Detection of Polystyrene Nanoplastics in Biological Tissues with a Fluorescent Molecular Rotor Probe
Abstract
:Introduction
Materials and Methods
Results and Discussion
Conclusions
Funding
Conflicts of Interest
References
- UNEP. UNEP Year Book 2011: Emerging issues in our global environment. 2011. Available from: http://wedocs.unep.org/handle/20.500.11822/8276.
- Lambert, S.; Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 2016, 145, 265–8. [Google Scholar]
- Browne, MA; Crump, P; Niven, SJ; Teuten, E; Tonkin, A; Galloway, T; et al. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 2011, 45, 9175–9. [Google Scholar]
- Castaneda, RA; Avlijas, S; Simard, MA; Ricciardi, A. Microplastic pollution in St. Lawrence river sediments. Can J Fish Aquat Sci 2014, 71, 1767–71. [Google Scholar]
- Browne, MA; Dissanayake, A; Galloway, TS; Lowe, DM; Thompson, RC. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 2008, 42, 5026–31. [Google Scholar]
- Murphy, F; Quinn, B. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environ Poll 2018, 234, 487–94. [Google Scholar]
- Rist, S; Baun, A; Hartmann, NB. Ingestion of micro- and nanoplastics in Daphnia magna. Quantification of body burdens and assessment of feeding rates and reproduction Environ Poll 2017, 228, 398–407. [Google Scholar]
- Mattsson, K; Hansson, LA; Cedervall, T. Nano-plastics in the aquatic environment. Environ Sci Process Impacts 2015, 17, 1712–21. [Google Scholar]
- Gigault, J; Halle, A; Beaudrimont, M; Pascal, P-Y; Gauffre, F; Phi, T-L; et al. Current opinion: what is a nanoplastic? Environm Poll 2018, 235, 1030–4. [Google Scholar]
- Liu, Z; Yu, P; Cai, M; Wu, D; Zhang, M; Huang, Y; et al. Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex. Chemosphere 2019, 215, 74–81. [Google Scholar]
- Haidekker, MA; Brady, TP; Lichlyter, D; Theodorakis, EA. Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probe. Bioorganic Chem 2005, 33, 415–25. [Google Scholar]
- Kung, E; Reed, JK. Microviscosity measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation. Biochem 1986, 25, 6114–21. [Google Scholar]
- Bradford, MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72, 248–54. [Google Scholar]
Glycerol (ug/mL) | Emission 500 nm (Fluorescence units sample-blank) | Emission 620 nm (Fluorescence units sample-blank) |
---|---|---|
0 | 0 | 0 |
0.6 | 247±12 | 150±10 |
1 | 582±25 | 190±15 |
1.4 | 897±40 | 201±10 |
1.8 | 1041±50 | 536±25 |
© Copyright F. Gagné, 2019. Licensee PAGEPress, Italy. This work is licensed under a Creative Commons Attribution NonCommercial 4.0 License (CC BY-NC 4.0).
Share and Cite
Gagné, F. Detection of Polystyrene Nanoplastics in Biological Tissues with a Fluorescent Molecular Rotor Probe. J. Xenobiot. 2019, 9, 8147. https://doi.org/10.4081/xeno.2019.8147
Gagné F. Detection of Polystyrene Nanoplastics in Biological Tissues with a Fluorescent Molecular Rotor Probe. Journal of Xenobiotics. 2019; 9(1):8147. https://doi.org/10.4081/xeno.2019.8147
Chicago/Turabian StyleGagné, François. 2019. "Detection of Polystyrene Nanoplastics in Biological Tissues with a Fluorescent Molecular Rotor Probe" Journal of Xenobiotics 9, no. 1: 8147. https://doi.org/10.4081/xeno.2019.8147
APA StyleGagné, F. (2019). Detection of Polystyrene Nanoplastics in Biological Tissues with a Fluorescent Molecular Rotor Probe. Journal of Xenobiotics, 9(1), 8147. https://doi.org/10.4081/xeno.2019.8147