An Investigation of the Underlying Evolution of Shale Gas Research’s Domain Based on the Co-Word Network
Abstract
:1. Introduction
2. Methods
3. Research Results and Discussions
3.1. The Evolution of SGR’s Hotspots at Each Stage
3.1.1. Research Hotspot Analysis during 1998–2010
3.1.2. Research Hotspot Analysis during 2011–2012
3.1.3. Research Hotspot Analysis during 2013–2014
3.1.4. Research Hotspot Analysis during 2015-2016
3.2. More Implications from the Evolution of SGR’s Hotspots at Each Stage
3.3. Analysis of the Underlying Evolutionary Law of SGR’s Knowledge Domain
3.3.1. The Small-World Mechanism of the Evolving Domain
3.3.2. The Scale-Free Mechanism of the Evolving Domain
3.4. Analysis of SGR in Regional Evolution of SG: Example of China
4. Conclusions
Conflicts of Interest
References
- Gao, J.; You, F. Design and optimization of shale gas energy systems: Overview, research challenges, and future directions. Comput. Chem. Eng. 2017, 106, 699–718. [Google Scholar] [CrossRef]
- Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries outside the United States. Available online: https://www.eia.gov/ (accessed on 25 November 2017).
- Bilgili, F.; Koçak, E.; Bulut, Ü.; Sualp, M.N. How did the US economy react to shale gas production revolution? An advanced time series approach. Energy 2016, 116, 963–977. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural gas from shale formation—The evolution, evidences and challenges of shale gas revolution in united states. Renew. Sustain. Energy Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Peebles, M.W.H. Evolution of the Gas Industry; Macmillan: Oxford, UK, 1980. [Google Scholar]
- Hill, D.G.; Lombardi, T.E.; Martin, J.P. Fractured shale gas potential in New York. Northeast. Geol. Environ. Sci. 2004, 26, 1–49. [Google Scholar]
- Melikoglu, M. Shale gas: Analysis of its role in the global energy market. Renew. Sustain. Energy Rev. 2014, 37, 460–468. [Google Scholar] [CrossRef]
- Geng, J.B.; Ji, Q.; Fan, Y. The impact of the North American shale gas revolution on regional natural gas markets: Evidence from the regime-switching model. Energy Policy 2016, 96, 167–178. [Google Scholar] [CrossRef]
- Chen, Z.; Hannigan, P. A shale gas resource potential assessment of Devonian horn river strat. Can. J. Earth Sci. 2016, 53, 156–167. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the western canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bull. 2008, 92, 87–125. [Google Scholar] [CrossRef]
- Wang, H.; Ma, F.; Tong, X.; Liu, Z.; Zhang, X.; Wu, Z.; Li, D.; Wang, B.; Xie, Y.; Yang, L. Assessment of global unconventional oil and gas resources. Pet. Explor. Dev. 2016, 43, 925–940. [Google Scholar] [CrossRef]
- Measham, T.G.; Fleming, D.A.; Schandl, H. A conceptual model of the socioeconomic impacts of unconventional fossil fuel extraction. Glob. Environ. Chang. 2016, 36, 101–110. [Google Scholar] [CrossRef]
- Karnkowski, P.H.; Pikulski, L.; Wolnowski, T. Petroleum geology of the polish part of the Baltic region—An overview. Geol. Q. 2010, 54, 143–158. [Google Scholar]
- Lis, A.; Stankiewicz, P. Framing shale gas for policy-making in Poland. J. Environ. Policy Plan. 2017, 19, 53–71. [Google Scholar] [CrossRef]
- Warner, D. Shale gas in Australia: A great opportunity comes with significant challenges. APPEA J. 2011, 53, 18–21. [Google Scholar] [CrossRef]
- Rees, N.; Carter, S.; Heinson, G.; Krieger, L. Monitoring shale gas resources in the cooper basin using magnetotellurics. Geophysics 2016, 81, A13–A16. [Google Scholar] [CrossRef]
- Schulz, H.M.; Horsfield, B.; Sachsenhofer, R.F. Shale gas in Europe: A regional overview and current research activities. In Proceedings of the 7th Petroleum Geology Conference, London, UK, 30 March–2 April 2009; Volume 1, pp. 1079–1085. [Google Scholar]
- Mair, R.; Bickle, M.; Goodman, D.; Koppelman, B.; Roberts, J.; Selley, R.; Shipton, Z.; Thomas, H.; Walker, A.; Woods, E.; et al. Shale Gas Extraction in the UK: A Review of Hydraulic Fracturing; Royal Society and Royal Academy of Engineering: London, UK, 2012; Volume 1–2, pp. 73–84. [Google Scholar]
- Westaway, R. Repurposing of disused shale gas wells for subsurface heat storage: Preliminary analysis concerning UK issues. Q. J. Eng. Geol. Hydrogeol. 2016, 49, 213–227. [Google Scholar] [CrossRef]
- Black, D.E.; Booth, P.W.K.; Wit, M.J.D. Petrographic, geochemical and petro-physical analysis of the collingham formation near jansenville, Eastern Cape, South Africa—Potential cap rocks to shale gas in the karoo. S. Afr. J. Geol. 2016, 119, 171–186. [Google Scholar] [CrossRef]
- Pietersen, K.; Kanyerere, T.; Levine, A.; Matshini, A.; He, B. An analysis of the challenges for groundwater governance during shale gas development in South Africa. Water SA 2016, 42, 421–431. [Google Scholar] [CrossRef]
- Bertassoli, D.J., Jr.; Sawakuchi, H.O.; Almeida, N.S.; Castanheira, B.; Alem, V.A.T.; Camargo, M.G.P.; Krusche, A.V.; Brochsztain, S.; Sawakuchi, A.O. Biogenic methane and carbon dioxide generation in organic-rich shales from southeastern Brazil. Int. J. Coal Geol. 2016, 162, 1–13. [Google Scholar] [CrossRef]
- Mendhe, V.A.; Mishra, S.; Varma, A.K.; Kamble, A.D.; Bannerjee, M.; Sutay, T. Gas reservoir characteristics of the lower gondwana shales in Raniganj basin of eastern India. J. Pet. Sci. Eng. 2016, 149, 649–664. [Google Scholar] [CrossRef]
- Yao, J.; Sun, H.; Fan, D.Y.; Wang, C.C.; Sun, Z.X. Numerical simulation of gas transport mechanisms in tight shale gas reservoirs. Pet. Sci. 2013, 10, 528–537. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Haghshenas, B.; Ghanizadeh, A.; Qanbari, F.; Williams-Kovacs, J.D.; Riazi, N.; Debuhr, C.; Deglint, H.J. Nanopores to megafractures: Current challenges and methods for shale gas reservoir and hydraulic fracture characterization. J. Nat. Gas Sci. Eng. 2016, 31, 612–657. [Google Scholar] [CrossRef]
- Chen, X.; Bao, S.; Hou, D.; Mao, X. Methods and key parameters for shale gas resource evaluation. Pet. Explor. Dev. Online 2012, 39, 605–610. [Google Scholar] [CrossRef]
- Hill, R.J.; Zhang, E.; Katz, B.J.; Tang, Y. Modeling of gas generation from the barnett shale, fort worth basin, texas. AAPG Bull. 2007, 91, 501–521. [Google Scholar] [CrossRef]
- Civan, F.; Rai, C.S.; Sondergeld, C.H. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms. Transp. Porous Media 2011, 86, 925–944. [Google Scholar] [CrossRef]
- Rutqvist, J.; Rinaldi, A.P.; Cappa, F.; Moridis, G.J. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. J. Pet. Sci. Eng. 2013, 107, 31–44. [Google Scholar] [CrossRef]
- Cho, Y.; Ozkan, E.; Apaydin, O.G. Pressure-dependent natural-fracture permeability in shale and its effect on shale-gas well production. SPE Reserv. Eval. Eng. 2013, 16, 216–228. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, K.S. Performance of shale gas reservoirs with nonuniform multiple hydraulic fractures. Energy Sources Part A Recovery Util. Environ. Eff. 2015, 37, 1455–1463. [Google Scholar] [CrossRef]
- Wang, G.; Carr, T.R. Organic-rich marcellus shale lithofacies modeling and distribution pattern analysis in the Appalachian basin. AAPG Bull. 2013, 97, 2173–2205. [Google Scholar] [CrossRef]
- Gracceva, F.; Zeniewski, P. Exploring the uncertainty around potential shale gas development—A global energy system analysis based on tiam (times integrated assessment model). Energy 2013, 57, 443–457. [Google Scholar] [CrossRef]
- Jia, A.; Wei, Y.; Jin, Y. Progress in key technologies for evaluating marine shale gas development in China. Pet. Explor. Dev. 2016, 43, 1035–1042. [Google Scholar] [CrossRef]
- Luo, X.; Wang, S.; Jing, Z.; Xu, G. Analysis of Dry CO2 Fracturing Technology for Efficient Development of Shale Gas Reservoirs. In Proceedings of the 2016 5th International Conference on Measurement, Instrumentation and Automation, Shenzhen, China, 17–18 September 2016; Volume 138, pp. 30–33. [Google Scholar]
- Liss, W.E. Impacts of shale gas advancements on natural gas utilization in the United States. Energy Technol. 2015, 2, 953–967. [Google Scholar] [CrossRef]
- Wilkins, R.F.; Menefee, A.H.; Clarens, A.F. Environmental life cycle analysis of water and CO2-based fracturing fluids used in unconventional gas production. Environ. Sci. Technol. 2016, 50, 13134–13141. [Google Scholar] [CrossRef] [PubMed]
- Vidic, R.D.; Brantley, S.L.; Vandenbossche, J.M.; Yoxtheimer, D.; Abad, J.D. Impact of shale gas development on regional water quality. Science 2013, 340, 1235009. [Google Scholar] [CrossRef] [PubMed]
- Warner, N.R.; Christie, C.A.; Jackson, R.B.; Vengosh, A. Impacts of shale gas wastewater disposal on water quality in western pennsylvania. Environ. Sci. Technol. 2013, 47, 11849–11857. [Google Scholar] [CrossRef] [PubMed]
- Burnham, A.; Han, J.; Clark, C.E.; Wang, M.; Dunn, J.B.; Palourivera, I. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environ. Sci. Technol. 2012, 46, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Rahm, B.G.; Riha, S.J. Toward strategic management of shale gas development: Regional, collective impacts on water resources. Environ. Sci. Policy 2012, 17, 12–23. [Google Scholar] [CrossRef]
- Jenner, S.; Lamadrid, A.J. Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States. Energy Policy 2013, 53, 442–453. [Google Scholar] [CrossRef]
- Cotton, M.; Rattle, I.; Alstine, J.V. Shale gas policy in the United Kingdom: An argumentative discourse analysis. Energy Policy 2014, 73, 427–438. [Google Scholar] [CrossRef]
- Dilmore, R.M.; Iii, J.I.S.; Glosser, D.; Carter, K.M.; Bain, D.J. Spatial and temporal characteristics of historical oil and gas wells in pennsylvania: Implications for new shale gas resources. Environ. Sci. Technol. 2015, 49, 12015–12023. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, C.; Lettieri, P.; Chapman, C. Life cycle assessment of shale gas in the UK. Energy Procedia 2015, 75, 2706–2712. [Google Scholar] [CrossRef]
- McJeon, H.; Edmonds, J.; Bauer, N.; Clarke, L.; Fisher, B.; Flannery, B.P.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; et al. Limited impact on decadal-scale climate change from increased use of natural gas. Nature 2014, 514, 482–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwin, S.; Carlson, K.; Knox, K.; Douglas, C.; Rein, L. Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado. Environ. Sci. Technol. 2014, 48, 5991–5995. [Google Scholar] [CrossRef] [PubMed]
- Lutz, B.D.; Lewis, A.N.; Doyle, M.W. Generation, transport, and disposal of wastewater associated with marcellus shale gas development. Water Resour. Res. 2013, 49, 647–656. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Pollastro, R.M.; Jarvie, D.M.; Hill, R.J.; Adams, C.W. Geologic framework of the Mississippian Barnett shale, barnett-paleozoic total petroleum system, bend arch–fort worth basin, Texas. AAPG Bull. 2007, 91, 405–436. [Google Scholar] [CrossRef]
- Hill, R.J.; Jarvie, D.M.; Pollastro, R.M.; Bowker, K.A.; Claxton, B.L. Geochemistry of an unconventional gas prospect: The Barnett Shale gas model. Geochim. Cosmochim. Acta 2004, 68, A231. [Google Scholar]
- Watkins, E.M. Mitsubishi, PWE to form Canadian shale gas joint venture. Oil Gas J. 2010, 108, 27–28. [Google Scholar]
- Court, B.; Celia, M.A.; Nordbotten, J.M.; Elliot, T.R. Active and integrated management of water resources throughout CO2, capture and sequestration operations. Energy Procedia 2011, 4, 4221–4229. [Google Scholar] [CrossRef] [Green Version]
- Court, B.; Elliot, T.R.; Dammel, J.; Buscheck, T.A.; Rohmer, J.; Celia, M.A. Promising synergies to address water, sequestration, legal, and public acceptance issues associated with large-scale implementation of CO2 sequestration. Mitig. Adapt. Strateg. Glob. Chang. 2012, 17, 569–599. [Google Scholar] [CrossRef]
- Bernard, S.; Wirth, R.; Schreiber, A.; Schulz, H.M.; Horsfield, B. Formation of nanoporous pyrobitumen residues during maturation of the barnett shale (fort worth basin). Int. J. Coal Geol. 2012, 103, 3–11. [Google Scholar] [CrossRef]
- Bernard, S.; Horsfield, B.; Schulz, H.M.; Wirth, R.; Schreiber, A.; Sherwood, N. Geochemical evolution of organic-rich shales with increasing maturity: A stxm and tem study of the posidonia shale (lower toarcian, northern Germany). Mar. Pet. Geol. 2012, 31, 70–89. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, L.; Wang, H.; Feng, G. Retracted article: Pressure transient analysis for multi-stage fractured horizontal wells in shale gas reservoirs. Transp. Porous Media 2012, 93, 635–653. [Google Scholar] [CrossRef]
- Kirk, M.F.; Martini, A.M.; Breecker, D.O.; Colman, D.R.; Takacs-Vesbach, C.; Petsch, S.T. Impact of commercial natural gas production on geochemistry and microbiology in a shale-gas reservoir. Chem. Geol. 2012, 332, 15–25. [Google Scholar] [CrossRef]
- Patwardhan, S.D.; Famoori, F.; Gunaji, R.G.; Govindarajan, S.K. Simulation and mathematical modeling of stimulated shale gas reservoirs. Ind. Eng. Chem. Res. 2014, 53, 19788–19805. [Google Scholar] [CrossRef]
- Zhai, Z.; Wang, X.; Jin, X.; Sun, L.; Li, J.; Cao, D. Adsorption and diffusion of shale gas reservoirs in modeled clay minerals at different geological depths. Energy Fuels 2014, 28, 7467–7473. [Google Scholar] [CrossRef]
- Feng, Z.Q.; Bing-Song, Y.U.; Zeng, Q.N.; Yu-Fei, L.I.; Jiang, H.J. Characteristics and main controlling factors of shale gas reservoir in the southeastern Ordos basin. Spec. Oil Gas Reserv. 2013, 20, 40–43. [Google Scholar]
- Zhang, R.; Zhang, L.; Wang, R.; Zhao, Y.; Huang, R. Simulation of a multistage fractured horizontal well with finite conductivity in composite shale gas reservoir through finite-element method. Energy Fuels 2016, 30, 9036–9049. [Google Scholar] [CrossRef]
- Song, W.; Yao, J.; Li, Y.; Sun, H.; Zhang, L.; Yang, Y.; Zhao, J.; Sui, H. Apparent gas permeability in an organic-rich shale reservoir. Fuel 2016, 181, 973–984. [Google Scholar] [CrossRef]
- Wang, J.; Kang, Q.; Chen, L.; Rahman, S.S. Pore-scale lattice Boltzmann simulation of micro-gaseous flow considering surface diffusion effect. Int. J. Coal Geol. 2017, 169, 62–73. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, A.Y.; Duncan, I.J. Shale gas wastewater management under uncertainty. J. Environ. Manag. 2016, 165, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Jaballah, H.J.B.; Ammar, F.B. Life cycle assessment impact of fraking shale gas in Tunisia. In Proceedings of the 2015 6th International Renewable Energy Congress, Sousse, Tunisia, 24–26 March 2015; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Li, Y.; Li, Y.; Wang, B.; Chen, Z.; Nie, D. The status quo review and suggested policies for shale gas development in china. Renew. Sustain. Energy Rev. 2016, 59, 420–428. [Google Scholar] [CrossRef]
- Brandt, A.R. Converting oil shale to liquid fuels with the Alberta taciuk processor: Energy inputs and greenhouse gas emissions. Energy Fuels 2015, 23, 6253–6258. [Google Scholar] [CrossRef]
- Han, X.X.; Jiang, X.M.; Cui, Z.G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale. Appl. Energy 2009, 86, 2381–2385. [Google Scholar] [CrossRef]
- Guan, X.X.; Fan, Y.X.; Cao, Q. Thoughts on unconventional oil and gas development in China. Appl. Mech. Mater. 2012, 121–126, 3034–3038. [Google Scholar] [CrossRef]
- Liang, C.; Jiang, Z.; Zhang, C.; Guo, L.; Yang, Y.; Li, J. The shale characteristics and shale gas exploration prospects of the lower Silurian Longmaxi shale, Sichuan basin, south China. J. Nat. Gas Sci. Eng. 2014, 21, 636–648. [Google Scholar] [CrossRef]
- Chen, S.S.; Sun, Y.; Tsang, D.C.; Graham, N.J.; Ok, Y.S.; Feng, Y.; Li, X.-D. Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: Metal/metalloid bioaccessibility, microtox bioassay, and enzyme activities. Sci. Total Environ. 2017, 579, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Wang, G. Shale gas sweet spot identification and precise geo-steering drilling in Weiyuan block of Sichuan basin, SW China. Pet. Explor. Dev. 2016, 43, 1067–1075. [Google Scholar] [CrossRef]
- Sun, Y.; Bai, B.; Ma, Y.; Flori, R., Jr. Flow behavior characterization of a polyacrylamide-based friction reducer in microchannels. Ind. Eng. Chem. Res. 2014, 53, 20036–20043. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Zhu, D. Fracture-stimulation diagnostics in horizontal wells through use of distributed-temperature-sensing technology. SPE Prod. Oper. 2012, 27, 356–362. [Google Scholar] [CrossRef]
Number | Keyword | Degree (Rank) | Frequency (Rank) | Betweenness Centrality (Rank) |
---|---|---|---|---|
1 | shale gas | 21(1) | 10(1) | 246.500(1) |
2 | organic carbon | 12(2) | 3(2) | 44.500(4) |
3 | kerogen | 10(3) | 3(3) | 4.499(8) |
4 | vitrinite reflectance | 9(4) | 2(4) | 0.499(9) |
5 | maceral | 9(5) | 2(5) | 0.499(10) |
6 | black shale | 9(6) | 2(6) | 0.499(11) |
7 | methane | 8(7) | 2(8) | 5.000(7) |
8 | petroleum | 8(8) | 2(7) | 0.000(12) |
9 | Permian | 8(9) | 1(12) | 0.000(13) |
10 | migration | 8(10) | 1(13) | 0.000(14) |
11 | maturity | 8(11) | 1(14) | 120.000(2) |
12 | sedimentary basin | 7(12) | 2(9) | 78.000(3) |
13 | gas | 5(13) | 2(11) | 13.500(5) |
14 | shale | 5(14) | 2(10) | 13.500(6) |
15 | pipelines | 4(15) | 1(15) | 0.000(15) |
16 | producers | 4(16) | 1(16) | 0.000(16) |
17 | supply demand | 4(17) | 1(17) | 0.000(17) |
18 | reserves | 4(18) | 1(18) | 0.000(18) |
19 | resource | 4(19) | 1(19) | 0.000(19) |
20 | resource potential | 4(20) | 1(20) | 0.000(20) |
21 | source rock and reservoir | 4(21) | 1(21) | 0.000(21) |
22 | thickness | 4(22) | 1(22) | 0.000(22) |
23 | Pleistocene glaciation | 3(23) | 1(23) | 0.000(23) |
24 | salinity | 3(24) | 1(24) | 0.000(24) |
25 | porosity | 3(25) | 1(25) | 0.000(25) |
Number | Keyword | Degree (Rank) | Frequency (Rank) | Betweenness Centrality (Rank) |
---|---|---|---|---|
1 | shale gas | 41(1) | 71(1) | 765.414(1) |
2 | unconventional Gas | 17(2) | 11(4) | 66.680(3) |
3 | natural gas | 15(3) | 11(3) | 80.579(2) |
4 | hydraulic fracture | 9(4) | 16(2) | 11.227(11) |
5 | shale oil | 8(5) | 5(6) | 21.045(5) |
6 | energy policy | 8(6) | 4(11) | 4.117(15) |
7 | shale | 8(7) | 7(5) | 5.367(14) |
8 | greenhouse gases | 8(8) | 3(14) | 19.305(6) |
9 | regulation | 7(9) | 4(10) | 6.450(13) |
10 | tight gas | 6(10) | 5(7) | 3.834(16) |
11 | pyrobitumen | 6(11) | 3(19) | 2.000(20) |
12 | fugitive emissions | 6(12) | 2(31) | 0.542(27) |
13 | Europe | 6(13) | 3(18) | 2.658(19) |
14 | FIB | 5(14) | 3(22) | 0.000(32) |
15 | desorption | 5(15) | 4(8) | 17.357(7) |
16 | China | 5(16) | 4(12) | 3.833(17) |
17 | kerogen | 5(17) | 2(35) | 0.000(33) |
18 | TEM | 5(18) | 2(36) | 0.000(34) |
19 | STXM | 5(19) | 2(37) | 0.000(35) |
20 | global warming potential | 5(20) | 2(38) | 0.000(36) |
21 | source rock | 5(21) | 3(17) | 2.833(18) |
22 | Q410 | 5(22) | 2(30) | 1.000(25) |
23 | Coalbed methane | 5(23) | 2(27) | 1.667(21) |
24 | mathematical model | 4(24) | 3(15) | 13.321(8) |
25 | diffusion | 4(25) | 4(9) | 13.321(9) |
Number | Keyword | Degree (Rank) | Frequency (Rank) | Betweenness Centrality (Rank) |
---|---|---|---|---|
1 | shale gas | 44(1) | 204(1) | 679.988(1) |
2 | hydraulic fracture | 23(2) | 77(2) | 126.439(2) |
3 | natural gas | 18(3) | 39(3) | 51.096(3) |
4 | shale | 16(4) | 25(4) | 48.748(4) |
5 | unconventional gas | 10(5) | 13(6) | 16.353(5) |
6 | regulation | 10(6) | 6(21) | 6.845(11) |
7 | China | 9(7) | 21(5) | 7.617(9) |
8 | climate change | 9(8) | 10(9) | 5.830(14) |
9 | tight gas | 8(9) | 11(7) | 9.445(6) |
10 | Marcellus shale | 8(10) | 11(8) | 7.713(8) |
11 | unconventional | 8(11) | 4(37) | 5.797(15) |
12 | gas | 7(12) | 8(15) | 5.602(17) |
13 | development | 6(13) | 5(31) | 7.477(10) |
14 | methane | 6(14) | 9(10) | 6.420(12) |
15 | Sichuan Basin | 6(15) | 9(11) | 5.253(18) |
16 | gas shale | 6(16) | 9(12) | 5.097(20) |
17 | porosity | 6(17) | 6(22) | 4.408(22) |
18 | seepage | 6(18) | 4(38) | 3.774(24) |
19 | adsorption | 6(19) | 8(16) | 3.647(25) |
20 | coal | 6(20) | 4(39) | 3.344(26) |
21 | produced water | 6(21) | 6(23) | 2.750(29) |
22 | coalbed methane | 6(22) | 6(24) | 2.383(30) |
23 | hydrofracking | 6(23) | 4(40) | 1.350(34) |
24 | energy policy | 6(24) | 8(17) | 1.111(36) |
25 | Knudsen diffusion | 5(25) | 6(25) | 7.907(7) |
Number | Keyword | Degree (Rank) | Frequency (Rank) | Betweenness Centrality (Rank) |
---|---|---|---|---|
1 | shale gas | 47(1) | 433(1) | 520.495(1) |
2 | hydraulic fracture | 34(2) | 178(2) | 200.804(2) |
3 | shale | 26(3) | 53(3) | 81.652(3) |
4 | pore structure | 21(4) | 38(5) | 47.158(4) |
5 | shale gas reservoir | 16(5) | 34(6) | 26.308(5) |
6 | Sichuan Basin | 14(6) | 28(7) | 15.476(6) |
7 | adsorption | 13(7) | 18(11) | 10.655(7) |
8 | permeability | 12(8) | 21(9) | 6.624(11) |
9 | desorption | 11(9) | 14(18) | 7.820(9) |
10 | porosity | 11(10) | 17(15) | 4.134(16) |
11 | natural gas | 10(11) | 42(4) | 6.705(10) |
12 | anisotropy | 10(12) | 9(33) | 3.476(19) |
13 | Marcellus shale | 9(13) | 23(8) | 8.895(8) |
14 | flowback | 9(14) | 12(23) | 4.922(12) |
15 | pore size distribution | 9(15) | 8(49) | 4.391(14) |
16 | organic matter | 9(16) | 10(31) | 3.483(18) |
17 | Knudsen diffusion | 9(17) | 17(13) | 3.284(20) |
18 | diffusion | 9(18) | 9(34) | 2.310(27) |
19 | methane | 8(19) | 20(10) | 4.760(13) |
20 | gas shale | 8(20) | 8(44) | 3.267(21) |
21 | fractal dimension | 8(21) | 11(25) | 3.217(22) |
22 | numerical simulation | 8(22) | 18(12) | 2.816(24) |
23 | Ordos Basin | 7(23) | 15(16) | 3.694(17) |
24 | hydraulic fracture network | 7(24) | 11(26) | 2.792(25) |
25 | thermal maturity | 7(25) | 14(19) | 2.617(26) |
Stage | Cg | Lg | Crand | Land | S |
---|---|---|---|---|---|
1998–2010 | 0.957 | 2.111 | 0.054 | 2.664 | 22.365 |
2011–2012 | 0.934 | 2.670 | 0.015 | 3.411 | 79.547 |
2013–2014 | 0.886 | 3.062 | 0.007 | 4.125 | 170.512 |
2015–2016 | 0.716 | 2.739 | 0.007 | 3.809 | 142.244 |
Stage | 2011–2012 | 2013–2014 | 2015–2016 | ||
---|---|---|---|---|---|
Degree | |||||
Node | |||||
shale gas | 287 | 485 | 551 | ||
hydraulic fracture | 50 | 118 | 239 | ||
shale gas reservoir | 10 | 20 | 62 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Liu, Y.; Xiao, S.; Zhang, Y.; Chai, L. An Investigation of the Underlying Evolution of Shale Gas Research’s Domain Based on the Co-Word Network. Sustainability 2018, 10, 164. https://doi.org/10.3390/su10010164
Li W, Liu Y, Xiao S, Zhang Y, Chai L. An Investigation of the Underlying Evolution of Shale Gas Research’s Domain Based on the Co-Word Network. Sustainability. 2018; 10(1):164. https://doi.org/10.3390/su10010164
Chicago/Turabian StyleLi, Wen, Yuxi Liu, Siqi Xiao, Yu Zhang, and Lihe Chai. 2018. "An Investigation of the Underlying Evolution of Shale Gas Research’s Domain Based on the Co-Word Network" Sustainability 10, no. 1: 164. https://doi.org/10.3390/su10010164
APA StyleLi, W., Liu, Y., Xiao, S., Zhang, Y., & Chai, L. (2018). An Investigation of the Underlying Evolution of Shale Gas Research’s Domain Based on the Co-Word Network. Sustainability, 10(1), 164. https://doi.org/10.3390/su10010164