiae054. [Google Scholar] [CrossRef]
- Odesa, G.E.; Olannye, D.U. Health risk assessment of PAHs and heavy metal levels in periwinkles (Pachymelania fusca mutans) and crabs (Scylla serrata) consumed in crude oil-contaminated coastal regions of Southern Nigeria. Toxicol. Rep. 2025, 14, 101852. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, X.; Xu, Z.; Chen, S.; Xiong, D. Water-accommodated fractions of crude oil and its mixture with chemical dispersant impairs oxidase stress and energy metabolism disorders in Oryzias melastigma embryos. Chemosphere 2024, 363, 142912. [Google Scholar] [CrossRef] [PubMed]
- Huiping, Y. Immunological assays of hemocytes in molluscan bivalves as biomarkers to evaluate stresses for aquaculture. Proc. 47th UJNR Bull. Jpn. Fish. Res. Educ. Agency 2021, 50, 31–45. [Google Scholar]
- Masood, N.; Halimoon, N.; Aris, A.Z.; Zakaria, M.P.; Vaezzadeh, V.; Magam, S.M.; Mustafa, S.; Ali, M.M.; Keshavarzifard, M.; Alkhadher, S.A.A. Seasonal variability of anthropogenic indices of PAHs in sediment from the Kuala Selangor River, west coast Peninsular Malaysia. Environ. Geochem. Health 2018, 40, 2551–2572. [Google Scholar] [CrossRef] [PubMed]
- Azwar, E.; Mahari, W.A.W.; Liew, R.K.; Ramlee, M.Z.; Verma, M.; Chong, W.W.F.; Peng, W.; Ng, H.S.; Naushad, M.; Sonne, C. Remediation and recovery of Kariba weed as emerging contaminant in freshwater and shellfish aquaculture system via solvothermal liquefaction. Sci. Total Environ. 2023, 876, 162673. [Google Scholar] [CrossRef] [PubMed]
- Sadauskas-Henrique, H.; Braz-Mota, S.; Campos, D.F.; dos Santos Barroso, H.; Kochhann, D.; Val, A.L.; de Almeida-Val, V.M.F. Oil spill in an amazon blackwater environment: Biochemical and physiological responses of local fish species. Environ. Res. 2024, 250, 118347. [Google Scholar] [CrossRef] [PubMed]
- Xin, Q.; Saborimanesh, N.; Ridenour, C.; Farooqi, H. Fate, behaviour and microbial response of diluted bitumen and conventional crude spills in a simulated warm freshwater environment. Environ. Pollut. 2024, 343, 123224. [Google Scholar] [CrossRef] [PubMed]
- Yaghmour, F.; Samara, F.; El Sayed, Y.; Mohammed, A.; Maio, E.; Philip, S.; Budd, J.; Els, J. Investigating heavy metal concentrations in sea snakes (Elapidae: Hydrophiinae) as an outcome of oil spill exposure. Heliyon 2024, 10, e35954. [Google Scholar] [CrossRef]
- Turner, N.R.; Parkerton, T.F.; Renegar, D.A. Toxicity of two representative petroleum hydrocarbons, toluene and phenanthrene, to five Atlantic coral species. Mar. Pollut. Bull. 2021, 169, 112560. [Google Scholar] [CrossRef]
- Nwizugbo, K.C.; Ogwu, M.C.; Eriyamremu, G.E.; Ahana, C.M. Alterations in energy metabolism, total protein, uric and nucleic acids in African sharptooth catfish (Clarias gariepinus Burchell) exposed to crude oil and fractions. Chemosphere 2023, 316, 137778. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Cui, X.; Luo, X.; Ma, Q.; Wei, Y.; Liang, M.; Xu, H. Exposure of farmed fish to petroleum hydrocarbon pollution and the recovery process: A simulation experiment with tiger puffer Takifugu rubripes. Sci. Total Environ. 2024, 913, 169743. [Google Scholar] [CrossRef] [PubMed]
- Jamebozorgi, F.H.; Abtahi, B.; Sharifpour, I.; Seyfabadi, J.; Rahmatabadi, Z.T.; Nazemroaya, S.; Lari, E. The effects of the water-soluble fractions of crude oil on liver and kidney tissues of Caspian Kutum juveniles, Rutilus frisii. Mar. Pollut. Bull. 2023, 189, 114675. [Google Scholar] [CrossRef] [PubMed]
- Alsharyani, A.K.; Muruganandam, L. Fabrication of zinc oxide nanorods for photocatalytic degradation of docosane, a petroleum pollutant, under solar light simulator. RSC Adv. 2024, 14, 9038–9049. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, Y.; Mansouri, M.; Pourafshary, P. Enhanced oil recovery by using modified ZnO nanocomposites in sandstone oil reservoirs. Sci. Rep. 2024, 14, 2766. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wen, Y.; Li, F.; Tang, C.; Yang, Y.; Wang, S.; Wang, Z. A novel approach for oil/water separation: Integrating nano-ZnO with graphene oxide membranes via dopamine and KH550. Surf. Interfaces 2024, 51, 104727. [Google Scholar] [CrossRef]
- Hamidi, S.; Banaee, M.; Pourkhabbaz, H.R.; Sureda, A.; Khodadoust, S.; Pourkhabbaz, A.R. Effect of petroleum wastewater treated with gravity separation and magnetite nanoparticles adsorption methods on the blood biochemical response of mrigal fish (Cirrhinus cirrhosus). Environ. Sci. Pollut. Res. 2022, 29, 3718–3732. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, Y.; Nosaka, A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef] [PubMed]
- Kuang, C.; Li, Y.; Liu, D.; Li, Y.; Sun, D.; Chen, J.; Ding, D.; Xiao, G. An Al2O3@ ZnO membrane for oil-in-water emulsion separation with photocatalytic regeneration prepared via a simple deposition route. J. Water Process Eng. 2024, 67, 106254. [Google Scholar] [CrossRef]
- Shaba, E.Y.; Tijani, J.O.; Jacob, J.O.; Suleiman, M.A.T. Simultaneous removal of Cu (II) and Cr (VI) ions from petroleum refinery wastewater using ZnO/Fe3O4 nanocomposite. J. Environ. Sci. Health Part A 2022, 57, 1146–1167. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, H.; Baig, M.K.; Yahya, N.; Khodapanah, L.; Sabet, M.; Demiral, B.M.; Burda, M. Synthesis of ZnO nanoparticles for oil–water interfacial tension reduction in enhanced oil recovery. Appl. Phys. A 2018, 124, 128. [Google Scholar] [CrossRef]
- Ehmedan, S.S.; Ibrahim, M.K.; Azzam, A.M.; Hamedo, H.A.; Saeed, A.M. Acceleration the bacterial biodegradation of crude oil pollution using Fe2O3 and ZnO nanoparticles. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100613. [Google Scholar] [CrossRef]
- Yashni, G.; Al-Gheethi, A.; Mohamed, R.; Hossain, M.S.; Kamil, A.F.; Abirama Shanmugan, V. Photocatalysis of xenobiotic organic compounds in greywater using zinc oxide nanoparticles: A critical review. Water Environ. J. 2021, 35, 190–217. [Google Scholar] [CrossRef]
- Yashni, G.; Al-Gheethi, A.; Mohamed, R.M.S.R.; Dai-Viet, N.V.; Al-Kahtani, A.A.; Al-Sahari, M.; Hazhar, N.J.N.; Noman, E.; Alkhadher, S. Bio-inspired ZnO NPs synthesized from Citrus sinensis peels extract for Congo red removal from textile wastewater via photocatalysis: Optimization, mechanisms, techno-economic analysis. Chemosphere 2021, 281, 130661. [Google Scholar] [CrossRef]
- Banaee, M.; Di Paola, D.; Cuzzocrea, S.; Cordaro, M.; Faggio, C. Biomarkers in aquatic ecotoxicology: Understanding the effects of xenobiotics on the health of aquatic organisms. In Biochemical and Physiological Response During Oxidative Stress—From Invertebrates to Vertebrates; Cordaro, M., Fusco, R., Di Paola, R., Eds.; InTech: London, UK, 2024. [Google Scholar]
- Gao, Y.; Li, Z.; Han, G.; Qiang, L.; Sun, Y.; Tan, R.; Yu, Y. Effects of the water-soluble fraction of diesel oil on the sera biochemical indicators, histological changes, and immune responses of black rockfish Sebastes schlegelii. Mar. Environ. Res. 2023, 187, 105953. [Google Scholar] [CrossRef] [PubMed]
- Machanlou, M.; Ziaei-Nejad, S.; Johari, S.A.; Banaee, M. Study on the hematological toxicity of Cyprinus carpio exposed to water-soluble fraction of crude oil and TiO2 nanoparticles in the dark and ultraviolet. Chemosphere 2023, 343, 140272. [Google Scholar] [CrossRef] [PubMed]
- Orso, G.; Imperatore, R.; Coccia, E.; Rinaldi, G.; Cicchella, D.; Paolucci, M. A Deep Survey of Fish Health for the Recognition of Useful Biomarkers to Monitor Water Pollution. Environments 2023, 10, 219. [Google Scholar] [CrossRef]
- Witeska, M.; Kondera, E.; Bojarski, B. Hematological and hematopoietic analysis in fish toxicology—A review. Animals 2023, 13, 2625. [Google Scholar] [CrossRef]
- Fuller, C.; Bonner, J.; Page, C.; Ernest, A.; McDonald, T.; McDonald, S. Comparative toxicity of oil, dispersant, and oil plus dispersant to several marine species. Environ. Toxicol. Chem. Int. J. 2004, 23, 2941–2949. [Google Scholar] [CrossRef] [PubMed]
- Dussauze, M.; Pichavant-Rafini, K.; Le Floch, S.; Lemaire, P.; Theron, M. Acute toxicity of chemically and mechanically dispersed crude oil to juvenile sea bass (Dicentrarchus labrax): Absence of synergistic effects between oil and dispersants. Environ. Toxicol. Chem. 2015, 34, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Greer, C.D.; Hodson, P.V.; Li, Z.; King, T.; Lee, K. Toxicity of crude oil chemically dispersed in a wave tank to embryos of Atlantic herring (Clupea harengus). Environ. Toxicol. Chem. 2012, 31, 1324–1333. [Google Scholar] [CrossRef] [PubMed]
- Greer, J.B.; Pasparakis, C.; Stieglitz, J.D.; Benetti, D.; Grosell, M.; Schlenk, D. Effects of corexit 9500A and Corexit-crude oil mixtures on transcriptomic pathways and developmental toxicity in early life stage mahi-mahi (Coryphaena hippurus). Aquat. Toxicol. 2019, 212, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Sweezey, M.; Hodson, P.V. Oil and oil dispersant do not cause synergistic toxicity to fish embryos. Environ. Toxicol. Chem. 2014, 33, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Gissi, F.; Strzelecki, J.; Binet, M.T.; Golding, L.A.; Adams, M.S.; Elsdon, T.S.; Robertson, T.; Hook, S.E. A comparison of short-term and continuous exposures in toxicity tests of produced waters, condensate, and crude oil to marine invertebrates and fish. Environ. Toxicol. Chem. 2021, 40, 2587–2600. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Blount, J.R.; Haimbaugh, A.; Heldman, S.; Shields, J.N.; Baker, T.R. Evaluating phenotypic and transcriptomic responses induced by low-level VOCs in Zebrafish: Benzene as an example. Toxics 2022, 10, 351. [Google Scholar] [CrossRef]
- Philibert, D.A.; Lyons, D.; Philibert, C.; Tierney, K.B. Field-collected crude oil, weathered oil and dispersants differentially affect the early life stages of freshwater and saltwater fishes. Sci. Total Environ. 2019, 647, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Khursigara, A.J.; Johansen, J.L.; Esbaugh, A.J. The effects of acute crude oil exposure on growth and competition in red drum, Sciaenops ocellatus. Sci. Total Environ. 2021, 751, 141804. [Google Scholar] [CrossRef] [PubMed]
- Leggieri, L.R.; De Anna, J.S.; Cárcamo, J.G.; Cerón, G.A.; Darraz, L.A.; Panebianco, A.; Luquet, C.M. Gills CYP1A of Oncorhynchus mykiss as a sensitive biomarker of crude oil pollution in freshwater environments. Environ. Toxicol. Pharmacol. 2019, 67, 61–65. [Google Scholar] [CrossRef]
- Banaee, M.; Sureda, A.; Faggio, C. Protective effect of protexin concentrate in reducing the toxicity of chlorpyrifos in common carp (Cyprinus carpio). Environ. Toxicol. Pharmacol. 2022, 94, 103918. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Pandey, J. Alkaline phosphatase as a bio-indicator of phosphorus-eutrophy in freshwater ecosystems: A review. Int. J. Sediment Res. 2023, 38, 349–360. [Google Scholar] [CrossRef]
- Banaee, M. Alkaline phosphatase activity as a biochemical biomarker in aqua-toxicological studies. Int. J. Aquat. Biol. 2020, 8, 143–147. [Google Scholar]
- Keramati, M.; Ayati, B. Petroleum wastewater treatment using a combination of electrocoagulation and photocatalytic process with immobilized ZnO nanoparticles on concrete surface. Process Saf. Environ. Prot. 2019, 126, 356–365. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Dalanta, F.; Aryanti, N.; Othman, N.H. Intensifying separation and antifouling performance of PSf membrane incorporated by GO and ZnO nanoparticles for petroleum refinery wastewater treatment. J. Water Process Eng. 2021, 41, 102030. [Google Scholar] [CrossRef]
- Olivares-Rubio, H.F.; Espinosa-Aguirre, J.J. Acetylcholinesterase activity in fish species exposed to crude oil hydrocarbons: A review and new perspectives. Chemosphere 2021, 264, 128401. [Google Scholar] [CrossRef] [PubMed]
- Sheinenzon, A.; Shehadeh, M.; Michelis, R.; Shaoul, E.; Ronen, O. Serum albumin levels and inflammation. Int. J. Biol. Macromol. 2021, 184, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Khoshbavar Rostam, H.A.; Soltani, M. The effect of chronic crude oil exposure on some hematological and biochemical parameters of juvenile Beluga (Huso huso Linnaeus, 1758). Int. J. Aquat. Sci. 2016, 7, 73–86. [Google Scholar]
- Otitoloju, A.; Olagoke, O. Lipid peroxidation and antioxidant defense enzymes in Clarias gariepinus as useful biomarkers for monitoring exposure to polycyclic aromatic hydrocarbons. Environ. Monit. Assess. 2011, 182, 205–213. [Google Scholar] [CrossRef] [PubMed]
- George-Opuda, I.; Etuk, E.; Elechi-Amadi, K.; Okolonkwo, B.; Adegoke, O.; Ohaka, T.; Elekima, I. Vitamin C Supplementation Lowered Atherogenic Lipid Parameters among Oil and Gas Workers Occupationally Exposed to Petroleum Fumes in Port Harcourt, Rivers State, Nigeria. J. Adv. Med. Pharm. Sci. 2024, 26, 45–52. [Google Scholar] [CrossRef]
- Khoshbavar Rostami, H.; Soltani, M. Effects of acute crude oil exposure on basic physiological functions of Persian sturgeon, Acipenser persicus. Casp. J. Environ. Sci. 2016, 14, 43–53. [Google Scholar]
- Sahabuddin, E.S.; Noreen, A.; Daabo, H.M.A.; Kandeel, M.; Saleh, M.M.; Al-Qaim, Z.H.; Jawad, M.A.; Sivaraman, R.; Fenjan, M.N.; Mustafa, Y.F. Microplastic and oil pollutant agglomerates synergistically intensify toxicity in the marine fish, Asian seabass, Lates calcalifer. Environ. Toxicol. Pharmacol. 2023, 98, 104059. [Google Scholar] [CrossRef]
- Nayak, S.; Dash, S.N.; Pati, S.S.; Priyadarshini, P.; Patnaik, L. Lipid peroxidation and antioxidant levels in Anabas testudineus (Bloch) under naphthalene (PAH) stress. Aquac. Res. 2021, 52, 5739–5749. [Google Scholar] [CrossRef]
- Bettim, F.L.; Galvan, G.L.; Cestari, M.M.; Yamamoto, C.I.; de Assis, H.C.S. Biochemical responses in freshwater fish after exposure to water-soluble fraction of gasoline. Chemosphere 2016, 144, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.H.; EL-Leithy, E.M.; Ghandour, R.A.; Galal, M.K. Molecular, biochemical and histopathological studies on the ameliorative effect of vitamin C on the renal and muscle tissues of Nile tilapia fish (Oreochromis niloticus) affected by the usage of engine oil. Aquac. Res. 2019, 50, 3357–3368. [Google Scholar] [CrossRef]
Property | Typical Value | Unit | Property | Typical Value | Unit |
---|---|---|---|---|---|
API Gravity | 33.5–34.0 | degrees API | Nickel (Ni) | ~2.0 | ppm |
Specific Gravity | 0.849–0.850 | - | Vanadium (V) | ~4.5 | ppm |
Sulfur Content | 1.18–1.22 | % by weight | Conradson Carbon Residue (CCR) | ~1.5 | % by weight |
Pour Point | −21 to −24 | °C | Distillation Range | 50–650+ | °C |
Flash Point | 18–22 | °C | Light Ends (C1–C4) | ~20 | % |
Kinematic Viscosity (at 20 °C) | 4.8–5.5 | cSt | Middle Distillates (C5–C16) | ~55–60 | % |
Total Acid Number (TAN) | 0.05–0.10 | mg KOH/g | Residual Fraction (C17+) | ~20–25 | % |
Paraffin Content | ~18–22 | % | Hydrogen Content | ~13.5 | % |
Wax Content | ~10 | % | Nitrogen Content | ~0.06 | % |
Asphaltenes Content | ~1.2 | % by weight | Boiling Point Range | ~30–620+ | °C |
Characterization | |
---|---|
CAS | 1314-13-2 |
Stock No. | ZNP403 |
Molecular formula | ZnO |
Molecular weight | 81.38 (g/mol) |
Form | Powder |
Color | White |
Morphology | Irregular (ZNP403) |
Crystal structure | Hexagonal wurtzite |
Size range | 50–100 (nm) |
Total impurity | 99 (%) |
Density (g/cm3) | 5.606 |
Solubility | Insoluble |
Control | 5% WSFO Untreated | 10% WSFO Untreated | 5% WSFO Treated with Nano-ZnO | 10% WSFO Treated with Nano-ZnO | 5% WSFO Treated Without Nano-ZnO | 10% WSFO Treated Without Nano-ZnO | |
---|---|---|---|---|---|---|---|
CPK (U/L) | 161.5 ± 20.2 a | ND | ND | 249.3 ± 58.1 bc | 213.6 ± 17.4 ab | 324.0 ± 60.9 d | 305.9 ± 79.2 cd |
ALP (U/L) | 42.1 ± 3.3 a | ND | ND | 63.1 ± 11.5 c | 57.7 ± 5.8 bc | 60.3 ± 3.6 bc | 53.7 ± 5.8 b |
AST (U/L) | 97.7 ± 5.8 a | ND | ND | 137.7 ± 24.6 ab | 170.3 ± 35.2 b | 142.7 ± 37.1 ab | 254.2 ± 105.6 c |
ALT (U/L) | 34.4 ± 13.7 c | ND | ND | 11.9 ± 1.7 b | 5.3 ± 0.6 ab | 5.7 ± 1.9 ab | 2.9 ± 1.2 a |
LDH (U/L) | 155.8 ± 25.9 a | ND | ND | 340.0 ± 81.9 bc | 265.8 ± 55.7 b | 378.8 ± 129.6 c | 383.0 ± 73.2 c |
GGT (U/L) | 6.1 ± 1.0 a | ND | ND | 14.4 ± 4.4 c | 9.6 ± 1.2 b | 10.8 ± 1.3 b | 10.6 ± 1.1 b |
Total Protein (g/dL) | 3.96 ± 0.87 c | ND | ND | 3.66 ± 0.98 bc | 2.81 ± 0.51 ab | 2.83 ± 0.70 ab | 2.54 ± 0.41 a |
Albumin (g/dL) | 1.01 ± 0.11 b | ND | ND | 0.74 ± 0.22 a | 2.17 ± 0.07 d | 2.10 ± 0.16 d | 1.60 ± 0.35 c |
Globulins (g/dL) | 2.95 ± 0.89 b | ND | ND | 2.92 ± 1.05 b | 0.64 ± 0.51 a | 0.73 ± 0.56 a | 0.94 ± 0.68 a |
Cholesterol (mg/L) | 152.9 ± 7.3 a | ND | ND | 169.9 ± 12.9 ab | 184.2 ± 10.7 ab | 237.2 ± 51.8 c | 200.4 ± 20.7 b |
Triglycerides (mg/L) | 248.0 ± 38.2 c | ND | ND | 192.5 ± 26.6 b | 181.3 ± 51.5 b | 87.3 ± 13.8 a | 94.6 ± 22.4 a |
Glucose (mg/L) | 50.9 ± 8.2 a | ND | ND | 107.9 ± 12.5 c | 102.5 ± 14.1 c | 83.7 ± 6.8 b | 94.9 ± 11.4 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousaviyon, Z.; Pourkhabbaz, H.R.; Banaee, M.; Khodadoust, S.; Pourkhabbaz, A.R.; Trivedi, A.; Faggio, C.; Multisanti, C.R. Toxicity of Crude Oil Wastewater Treated with Nano-ZnO as a Photocatalyst on Labeo rohita: A Biochemical and Physiological Investigation. J. Xenobiot. 2025, 15, 25. https://doi.org/10.3390/jox15010025
Mousaviyon Z, Pourkhabbaz HR, Banaee M, Khodadoust S, Pourkhabbaz AR, Trivedi A, Faggio C, Multisanti CR. Toxicity of Crude Oil Wastewater Treated with Nano-ZnO as a Photocatalyst on Labeo rohita: A Biochemical and Physiological Investigation. Journal of Xenobiotics. 2025; 15(1):25. https://doi.org/10.3390/jox15010025
Chicago/Turabian StyleMousaviyon, Zahra, Hamid Reza Pourkhabbaz, Mahdi Banaee, Saeid Khodadoust, Ali Reza Pourkhabbaz, Abha Trivedi, Caterina Faggio, and Cristiana Roberta Multisanti. 2025. "Toxicity of Crude Oil Wastewater Treated with Nano-ZnO as a Photocatalyst on Labeo rohita: A Biochemical and Physiological Investigation" Journal of Xenobiotics 15, no. 1: 25. https://doi.org/10.3390/jox15010025
APA StyleMousaviyon, Z., Pourkhabbaz, H. R., Banaee, M., Khodadoust, S., Pourkhabbaz, A. R., Trivedi, A., Faggio, C., & Multisanti, C. R. (2025). Toxicity of Crude Oil Wastewater Treated with Nano-ZnO as a Photocatalyst on Labeo rohita: A Biochemical and Physiological Investigation. Journal of Xenobiotics, 15(1), 25. https://doi.org/10.3390/jox15010025