Management of Early Post-Transplant Hyperglycemia by Dedicated Endocrine Care Improves Glycemic Outcomes
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Immunosuppressive Protocol
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADA | American Diabetes Association |
BG | Blood glucose |
CV | Coefficient of variation |
DEC | Dedicated endocrine care |
DM | Diabetes mellitus |
EPTH | Early post-transplant hyperglycemia |
IQRs | Interquartile ranges |
PTDM | Post-transplant diabetes mellitus |
RC | Routine care |
SDs | Standard deviations |
TIR | Time in range |
References
- de Boer, I.H.; Rue, T.C.; Hall, Y.N.; Heagerty, P.J.; Weiss, N.S.; Himmelfarb, J. Temporal Trends in the Prevalence of Diabetic Kidney Disease in the United States. JAMA 2011, 305, 2532–2539. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.; Smith, J.M.; Skeans, M.A.; Gustafson, S.K.; Wilk, A.R.; Castro, S.; Foutz, J.; Wainright, J.L.; Snyder, J.J.; Kasiske, B.L.; et al. Optn/Srtr 2018 Annual Data Report: Kidney. Am. J. Transplant. 2020, 20 (Suppl. S1), 120–130. [Google Scholar] [CrossRef] [PubMed]
- Chakkera, H.A.; Weil, E.J.; Castro, J.; Heilman, R.L.; Reddy, K.S.; Mazur, M.J.; Hamawi, K.; Mulligan, D.C.; Moss, A.A.; Mekeel, K.L.; et al. Hyperglycemia During the Immediate Period after Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2009, 4, 853–859. [Google Scholar] [CrossRef]
- Iqbal, A.; Zhou, K.; Kashyap, S.R.; Lansang, M.C. Early Post-Renal Transplant Hyperglycemia. J. Clin. Endocrinol. Metab. 2022, 107, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Cosio, F.G.; Kudva, Y.; van der Velde, M.; Larson, T.S.; Textor, S.C.; Griffin, M.D.; Stegall, M.D. New Onset Hyperglycemia and Diabetes Are Associated with Increased Cardiovascular Risk after Kidney Transplantation. Kidney Int. 2005, 67, 2415–2421. [Google Scholar] [CrossRef]
- Sheu, A.; Depczynski, B.; O’Sullivan, A.J.; Luxton, G.; Mangos, G. The Effect of Different Glycaemic States on Renal Transplant Outcomes. J. Diabetes Res. 2016, 2016, 8735782. [Google Scholar] [CrossRef]
- Mathis, A.S.; Liu, M.T.; Adamson, R.T.; Nambi, S.S.; Patel, A.M. Retrospective Analysis of Early Steroid-Induced Adverse Reactions in Kidney and Kidney-Pancreas Transplant Recipients. Transplant. Proc. 2007, 39, 199–201. [Google Scholar] [CrossRef]
- van Raalte, D.H.; Ouwens, D.M.; Diamant, M. Novel Insights into Glucocorticoid-Mediated Diabetogenic Effects: Towards Expansion of Therapeutic Options? Eur. J. Clin. Investig. 2009, 39, 81–93. [Google Scholar] [CrossRef]
- Oetjen, E.; Baun, D.; Beimesche, S.; Krause, D.; Cierny, I.; Blume, R.; Dickel, C.; Wehner, S.; Knepel, W. Inhibition of Human Insulin Gene Transcription by the Immunosuppressive Drugs Cyclosporin a and Tacrolimus in Primary, Mature Islets of Transgenic Mice. Mol. Pharmacol. 2003, 63, 1289–1295. [Google Scholar] [CrossRef]
- Radu, R.G.; Fujimoto, S.; Mukai, E.; Takehiro, M.; Shimono, D.; Nabe, K.; Shimodahira, M.; Kominato, R.; Aramaki, Y.; Nishi, Y.; et al. Tacrolimus Suppresses Glucose-Induced Insulin Release from Pancreatic Islets by Reducing Glucokinase Activity. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E365–E371. [Google Scholar] [CrossRef]
- Sharif, A.; Hecking, M.; de Vries, A.P.; Porrini, E.; Hornum, M.; Rasoul-Rockenschaub, S.; Berlakovich, G.; Krebs, M.; Kautzky-Willer, A.; Schernthaner, G.; et al. Proceedings from an International Consensus Meeting on Posttransplantation Diabetes Mellitus: Recommendations and Future Directions. Am. J. Transplant. 2014, 14, 1992–2000. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.S.; Nemati, E.; Pourfarziani, V.; Taheri, S.; Nourbala, M.H.; Einollahi, B. Early Hyperglycemia after Allogenic Kidney Transplantation: Does It Induce Infections. Ann. Transplant. 2007, 12, 23–26. [Google Scholar] [PubMed]
- Thomas, M.C.; Mathew, T.H.; Russ, G.R.; Rao, M.M.; Moran, J. Early Peri-Operative Glycaemic Control and Allograft Rejection in Patients with Diabetes Mellitus: A Pilot Study. Transplantation 2001, 72, 1321–1324. [Google Scholar] [CrossRef] [PubMed]
- Wyzgal, J.; Paczek, L.; Ziolkowski, J.; Pawlowska, M.; Rowiński, W.; Durlik, M. Early Hyperglycemia after Allogenic Kidney Transplantation. Ann. Transplant. 2007, 12, 40–45. [Google Scholar]
- Ganji, M.R.; Charkhchian, M.; Hakemi, M.; Nederi, G.H.; Solymanian, T.; Saddadi, F.; Amini, M.; Najafi, I. Association of Hyperglycemia on Allograft Function in the Early Period after Renal Transplantation. Transplant. Proc. 2007, 39, 852–854. [Google Scholar] [CrossRef]
- Parekh, J.; Roll, G.R.; Feng, S.; Niemann, C.U.; Hirose, R. Peri-Operative Hyperglycemia Is Associated with Delayed Graft Function in Deceased Donor Renal Transplantation. Clin. Transplant. 2013, 27, E424–E430. [Google Scholar] [CrossRef]
- Parekh, J.; Niemann, C.U.; Dang, K.; Hirose, R. Intraoperative Hyperglycemia Augments Ischemia Reperfusion Injury in Renal Transplantation: A Prospective Study. J. Transplant. 2011, 2011, 652458. [Google Scholar] [CrossRef] [PubMed]
- Wojtusciszyn, A.; Mourad, G.; Bringer, J.; Renard, E. Continuous Glucose Monitoring after Kidney Transplantation in Non-Diabetic Patients: Early Hyperglycaemia Is Frequent and May Herald Post-Transplantation Diabetes Mellitus and Graft Failure. Diabetes Metab. 2013, 39, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Vesco, L.; Busson, M.; Bedrossian, J.; Bitker, M.O.; Hiesse, C.; Lang, P. Diabetes Mellitus after Renal Transplantation: Characteristics, Outcome, and Risk Factors. Transplantation 1996, 61, 1475–1478. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 16. Diabetes Care in the Hospital: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S267–S278. [Google Scholar] [CrossRef]
- Thomusch, O.; Wiesener, M.; Opgenoorth, M.; Pascher, A.; Woitas, R.P.; Witzke, O.; Jaenigen, B.; Rentsch, M.; Wolters, H.; Rath, T.; et al. Rabbit-Atg or Basiliximab Induction for Rapid Steroid Withdrawal after Renal Transplantation (Harmony): An Open-Label, Multicentre, Randomised Controlled Trial. Lancet 2016, 388, 3006–3016. [Google Scholar] [CrossRef] [PubMed]
- Pascual, J.; Galeano, C.; Royuela, A.; Zamora, J. A Systematic Review on Steroid Withdrawal between 3 and 6 Months after Kidney Transplantation. Transplantation 2010, 90, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients. Am. J. Transplant. 2009, 9 (Suppl. S3), S1–S155. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Murphy, D. Application of Ggplot2 to Pharmacometric Graphics. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e79. [Google Scholar] [CrossRef]
- Hecking, M.; Haidinger, M.; Döller, D.; Werzowa, J.; Tura, A.; Zhang, J.; Tekoglu, H.; Pleiner, J.; Wrba, T.; Rasoul-Rockenschaub, S.; et al. Early Basal Insulin Therapy Decreases New-Onset Diabetes after Renal Transplantation. J. Am. Soc. Nephrol. 2012, 23, 739–749. [Google Scholar] [CrossRef]
- Midtvedt, K.; Hjelmesaeth, J.; Hartmann, A.; Lund, K.; Paulsen, D.; Egeland, T.; Jenssen, T. Insulin Resistance after Renal Transplantation: The Effect of Steroid Dose Reduction and Withdrawal. J. Am. Soc. Nephrol. 2004, 15, 3233–3239. [Google Scholar] [CrossRef]
- Berra, C.; De Fazio, F.; Azzolini, E.; Albini, M.; Zangrandi, F.; Mirani, M.; Garbossa, S.; Guardado-Mendoza, R.; Condorelli, G.; Folli, F. Hypoglycemia and Hyperglycemia Are Risk Factors for Falls in the Hospital Population. Acta Diabetol. 2019, 56, 931–938. [Google Scholar] [CrossRef]
- Gómez, A.M.; Madero, A.I.; Carrillo, D.C.H.; Rondón, M.; Muñoz, O.M.; Robledo, M.A.; Rebolledo, M.; Jaramillo, M.G.; Vargas, F.L.; Umpierrez, G. Hypoglycemia Incidence and Factors Associated in a Cohort of Patients with Type 2 Diabetes Hospitalized in General Ward Treated with Basal Bolus Insulin Regimen Assessed by Continuous Glucose Monitoring. J. Diabetes Sci. Technol. 2020, 14, 233–239. [Google Scholar] [CrossRef]
- Hermayer, K.L.; Egidi, M.F.; Finch, N.J.; Baliga, P.; Lin, A.; Kettinger, L.; Biggins, S.; Carter, R.E. A Randomized Controlled Trial to Evaluate the Effect of Glycemic Control on Renal Transplantation Outcomes. J. Clin. Endocrinol. Metab. 2012, 97, 4399–4406. [Google Scholar] [CrossRef]
All (n = 113) | Dedicated Endocrine Care (n = 53) | Routine Care (n = 60) | p-Value, CI | |
---|---|---|---|---|
Age (mean, SD) | 58.2 ± 11.8 | 61.2 ± 9.7 | 55.4 ± 12.9 | p = 0.009, CI (−10.1, −1.5) |
Male sex, n (%) | 81 (71.7) | 42 (79.2) | 39 (65) | p = 0.09 |
Pretransplant diabetes, n (%) | 57 (50.4) | 48 (90.6) | 9 (15) | p < 0.001 |
Diabetic nephropathy, n (%) | 45 (39.8) | 38 (71.7) | 7 (11.7) | p < 0.001 |
Diabetic retinopathy, n (%) | 21 (18.6) | 17 (32.1) | 4 (6.7) | p < 0.001 |
Diabetic neuropathy, n (%) | 15 (13.3) | 13 (24.5) | 2 (3.3) | p < 0.001 |
Ischemic heart disease, n (%) | 35 (31) | 24 (45.3) | 11 (18.3) | p = 0.002 |
Peripheral vascular disease, n (%) | 6 (5.3) | 4 (7.5) | 2 (3.3) | 0.32 |
Stroke, n (%) | 5 (4.4) | 4 (7.5) | 1 (1.7) | 0.13 |
Glucose level (mean, SD) | 141.4 ± 64.1 | 168.4 ± 80.6 | 117.4 ± 29.1 | p < 0.001 CI (−74.3, −27.6) |
HbA1C (mean, SD) | 6.1 ± 1.3 | 6.7 ± 1.3 | 5.3 ± 1.3 | p < 0.001 CI (−1.9, −1) |
All (n = 113) | Dedicated Endocrine Care (n = 53) | Routine Care (n = 60) | p-Value, CI | |
---|---|---|---|---|
Below-range BG (<110 mg/dL) (n, %) | 442 (17.2) | 201 (12.9) | 241 (23.6) | p < 0.001 |
Hypoglycemia (<70 mg/dL) n (%) | 34 (1.3) | 22 (1.4) | 12 (1.2) | p = 0.6 |
Time in range # n (%) | 560 (21.7) | 324 (20.8) | 236 (23.1) | p = 0.18 |
Hyperglycemic insulin response ## n (%) | 571 (61.1) | 457 (66.4) | 114 (46.3) | p < 0.001 |
All (n = 113) | Dedicated Endocrine Care (n = 53) | Routine Care (n = 60) | p-Value | |
---|---|---|---|---|
Readmission *, n (%) | 25 (22.1) | 11 (20.8) | 14 (23.3) | 0.74 |
Infection *, n (%) | 31 (27.4) | 14 (26.4) | 17 (28.3) | 0.82 |
Rejection, n (%) | 16 (14.2) | 6 (11.3) | 10 (16.7) | 0.42 |
Graft loss, n (%) | 7 (6.2) | 2 (3.8) | 5 (8.3) | 0.44 |
Daily Methylprednisolone Dosage (mg) # | All | Dedicated Endocrine Care Group | Routine Care Group | p-Value |
---|---|---|---|---|
Day 1 | 200 (100–250) | 200 (100–200) | 200 (106.2–250) | p = 0.06 |
Day 2 | 100 (100–160) | 160 (100–160) | 100 (100–160) | p = 0.046 |
Day 3 | 120 (25–120) | 120 (60–120) | 25 (25–120) | p = 0.009 |
Day 4 | 80 (25–80) | 80 (25–80) | 25 (25–80) | p = 0.037 |
Day 5 | 25 (25–25) | 25 (25–25) | 25 (25–25) | p = 0.6 |
Day 6 | 25 (25–25) | 25 (25–25) | 25 (25–25) | p = 0.69 |
Day 7 | 25 (0–25) | 25 (0–25) | 25 (25–25) | p = 0.074 |
Day 8 | 0 (0–25) | 0 (0–25) | 25 (0–25) | p = 0.045 |
All | Dedicated Endocrine Care Group | Routine Care Group | p-Value, CI | |
---|---|---|---|---|
Day 1 | 0.18 ± 0.11 | 0.18 ± 1 | 0.19 ± 0.12 | p = 0.86, CI (−0.04, 0.05) |
Day 2 | 0.2 ± 0.12 | 0.21 ± 0.11 | 0.19 ± 0.13 | p = 0.65, CI (−0.06, 0.04) |
Day 3 | 0.23 ± 0.13 | 0.25 ± 0.13 | 0.2 ± 0.14 | p = 0.11, CI (−0.1, 0.01) |
Day 4 | 0.27 ± 0.15 | 0.3 ± 0.15 | 0.24 ± 0.15 | p = 0.06, CI (−0.12, 0.03) |
Day 5 | 0.27 ± 0.13 | 0.27 ± 0.14 | 0.27 ± 0.11 | p = 0.98, CI (−0.06, 0.06) |
Day 6 | 0.3 ± 0.21 | 0.32 ± 0.15 | 0.28 ± 0.28 | p = 0.44, CI (−0.13, 0.06) |
Day 7 | 0.28 ± 0.14 | 0.27 ± 0.12 | 0.3 ± 0.16 | p = 0.35, CI (−0.04, 0.1) |
Day 8 | 0.26 ± 0.15 | 0.25 ± 0.13 | 0.26 ± 0.17 | p = 0.75, CI (−0.07, 0.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaplan, A.; Manela, T.; Hod, T.; Ghinea, R.; Mor, E.; Tirosh, A.; Tirosh, A.; Shlomai, G. Management of Early Post-Transplant Hyperglycemia by Dedicated Endocrine Care Improves Glycemic Outcomes. Clin. Pract. 2024, 14, 1960-1969. https://doi.org/10.3390/clinpract14050156
Kaplan A, Manela T, Hod T, Ghinea R, Mor E, Tirosh A, Tirosh A, Shlomai G. Management of Early Post-Transplant Hyperglycemia by Dedicated Endocrine Care Improves Glycemic Outcomes. Clinics and Practice. 2024; 14(5):1960-1969. https://doi.org/10.3390/clinpract14050156
Chicago/Turabian StyleKaplan, Alon, Tslil Manela, Tammy Hod, Ronen Ghinea, Eytan Mor, Amit Tirosh, Amir Tirosh, and Gadi Shlomai. 2024. "Management of Early Post-Transplant Hyperglycemia by Dedicated Endocrine Care Improves Glycemic Outcomes" Clinics and Practice 14, no. 5: 1960-1969. https://doi.org/10.3390/clinpract14050156
APA StyleKaplan, A., Manela, T., Hod, T., Ghinea, R., Mor, E., Tirosh, A., Tirosh, A., & Shlomai, G. (2024). Management of Early Post-Transplant Hyperglycemia by Dedicated Endocrine Care Improves Glycemic Outcomes. Clinics and Practice, 14(5), 1960-1969. https://doi.org/10.3390/clinpract14050156