The Effect of Isotretinoin on Insulin Resistance and Serum Adiponectin Levels in Acne Vulgaris Patients: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Search Strategy and Sources
2.3. Study Selection and Data Extraction
2.4. Definitions
2.5. Risk of Bias Assessment
2.6. Synthesis
2.7. Quality of Evidence
3. Results
3.1. Qualitative Analysis
3.1.1. Search Results
3.1.2. Study Characteristics
3.1.3. Risk of Bias Assessment
3.1.4. Outcome Measures
3.2. Quantitative Analysis—Results of Meta-Analysis
3.2.1. Glucose
3.2.2. Insulin
3.2.3. Adiponectin
3.2.4. HOMA-IR
3.3. Strength of Evidence GRADE Reporting System
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Database | Search String |
---|---|
Pubmed/Medline | ((isotretinoin [Title/Abstract]) OR (“13-cis-Retinoic Acid” [Title/Abstract]) OR (Accutane [Title/Abstract]) OR (Roaccutane [Title/Abstract]) AND (english [Filter])) AND ((insulin [Title/Abstract]) OR (glucose [Title/Abstract]) OR (hyperglycemia [Title/Abstract]) OR (diabetes [Title/Abstract]) OR (“diabetes mellitus” [Title/Abstract]) OR (“insulin resistance” [Title/Abstract]) OR (“glucose intolerance” [Title/Abstract]) OR (adiponectin [Title/Abstract]) OR (adipokine [Title/Abstract]) OR (“apM-1 Protein” [Title/Abstract]) OR (“ACRP30 Protein” [Title/Abstract]) OR (Adipocyte [Title/Abstract]) AND (English [Filter])) |
Scopus | TITLE-ABS-KEY (((isotretinoin) OR (“13-cis-Retinoic Acid”) OR (accutane) OR (roaccutane)) AND ((insulin) OR (glucose) OR (hyperglycemia) OR (diabetes) OR (“diabetes mellitus”) OR (“insulin resistance”) OR (“glucose intolerance”) OR (adiponectin) OR (adipokine) OR (“apM-1 Protein”) OR (“ACRP30 Protein”) OR (adipocyte))) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) |
Cochrane Library | #1: isotretinoin OR “13 cis Retinoic Acid” OR Accutane OR Roaccutane #2: insulin OR glucose OR hyperglycemia OR diabetes OR “diabetes mellitus” OR “insulin resistance” OR “glucose intolerance” OR adiponectin OR adipokine OR “apM 1 Protein” OR “ACRP30 Protein” OR Adipocyte #3: #1 AND #2. Final results in the Trials field was 13. |
Outcomes | Pooled Effects (95% CI) | № of Participants (Studies) | Certainty of the Evidence (GRADE) | Comments |
---|---|---|---|---|
Risk with Systematic Isotretinoin | ||||
Insulin | SMD 0.17 SD higher (0.41 lower to 0.76 higher) | 239 (10 observational studies) | ⨁⨁⨁⨁ High | Systematic isotretinoin therapy results in little-to-no difference in insulin. |
Glucose | SMD 0.03 SD lower (0.23 lower to 0.17 higher) | 199 (9 observational studies) | ⨁⨁⨁⨁ High | Systematic isotretinoin therapy results in little-to-no difference in glucose. |
Adiponectin | SMD 0.86 SD higher (0.48 higher to 1.26 higher) | 146 (6 observational studies) | ⨁⨁⨁⨁ High | Systematic isotretinoin therapy increases adiponectin. |
HOMA-IR | SMD 0.04 SD higher (0.16 lower to 0.24 higher) | 258 (11 observational studies) | ⨁⨁⨁◯ Moderate | Systematic isotretinoin therapy results in little-to-no difference in HOMA-IR. |
CI: confidence interval; SMD: standardized mean difference. | ||||
GRADE Working Group grades of evidence. High certainty: We are very confident that the true effect lies close to that of the estimate of the effect. Moderate certainty: We are moderately confident in the effect estimate: the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different. Low certainty: Our confidence in the effect estimate is limited: the true effect may be substantially different from the estimate of the effect. Very low certainty: We have very little confidence in the effect estimate: the true effect is likely to be substantially different from the estimate of effect. |
References
- Fox, L.; Csongradi, C.; Aucamp, M.; Du Plessis, J.; Gerber, M. Treatment Modalities for Acne. Molecules 2016, 21, 1063. [Google Scholar] [CrossRef]
- Thiboutot, D.M.; Dréno, B.; Abanmi, A.; Alexis, A.F.; Araviiskaia, E.; Barona Cabal, M.I.; Bettoli, V.; Casintahan, F.; Chow, S.; da Costa, A.; et al. Practical management of acne for clinicians: An international consensus from the Global Alliance to Improve Outcomes in Acne. J. Am. Acad. Dermatol. 2018, 78, S1–S23. [Google Scholar] [CrossRef]
- Katsambas, A.; Papakonstantinou, A. Acne: Systemic treatment. Clin. Dermatol. 2004, 22, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Hermans, M.P.; Valensi, P. Elevated triglycerides and low high-density lipoprotein cholesterol level as marker of very high risk in type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Judd, R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [PubMed]
- Ertugrul, D.T.; Karadag, A.S.; Tutal, E.; Akin, K.O. Isotretinoin does not induce insulin resistance in patients with acne. Clin. Exp. Dermatol. 2011, 36, 124–128. [Google Scholar] [CrossRef]
- Soyuduru, G.; Özsoy Adişen, E.; Kadioğlu Özer, İ.; Aksakal, A.B. The effect of isotretinoin on insulin resistance and adipocytokine leveacne vulgaris patients. Turk. J. Med. Sci. 2019, 49, 238–244. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef]
- Cochrane Effective Practice and Organization of Care (EPOC). Screening, Data Extraction and Management. EPOC Resources Rev Authors. 2021. Available online: https://epoc.cochrane.org/resources/epoc-resources-review-authors (accessed on 1 July 2022).
- Mohan, G.; Dhir, T.; Chandey, M. Prevalance and Clinical Profile of Metabolic Syndrome in Hypertensive Patients and Its Correlation with Insulin Resistance. Int. J. Adv. Med. 2019, 6, 1139. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.; Hernán, M.; McAleenan, A.; Reeves, B.; Higgins, J. Assessing risk of bias in a non-randomized study. In Cochrane Handbook for Systematic Reviews of Interventions Version 60, 6th ed.; Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V.A., Eds.; Cochrane: London, UK, 2019. [Google Scholar]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- The GRADE Working Group. GRADE (Grading of Recommendations Assessment Development and Evaluation System). Available online: https://www.gradeworkinggroup.org/ (accessed on 1 July 2022).
- GRADEpro GDT. McMaster University and Evidence Prime Inc. 2020. Available online: https://www.gradepro.org (accessed on 1 July 2022).
- Karapinar, T.; Polat, M.; Bugdayci, G. Evaluation of subclinical atherosclerosis in Turkish patients with acne vulgaris receiving systemic isotretinoin. Dermatol. Ther. 2020, 25, e13307. [Google Scholar] [CrossRef] [PubMed]
- Laker, M.; Green, C.; Bhuiyan, A.; Shuster, S. Isotretinoin and serum lipids: Studies on fatty acid, apolipoprotein, and intermediary metabolism. Br. J. Dermatol. 1987, 117, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Koistinen, H.A.; Remitz, A.; Gylling, H.; Miettinen, T.A.; Koivisto, V.A.; Ebeling, P. Dyslipidemia and a reversible decrease in insulin sensitivity induced by therapy with 13-cis-retinoic acid. Diabetes Metab. Res. Rev. 2001, 17, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Stoll, D.; Binnert, C.; Mooser, V.; Tappy, L. Short-term administration of isotretinoin elevates plasma triglyceride concentrations without affecting insulin sensitivity in healthy humans. Metabolism 2004, 53, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Koistinen, H.A.; Remitz, A.; Koivisto, V.A.; Ebeling, P. Paradoxical rise in serum adiponectin concentration in the face of acid-induced insulin resistance 13-cis-retinoic. Diabetologia 2006, 28, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Heliövaara, M.K.; Remitz, A.; Reitamo, S.; Teppo, A.-M.; Karonen, S.-L.; Ebeling, P. 13-cis-Retinoic acid therapy induces insulin resistance, regulates inflammatory parameters, and paradoxically increases serum adiponectin concentration. Metabolism 2007, 56, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Çetinözman, F.; Aksoy, D.Y.; Elçin, G.; Yıldız, B.O. Insulin sensitivity, androgens, and isotretinoin therapy in women with severe acne. J. Dermatol. Treat. 2014, 25, 119–122. [Google Scholar] [CrossRef]
- Karadag, A.S.; Ertugrul, D.T.; Takci, Z.; Bilgili, S.G.; Namuslu, M.; Ata, N.; Sekeroglu, R. The Effect of Isotretinoin on Retinol-Binding Protein 4, Leptin, Adiponectin and Insulin Resistance in Acne Vulgaris Patients. Dermatology 2015, 230, 70–74. [Google Scholar] [CrossRef]
- Cemil, B.C.; Ayvaz, H.H.; Ozturk, G.; Ergin, C.; Akıs, H.K.; Gonul, M.; Arzuhal, E. Effects of isotretinoin on body mass index, serum adiponectin, leptin, and ghrelin levels in acne vulgaris patients. Adv. Dermatol. Allergol. 2016, 4, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Saklamaz, A.; Uyar, B.; Yalcin, M.; Cengiz, H. Isotretinoin increased carotid intima-media thickness in acne patients. Hippokratia 2016, 20, 14–18. [Google Scholar] [PubMed]
- Aydin, K.; Çetinözman, F.; Elcin, G.; Aksoy, D.Y.; Ucar, F.; Yildiz, B.O. Suppressed Adiponectin Levels and Increased Adiponectin Response to Oral Glucose Load in Lean Women with Severe Acne Normalizes after Isotretinoin Treatment. Dermatology 2017, 233, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Acmaz, G.; Cınar, L.; Acmaz, B.; Aksoy, H.; Kafadar, Y.T.; Madendag, Y.; Ozdemir, F.; Sahin, E.; Muderris, I. The Effects of Oral Isotretinoin in Women with Acne and Polycystic Ovary Syndrome. Biomed. Res. Int. 2019, 2019, 2513067. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, S.E.; Şahin, M.; Houshyar, Y.; Günay, F.S.D.; Çorapçioğlu, D. Effects of isotretinoin treatment on levels of hormones involved in the etiopathogenesis of acne. Turk. J. Endocrinol. Metab. 2020, 24, 237–246. [Google Scholar] [CrossRef]
- Aktar, R.; Bilgili, S.G.; Yavuz, I.H.; Yavuz, G.O.; Aktar, S.; Ozturk, M.; Karadağ, A.S. Evaluation of hirsutism and hormonal parameters in acne vulgaris patients treated with isotretinoin. Int. J. Clin. Pract. 2021, 75, e13791. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-Y.; Liu, H.-W.; Chao, Y.-C.; Huang, Y.-C. Effects of isotretinoin on glucose metabolism in patients with acne: A systematic review and meta-analysis. J. Der. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG 2020, 18, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Imatoh, T.; Miyazaki, M.; Momose, Y.; Tanihara, S.; Une, H. Adiponectin levels associated with the development of hypertension: A prospective study. Hypertens. Res. 2008, 31, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Santos-Perez, M.I.; Garcia-Rodicio, S.; del Olmo-Revuelto, M.A.; Cuellar-Olmedo, L.A. Suspicion of diabetes mellitus isotretinoin-induced. Farm. Hosp. 2013, 37, 340–342. [Google Scholar]
- Dicembrini, I.; Bardini, G.; Rotella, C.M. Association between oral isotretinoin therapy and unmasked latent immuno-mediated diabetes. Diabetes Care. 2009, 32, 2009. [Google Scholar] [CrossRef]
- Tsukada, M.; Schro, M.; Roos, T.C.; Chandraratna, R.A.S.; Reichert, U.; Merk, H.F.; Orfanos, C.E.; Zouboulis, C.C. 13-cis retinoic acid exerts its specific activity on human sebocytes through selective intracellular isomerization to all-trans retinoic acid and binding to retinoid acid receptors. J. Investig. Dermatol. 2000, 115, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.C. p53: Key conductor of all anti-acne therapies. J. Transl. Med. 2017, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Agamia, N.F.; Hussein, O.M.; Abdelmaksoud, R.E.; Abdalla, D.M.; Talaat, I.M.; Zaki, E.I.; El Tawdy, A.; Melnik, B.C. Effect of oral isotretinoin on the nucleo-cytoplasmic distribution of FoxO1 and FoxO3 proteins in sebaceous glands of patients with acne vulgaris. Exp. Dermatol. 2018, 27, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, F. Up- and down-regulation of adiponectin expression and multimerization: Mechanisms and therapeutic implication. Biochemie 2012, 94, 2126–2130. [Google Scholar] [CrossRef] [PubMed]
- Moseti, D.; Regassa, A.; Kim, W.-K. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int. J. Mol. Sci. 2016, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Hino, K.; Nagata, H. Screening for Adiponectin Secretion Regulators, 1st ed.; Vitamins and Hormones; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 90, pp. 125–141. [Google Scholar]
- Qiao, L.; Shao, J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein α transcriptional complex. J. Biol. Chem. 2006, 281, 39915–39924. [Google Scholar] [CrossRef] [PubMed]
- Landrier, J.F.; Kasiri, E.; Karkeni, E.; Mihály, J.; Béke, G.; Weiss, K.; Lucas, R.; Aydemir, G.; Salles, J.; Walrand, S.; et al. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. FASEB J. 2017, 31, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Kalisz, M.; Chmielowska, M.; Martyńska, L.; Domańska, A.; Bik, W.; Litwiniuk, A. All-trans-retinoic acid ameliorates atherosclerosis, promotes perivascular adipose tissue browning, and increases adiponectin production in Apo-E mice. Sci. Rep. 2021, 11, 4451. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother 2021, 137, 111315. [Google Scholar] [CrossRef]
- Samuel, V.T.; Shulman, G.I. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J. Clin. Investig. 2016, 126, 12–22. [Google Scholar] [CrossRef]
- Altomonte, J.; Cong, L.; Harbaran, S.; Richter, A.; Xu, J.; Meseck, M.; Dong, H.H. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J. Clin. Investig. 2004, 114, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Rajan, M.R.; Nyman, E.; Kjølhede, P.; Cedersund, G.; Strålfors, P. Systems-wide experimental and modeling analysis of insulin signaling through forkhead box protein O1 (FOXO1) in human adipocytes, normally and in type 2 diabetes. J. Biol. Chem. 2016, 291, 15806–15819. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Country | Study Design | N of Acne Patients | Age (Years) | Oral Isotretinoin Dosage | Treatment Duration (Months) | Control | Parameters Assessed |
---|---|---|---|---|---|---|---|---|
Laker (1987) [18] | U.K. | Cohort | 13 (M:F = 10:3) | 13–32 * | 1.0 mg/kg/day | 4 | no | glucose, insulin |
Koistinen (2001) [19] | Finland | Cohort | 11 (M:F = 11:0) | 24 (2) ^ | ∼0.5 mg/kg/day | 4–6 | no | glucose, HbA1c%, insulin |
Stoll (2004) [20] | Switzerland | Cohort | 15 (M:F = 15:0) | 28.3 (1.7) ^ | 1.0 mg/kg/day | 5 days 1 | no | glucose, insulin |
Koistinen (2006) [21] | Finland | Cohort | 11 (M:F = 11:0) | 24 (2) ^ | ∼0.5 mg/kg/day | 5 (6–10) * | no | adiponectin |
Heliövaara (2007) [22] | Finland | Cohort | 23 (M:F = 12:11) | 24.9 (0.9) ^ | N/A | 3 | no | adiponectin, glucose, insulin |
Ertugrul (2010) [6] | Turkey | Cohort | 48 (M:F = 13:35) | 22 (18–38) ** | 0.5–0.75 mg/kg/day, adjusted to 0.88 mg/kg/day 1 month after | ≥4 | no | glucose, insulin, HOMA-IR |
Cetinözman (2013) [23] | Turkey | Case–control | 26 (M:F = 0:26) | 24.7 (3.9) ^ | 20 mg/day increased to max. 50 mg/day | 7.5 (6–10) * | yes | glucose/insulin, HOMA-IR |
Karadag (2015) [24] | Turkey | Case–control | 33 (M:F = 15:18) | 19.8 (4.1) ^ | N/A | 3 | yes | adiponectin, glucose, insulin |
Cemil (2016) [25] | Turkey | Cohort | 32 (M:F = 20:12) | 18.9 (2.57) ^ | 0.5–0.6 mg/kg/day adjusted to 0.6–0.75 mg/kg/day after 1 month | 3 | no | adiponectin |
Saklamaz (2016) [26] | Turkey | Cohort | 21 (M:F = 6:15) | 23.0 (4.1) ^ | 0.5–0.8 mg/kg/day | 4 | no | glucose, insulin, HOMA-IR |
Aydin (2017) [27] | Turkey | Case–control | 18 (M:F = 0:18) | 23.4 (3.4) ^ | 20 mg/day increased to max. 50 mg/day | 6 | yes | adiponectin, glucose, insulin, HOMA-IR |
Soyuduru (2019) [7] | Turkey | Case–control | 29 (M:F = 15:14) | 20.5 (1.9) ^ | 0.5 mg/kg/day | 5 | yes | adiponectin, HOMA-IR |
Acmaz (2019) [28] | Turkey | Cohort | 40 (M:F = 0:40) | 18–40 * | 20 mg/day increased to max. 40 mg/day | 6 | no | insulin |
Koçyiğit (2020) [29] | Turkey | Case–control | 30 (M:F = 0:30) | 23.2 (3.7) ^ | 120–150 mg/kg/day | 3 | yes | glucose, insulin, HOMA-IR |
Aktar (2021) [30] | Turkey | Case–control | 30 (M:F = 0:30) | 22.1 (3.4) ^ | 0.5 mg/kg/day | 3 | yes | glucose, insulin |
HOMA-IR | Adiponectin | Glucose | Insulin | |||||
---|---|---|---|---|---|---|---|---|
Author (Year) | Pre-Treatment | Post-Treatment | Pre-Treatment | Post-Treatment | Pre-Treatment | Post-Treatment | Pre-Treatment | Post-Treatment |
Laker (1987) [18] | 1822.2 (1124.7) ^ | 2377.8 (504.7) ^ | N/A | N/A | 5 (0.2) mmol/L | 5 (0.3) mmol/L | 8.2 (1.7) IU/L | 10.8 (1.6) IU/L |
Koistinen (2001) [19] | 0.84 (0.2) ^ | 0.96 (0.18) ^ | N/A | N/A | 5.4 (0.1) mmol/L | 5.3 (0.1) mmol/L | 3.5 (0.5) mIU/L | 4.7 (0.6) mIU/L |
Stoll (2004) [20] | 2.12 (0.35) ^ | 2.14 (0.53) ^ | N/A | N/A | 5.6 (0.1) mmol/L | 5.6 (0.1) mmol/L | 59 (6) pmol/L | 60 (6) pmol/L |
Koistinen (2006) [21] | N/A | N/A | 5.3 (0.9) μg/mL | 7.1 (1.2) μg/mL | N/A | N/A | N/A | N/A |
Heliövaara (2007) [22] | 1.37 (0.52) ^ | 1.19 (0.37) ^ | 24.9 (2.5) μg/mL | 29.4 (3.6) μg/mL | 85.70 (1.62) mg/dL | 86.17 (1.44) mg/dL | 6.48 (0.48) mIU/L | 6.44 (0.74) mIU/L |
Ertugrul (2010) [6] | 1.8 (2.175) | 2.0 (1.875) | N/A | N/A | 88.1 (10.2) mg/dL | 88.4 (9.2) mg/dL | 8.5 (9.1) μIU/mL | 9.8 (8.6) μIU/mL |
Cetinözman (2013) [23] | 2.02 (0.6) | 2.3 (1.1) | N/A | N/A | 80.3 (11.5) mg/dL | 76.7 (21.0) mg/dL | 10.3 (3.1) μIU/mL | 11.5 (4.1) μIU/mL |
Karadag (2015) [24] | N/A | N/A | 4.27 (2.30) ng/mL | 6.73 (3.60) ng/mL | N/A | N/A | N/A | N/A |
Cemil (2016) [25] | N/A | N/A | 93.59 (230.96) μg/L | 409.18 (409.09) μg/L | N/A | N/A | N/A | N/A |
Saklamaz (2016) [26] | 2.2 (0.9) | 2.3 (1.9) | Ν/A | Ν/A | 87.6 (9.7) mg/dL | 88.1 (7.0) mg/dL | 10.8 (8.6) μIU/mL | 10.1 (3.9) μIU/mL |
Aydin (2017) [27] | 2.2 (0.7) | 2.4 (1.1) | 6.5 (3.8) μg/mL | 8.7 (3.4) μg/mL | 85.7 (16.8) mg/dL | 80.7 (13.9) mg/dL | 10.3 (3.3) μIU/mL | 11.8 (4.5) μIU/mL |
Soyuduru (2019) [7] | 1.43 (0.5725) | 1.54 (0.9575) | 12.4 (4.0) μg/mL | 13.3 (4.7) μg/mL | N/A | N/A | N/A | N/A |
Acmaz (2019) [28] | N/A | N/A | N/A | N/A | N/A | N/A | 10.19 (1.47) * | 7.70 (0.87) * |
Koçyiğit (2020) [29] | 2.1 (0.1) | 2.1 (0.1) | N/A | N/A | 82.6 (7.03) mg/dL | N/A | 10.1 (4.8) μIU/mL | N/A |
Aktar (2021) [30] | 2.95 (0.28) ^ | 2.81 (0.18) ^ | N/A | N/A | 86.3 (10.1) mg/dL | 87.4 (8.0) mg/dL | 13.9 (11.3) μIU/mL | 13.0 (9.6) μIU/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paschalidou, E.; Katsaras, G.; Papoulakis, T.; Kalloniati, E.; Kavvadas, D.; Karachrysafi, S.; Kapoukranidou, D.; Tagarakis, G.; Papamitsou, T. The Effect of Isotretinoin on Insulin Resistance and Serum Adiponectin Levels in Acne Vulgaris Patients: A Systematic Review and Meta-Analysis. Clin. Pract. 2024, 14, 1021-1037. https://doi.org/10.3390/clinpract14030081
Paschalidou E, Katsaras G, Papoulakis T, Kalloniati E, Kavvadas D, Karachrysafi S, Kapoukranidou D, Tagarakis G, Papamitsou T. The Effect of Isotretinoin on Insulin Resistance and Serum Adiponectin Levels in Acne Vulgaris Patients: A Systematic Review and Meta-Analysis. Clinics and Practice. 2024; 14(3):1021-1037. https://doi.org/10.3390/clinpract14030081
Chicago/Turabian StylePaschalidou, Eleni, Georgios Katsaras, Thomas Papoulakis, Evangelia Kalloniati, Dimitrios Kavvadas, Sofia Karachrysafi, Dorothea Kapoukranidou, Georgios Tagarakis, and Theodora Papamitsou. 2024. "The Effect of Isotretinoin on Insulin Resistance and Serum Adiponectin Levels in Acne Vulgaris Patients: A Systematic Review and Meta-Analysis" Clinics and Practice 14, no. 3: 1021-1037. https://doi.org/10.3390/clinpract14030081
APA StylePaschalidou, E., Katsaras, G., Papoulakis, T., Kalloniati, E., Kavvadas, D., Karachrysafi, S., Kapoukranidou, D., Tagarakis, G., & Papamitsou, T. (2024). The Effect of Isotretinoin on Insulin Resistance and Serum Adiponectin Levels in Acne Vulgaris Patients: A Systematic Review and Meta-Analysis. Clinics and Practice, 14(3), 1021-1037. https://doi.org/10.3390/clinpract14030081