Combined Effects of Silver Nanoparticles and Humic and Fulvic Acids on Vibrio splendidus Growth †
Introduction
Materials and Methods
Bacterial culture conditions
AgNPs, HA and FA exposition conditions
Statistical analyses
Results and Discussion
Single exposition to AgNPs, HA or FA
Toxicity of AgNPs/HA and AgNPs/FA combinations
Conclusions
Acknowledgments
References
- Mcinroy, L; Gibson, M; Clark, R; Cullen, B. Are silver dressings effective against biofilm formation? Wound Repair Regen 2009, 17, A73. [Google Scholar]
- Lem, WK; Choudhury, A; Lakhani, AA; Kuyate, P; Haw, RJ; Lee, SD; et al. Use of nanosilver in consumer products. Recent Pat Nanotechnol 2012, 6, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, CO; Calder, A; Gajjar, P; Merugu, S; Huang, W; Britt, DW; et al. Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. J Hazard Mater 2011, 188, 428–35. [Google Scholar] [CrossRef] [PubMed]
- US EPA Emerging contaminants—Nano-materials fact sheet. EPA 505-F-509-011; Office of Solid Waste and Emergency Response, 2009.
- Benn, TM; Westerhoff, P. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Eng 2008, 42, 4133–9. [Google Scholar]
- Dibrov, P; Dzioba, J; Gosink, KK; Häse, CC. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Ch 2002, 46, 2668–70. [Google Scholar] [CrossRef]
- Holt, KB; Bard, AJ. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: An electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 2005, 44, 13214–23. [Google Scholar] [CrossRef] [PubMed]
- Liau, SY; Read, DC; Pugh, WJ; Furr, JR; Russell, AD. Interaction of silver nitrate with readily identifiable groups: Relation-ship to the antibacterial action of silver ions. Lett Appl Microbiol 1997, 25, 279–83. [Google Scholar] [CrossRef]
- Xu, X-HN; Brownlow, WJ; Kyriacou, SV; Wan, Q; Viola, JJ. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 2004, 43, 10400–13. [Google Scholar] [CrossRef]
- Bradford, A; Handy, RD; Readman, JW; Atfield, A; Muhling, M. Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Eng 2009, 43, 4530–6. [Google Scholar] [CrossRef]
- Das, P; Xenopoulos, MA; Williams, CJ; Hoque, ME; Metcalfe, CD. Effects of silver nanoparticles on bacterial activity in natural waters. Environ Toxicol Chem 2012, 31, 122–30. [Google Scholar] [CrossRef]
- Doiron, K; Pelletier, E; Lemarchand, K. Impact of polymer-coated silver nanoparticles on marine microbial communities: A microcosm study. Aquat Toxicol 2012, 124–125, 22–7. [Google Scholar] [CrossRef] [PubMed]
- Wirth, SM; Lowry, GV; Tilton, RD. Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Eng 2012, 46, 12687–96. [Google Scholar] [CrossRef] [PubMed]
- Miao, A-J; Schwehr, KA; Xu, C; Zhang, S-J; Luo, Z; Quigg, A; Santschi, PH. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 2009, 157, 3034–41. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E; Piccapietra, F; Wagner, B; Marconi, F; Kaegi, R; Odzak, N; et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Eng 2008, 42, 8959–64. [Google Scholar] [CrossRef] [PubMed]
- Fabrega, J; Fawcett, SR; Renshaw, JC; Lead, JR. Silver nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matter. Environ Sci Eng 2009, 43, 7285–90. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, L; Gagné, J-P. Organic matter distribution and reactivity in the waters of a large estuarine system. Mar Chem 2009, 116, 1–12. [Google Scholar] [CrossRef]
- McKnight, D; Behmel, P; Francko, D; Gjessing, E; Münster, U; Petersen, R, Jr.; et al. Group report how do organic acids interact with solutes, surfaces, and organisms? In Organic acids in aquatic exosystems; Perdue, E, Gjessing, E, Eds.; John Wiley & Sons Ltd: Dahlem Konferenzen, 1990; pp. 223–43. [Google Scholar]
- Moura, MN; Martín, MJ; Burguillo, FJ. A comparative study of the adsorption of humic acid, fulvic acid and phenol onto Bacillus subtilis and activated sludge. J Hazard Mater 2007, 149, 42–8. [Google Scholar] [CrossRef]
- Stevenson, F. Humus chemistry: Genesis, composition, reactions; Wiley: New York, 1994. [Google Scholar]
- Baalousha, M; Nur, Y; Römer, I; Tejamaya, M; Lead, JR. Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 2013, 454–455, 119–31. [Google Scholar] [CrossRef]
- Millour, M; Pelletier, E; Gagné, JP. Interactions between silver nanoparticles and dissolved natural organic matter under estuarine conditions. In Functions of natural organic matter in changing environment; Xu, J, Wu, J, He, Y, Eds.; Springer: Amsterdam, 2013; pp. 805–9. [Google Scholar]
- Mateo, DR; Siah, A; Araya, MT; Berthe, FCJ; Johnson, GR; Greenwood, SJ. Differential in vivo response of soft-shell clam hemocytes against two strains of Vibrio splendidus: Changes in cell structure, numbers and adherence. J Invertebr Pathol 2009, 102, 50–6. [Google Scholar] [CrossRef]
- Berdjeb, L; Pelletier, É; Pellerin, J; Gagné, J-P; Lemarchand, K. Contrasting responses of marine bacterial strains exposed to carboxylated single-walled carbon nanotubes. Aquat Toxicol 2013, 144–145, 230–41. [Google Scholar] [CrossRef]
- Nedwell, DB; Rutter, M. Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: Low temperature diminishes affinity for substrate uptake. Appl Environ Microbiol 1994, 60, 1984–92. [Google Scholar] [CrossRef] [PubMed]
- Visser, S. Physiological action of humic substances on microbial cells. Soil Biol Biochem 1985, 17, 457–62. [Google Scholar] [CrossRef]
- Kulikova, NA; Perminova, IV; Badun, GA; Chernysheva, MG; Koroleva, OV; Tsvetkova, EA. Estimation of uptake of humic substances from different sources by Escherichia coli cells under optimum and salt stress conditions by use of tritium-labeled humic materials. Appl Environ Microbiol 2010, 76, 6223–30. [Google Scholar] [CrossRef] [PubMed]
- Su, R; Jin, Y; Liu, Y; Tong, M; Kim, H. Bactericidal activity of Ag-doped multiwalled carbon nanotubes and the effects of extracellular polymeric substances and natural organic matter. Colloids Surf B 2013, 104, 133–9. [Google Scholar] [CrossRef]
- Liu, J; Hurt, RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Eng 2010, 44, 2169–75. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors. Licensee PAGEPress, Italy. This work is licensed under a Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0).
Share and Cite
Doiron, K.; Millour, M.; Gagné, J.-P.; Lemarchand, K. Combined Effects of Silver Nanoparticles and Humic and Fulvic Acids on Vibrio splendidus Growth. J. Xenobiot. 2014, 4, 4893. https://doi.org/10.4081/xeno.2014.4893
Doiron K, Millour M, Gagné J-P, Lemarchand K. Combined Effects of Silver Nanoparticles and Humic and Fulvic Acids on Vibrio splendidus Growth. Journal of Xenobiotics. 2014; 4(2):4893. https://doi.org/10.4081/xeno.2014.4893
Chicago/Turabian StyleDoiron, K., M. Millour, J.-P. Gagné, and K. Lemarchand. 2014. "Combined Effects of Silver Nanoparticles and Humic and Fulvic Acids on Vibrio splendidus Growth" Journal of Xenobiotics 4, no. 2: 4893. https://doi.org/10.4081/xeno.2014.4893
APA StyleDoiron, K., Millour, M., Gagné, J. -P., & Lemarchand, K. (2014). Combined Effects of Silver Nanoparticles and Humic and Fulvic Acids on Vibrio splendidus Growth. Journal of Xenobiotics, 4(2), 4893. https://doi.org/10.4081/xeno.2014.4893