A Framework of Payment for Ecosystem Services to Protect Cropland: A Case Study of the Yangtze River Delta in China
Abstract
:1. Introduction
2. PES Framework for Cropland Protection
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. Data Sources and Processing
2.2. The PES Framework
2.2.1. Who to Compensate: A Supply-Demand Analysis of Cropland
2.2.2. How Much to Pay: Payment Accounting Using Compensation Quality Standard and Value Standard
2.2.3. Mechanisms for Payment: Regulatory Regime of PES
2.3. Supply-Demand Analysis of Cropland
2.4. Determination of Quality and Value Standards for Compensation
2.4.1. Quality Standard for Cropland Compensation: Quality Assessment
2.4.2. Value Standard for Cropland Compensation: Ecosystem Services Assessment
2.5. Accounting and Payment Regulation of Compensation Fund
3. Results
3.1. Gap between Cropland Supply and Demand
3.2. Quality and Value Standard for Compensation
3.2.1. Quality Standard for Compensation
3.2.2. Value Standard for Compensation
3.3. Regional Compensation Fund Accounting and Payment
3.4. Regulatory Regime for PES
3.4.1. Compensation Fund Management
3.4.2. Compensation Supervision and Punishment
4. Conclusions
- (1)
- Cropland quality index in different regions are spatial heterogeneous. The national average CQI is 0.6353. In our case study, the quality of cropland in Shanghai is obviously lower than that in other cities in YZD.
- (2)
- The ecosystem services derived from cropland could be categorized into the provisioning services (agricultural products), regulating services (generation and maintenance of ecological balance, biological diversity protection, climate regulation, nutrient storage, cycling, etc.) and cultural services (food security and social security). The beneficiaries of cropland protection should pay $4228.88 per hectare standardized cropland to the suppliers.
- (3)
- With the implementation of regulatory regime for PES, service delivery can be ensured. Shanghai should make a payment of $2610.56 million. In contrast, Yangzhou could receive compensation of $679.80 million each year. By this means, different regions can achieve tradeoff between economic development and cropland protection.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Lichtenberg, E.; Ding, C. Local officials as land developers: Urban spatial expansion in China. J. Urban Econ. 2009, 66, 57–64. [Google Scholar] [CrossRef]
- Deng, X.; Huang, S.; Zhan, J.; Zhao, T. A Methodology Framework for Regional Land-use Change Studies based on Landsat TM images: A Case Study in Northeast China. Chin. J. Popul. Res. Environ. 2004, 2, 3–11. [Google Scholar]
- Ministry of Land and Resources of the People’s Republic of China. China Land & Resources Almanac; Editorial Department of China Land & Resources Almanac: Beijing, China, 2011.
- Bradbury, I.; Kirkby, R.; Shen, G. Development and environment: The case of rural industrialization and small-town growth in China. Ambio 1996, 25, 204–209. [Google Scholar]
- Ding, C. Policy and praxis of land acquisition in China. Land Use Policy 2007, 24, 1–13. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- D’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed]
- Cetin, M.; Adiguzel, F.; Kaya, O.; Sahap, A. Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environ. Dev. Sustain. 2016, 1–15. [Google Scholar] [CrossRef]
- Ceti̇n, M. Using GIS analysis to assess urban green space in terms of accessibility: Case study in Kutahya. Int. J. Sustain. Dev. World Ecol. 2015, 22, 420–424. [Google Scholar] [CrossRef]
- Kawasaki, K.; Uchida, S. Quality Matters more than quantity: Asymmetric temperature effects on crop yield and quality grade. Am. J. Agric. Econ. 2016, 98, 1195–1209. [Google Scholar] [CrossRef]
- Lynch, L.; Musser, W.N. A relative efficiency analysis of farmland preservation programs. Land Econ. 2001, 77, 577–594. [Google Scholar] [CrossRef]
- Lewis, D.J.; Barham, B.L.; Zimmerer, K.S. Spatial externalities in agriculture: Empirical analysis, statistical identification, and policy implications. World Dev. 2008, 36, 1813–1829. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1998, 25, 3–15. [Google Scholar] [CrossRef]
- Irwin, E.G.; Bockstael, N.E. Land use externalities, open space preservation, and urban sprawl. Reg. Sci. Urban Econ. 2004, 34, 705–725. [Google Scholar] [CrossRef]
- Ives, C.D.; Kendal, D. Values and attitudes of the urban public towards peri-urban agricultural land. Land Use Policy 2013, 34, 80–90. [Google Scholar] [CrossRef]
- Banerjee, S.; Cason, T.N.; de Vries, F.P.; Hanley, N. Transaction costs, communication and spatial coordination in Payment for Ecosystem Services Schemes. J. Environ. Econ. Manag. 2017, 83, 68–89. [Google Scholar] [CrossRef]
- Del Corso, J.-P.; Nguyen, T.D.P.G.; Kephaliacos, C. Acceptance of a payment for ecosystem services scheme: The decisive influence of collective action. Environ. Values 2017, 26, 177–202. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Villarroya, A.; Puig, J. Ecological compensation and environmental impact assessment in Spain. Environ. Impact Assess. Rev. 2010, 30, 357–362. [Google Scholar] [CrossRef]
- Hassan, R.M.; Scholes, R.; Ash, N. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Costanza, R.; Groot, R.D.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Kroeger, T.; Casey, F. An assessment of market-based approaches to providing ecosystem services on agricultural lands. Ecol. Econ. 2007, 64, 321–332. [Google Scholar] [CrossRef]
- Hein, L.; van Koppen, K.; de Groot, R.S.; van Ierland, E.C. Spatial scales, stakeholders and the valuation of ecosystem services. Ecol. Econ. 2006, 57, 209–228. [Google Scholar] [CrossRef]
- Norgaard, R.B. Ecosystem services: From eye-opening metaphor to complexity blinder. Ecol. Econ. 2010, 69, 1219–1227. [Google Scholar] [CrossRef]
- Brown, M.E.; Funk, C.C. Food security under climate change. Science 2008, 319, 580–581. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.; Allen, K.; Attlee, A.; Dougill, A.; Evans, K.; Kenter, J.; Hoy, J.; McNab, D.; Stead, S.; Twyman, C. A place-based approach to payments for ecosystem services. Glob. Environ. Chang. 2017, 43, 92–106. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, T.; Bernués, A.; Alfnes, F. Psychographic profile affects willingness to pay for ecosystem services provided by Mediterranean high nature value farmland. Ecol. Econ. 2016, 128, 232–245. [Google Scholar] [CrossRef]
- Dobbs, T.L.; Pretty, J. Case study of agri-environmental payments: The United Kingdom. Ecol. Econ. 2008, 65, 765–775. [Google Scholar] [CrossRef]
- Claassen, R.; Cattaneo, A.; Johansson, R. Cost-effective design of agri-environmental payment programs: US experience in theory and practice. Ecol. Econ. 2008, 65, 737–752. [Google Scholar] [CrossRef]
- Baylis, K.; Peplow, S.; Rausser, G.; Simon, L. Agri-environmental policies in the EU and United States: A comparison. Ecol. Econ. 2008, 65, 753–764. [Google Scholar] [CrossRef]
- Grima, N.; Singh, S.J.; Smetschka, B.; Ringhofer, L. Payment for Ecosystem Services (PES) in Latin America: Analysing the performance of 40 case studies. Ecosyst. Serv. 2016, 17, 24–32. [Google Scholar] [CrossRef]
- Bernués, A.; Tello-García, E.; Rodríguez-Ortega, T.; Ripoll-Bosch, R.; Casasús, I. Agricultural practices, ecosystem services and sustainability in High Nature Value farmland: Unraveling the perceptions of farmers and nonfarmers. Land Use Policy 2016, 59, 130–142. [Google Scholar] [CrossRef]
- Xu, Z.; Bennett, M.T.; Tao, R.; Xu, J. China’s Sloping Land Conversion Program four years on: Current situation and pending issues. Int. For. Rev. 2004, 6, 317–326. [Google Scholar] [CrossRef]
- Gauvin, C.; Uchida, E.; Rozelle, S.; Xu, J.; Zhan, J. Cost-effectiveness of payments for ecosystem services with dual goals of environment and poverty alleviation. Environ. Manag. 2010, 45, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Pagiola, S. Payments for environmental services in Costa Rica. Ecol. Econ. 2008, 65, 712–724. [Google Scholar] [CrossRef] [Green Version]
- Naeem, S.; Ingram, J.C.; Varga, A.; Agardy, T.; Barten, P.; Bennett, G.; Bloomgarden, E.; Bremer, L.L.; Burkill, P.; Cattau, M.; et al. Get the science right when paying for nature’s services. Science 2015, 347, 1206–1207. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, G.; Tan, Y.; Tang, X.; Jiang, H.; Sun, X.; Zhuang, Q.; Li, H. Impacts of land use changes on net ecosystem production in the Taihu Lake Basin of China from 1985 to 2010. J. Geophys. Res. Biogeosci. 2017, 122, 690–707. [Google Scholar] [CrossRef]
- Gao, J.; Wei, Y.; Chen, W.; Yenneti, K. Urban land expansion and structural change in the Yangtze River Delta, China. Sustainability 2015, 7, 10281–10307. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO); International Institute for Applied Systems Analysis (IIASA); International Soil Reference and Information Centre (ISRIC); Institute of Soil Science, Chinese Academy of Sciences (ISSCAS). JRC, Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
- International Institute for Applied Systems Analysis (IIASA); Food and Agriculture Organization of the United Nations (FAO). Global Agro-Ecological Zones (GAEZ v3.0); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2012. [Google Scholar]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S.; Hoffman, A.; Giovannini, E. Handbook on constructing composite indicators. Soc. Policies Data 2005. [Google Scholar] [CrossRef]
- Gan, X.; Fernandez, I.C.; Guo, J.; Wilson, M.; Zhao, Y.; Zhou, B.; Wu, J. When to use what: Methods for weighting and aggregating sustainability indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar] [CrossRef]
- Cai, Y.; Huo, Y. Reevaluating Cultivated Land in China: Method and Case Studies. Acta Geogr. Sin. 2006, 10, 1084–1092. [Google Scholar]
- Pieri, C.J. Land Quality Indicators; World Bank Publications: Washington, DC, USA, 1995; Volume 315. [Google Scholar]
- Organisation for Economic Co-Operation and Development. OECD Core Set of Indicators for Environmental Performance Reviews; Organisation for Economic Co-Operation and Development: Paris, France, 1993; Volume 83. [Google Scholar]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S. Tools for Composite Indicators Building; Institute for the Protection and Security of the Citizen: Ispra, Italy, 2005. [Google Scholar]
- Butler, C.D.; Duraiappah, A.; Kumar, P.; John, M.M.A.; Niu, W.Y.; Chambers, R.; Chopra, K.; Dasgupta, P. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2003; pp. 71–84. [Google Scholar]
- Xie, G.; Li, W.; Xiao, Y.; Zhang, B.; Lu, C.; An, K.; Wang, J.; Xu, K.; Wang, J. Forest ecosystem services and their values in Beijing. Chin. Geogr. Sci. 2010, 20, 51–58. [Google Scholar] [CrossRef]
- Hein, L.; Miller, D.C.; de Groot, R. Payments for ecosystem services and the financing of global biodiversity conservation. Curr. Opin. Environ. Sustain. 2013, 5, 87–93. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Kinzig, A.P.; Perrings, F.S.C., III; Polasky, S.; Smith, V.K.; Tilman, D.; Turner, B.L., II. Paying for ecosystem services—Promise and peril. Science 2011, 334, 603–604. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Baggethun, E.; de Groot, R.; Lomas, P.L.; Montes, C. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Dougill, A.J.; Stringer, L.C.; Leventon, J.; Riddell, M.; Rueff, H.; Spracklen, D.V.; Butt, E. Lessons from community-based payment for ecosystem service schemes: From forests to rangelands. Philos. Trans. R. Soc. Lond B Biol. Sci. 2012, 367, 3178–3190. [Google Scholar] [CrossRef] [PubMed]
Index | Dimension | Indicator | Definition | Positive-Negative Correlation |
---|---|---|---|---|
Land quality index | Pressure | Population density | Denotes the level of population aggregation | - |
GDP per capita | Indicator to measure economic development level | - | ||
Status | Nutrient availability | Soil texture, soil organic carbon, soil pH, and total exchangeable bases | + | |
Nutrient retention capacity | Soil organic carbon, soil texture, base saturation, and cation exchange capacity of soil and clay fraction | + | ||
Rooting conditions | Soil texture, bulk density, coarse fragments, vertical soil properties, and soil phases affecting root penetration, and soil depth and soil volume | + | ||
Oxygen availability to roots | Soil drainage and soil phases affecting soil drainage | + | ||
Excess salts | Soil salinity, soil sodicity, and soil phases influencing salt conditions | - | ||
Toxicity | Calcium carbonate and gypsum | - | ||
Workability | Soil texture, effective soil depth/volume, and soil phases constraining soil management | + | ||
Response | Fertilizer use | Application of chemical fertilizers per hectare | + | |
Effective irrigation fraction | Proportion of effective irrigation area of cropland | + |
Value Types | Equations | Definitions of Indicators |
---|---|---|
Total value | : Cropland total value : Cropland provisioning value : Cropland regulating value : Cropland cultural value | |
Provisioning value | : Net income of agricultural products : Social average profit modification | |
Regulating value | : Regulating value (Xie, 2010) | |
Cultural value of food security | : Value of national food security : Fees associated with cropland occupation : Annual expenditure associated with cropland protection | |
Cultural value of social security | : Value of social security : Pension insurance per capita : Cropland area per capita : Premium insurance for male citizens : Premium insurance for female citizens : Proportion of males in the total population : Proportion of females in the total population : Monthly basic living expenses of farmers : Monthly premium base |
Region | Cropland Supply (ha) | Demand | Supply-Demand Surplus or Deficit (ha) | ||||||
---|---|---|---|---|---|---|---|---|---|
Population (104 Persons) | Grain Demand (kg Per Capita) | Grain Yield Per Hectare (kg/ha) | Multi-Cropping Index (%) | Planting Structure | Self-Sufficiency Rate (%) | Cropland Demand (ha) | |||
Shanghai | 245,386.00 | 1412.32 | 400.00 | 6607.14 | 1.63 | 0.45 | 80.00 | 936,658.26 | −691,272.26 |
Nanjing | 239,313.81 | 632.42 | 400.00 | 6867.57 | 1.40 | 0.48 | 80.00 | 437,721.04 | −198,407.23 |
Wuxi | 130,063.93 | 466.56 | 400.00 | 6774.77 | 1.39 | 0.66 | 80.00 | 241,412.39 | −111,348.46 |
Changzhou | 158,773.74 | 360.80 | 400.00 | 7131.37 | 1.46 | 0.70 | 80.00 | 159,185.58 | −411.83 |
Suzhou | 231,286.36 | 637.66 | 400.00 | 7075.64 | 1.17 | 0.60 | 80.00 | 412,438.81 | −181,152.45 |
Nantong | 448,602.99 | 762.92 | 400.00 | 6145.11 | 1.91 | 0.62 | 80.00 | 337,044.02 | 111,558.97 |
Yangzhou | 309,899.47 | 459.12 | 400.00 | 6996.47 | 1.61 | 0.82 | 80.00 | 158,591.58 | 151,307.89 |
Zhenjiang | 161,954.53 | 270.71 | 400.00 | 6744.01 | 1.47 | 0.74 | 80.00 | 117,344.58 | 44,609.95 |
Taizhou | 311,328.57 | 504.65 | 400.00 | 7258.05 | 1.84 | 0.76 | 80.00 | 159,908.26 | 151,420.31 |
Hangzhou | 222,113.61 | 689.13 | 400.00 | 5739.82 | 1.72 | 0.46 | 80.00 | 488,578.74 | −266,465.13 |
Ningbo | 204,437.07 | 574.08 | 400.00 | 5764.62 | 1.56 | 0.47 | 80.00 | 431,054.11 | −226,617.03 |
Jiaxing | 204,247.19 | 341.60 | 400.00 | 6720.07 | 1.67 | 0.59 | 80.00 | 166,077.67 | 38,169.51 |
Huzhou | 138,101.43 | 259.98 | 400.00 | 6702.76 | 1.63 | 0.60 | 80.00 | 127,375.50 | 10,725.93 |
Shaoxing | 187,685.53 | 438.92 | 400.00 | 6293.87 | 1.76 | 0.56 | 80.00 | 226,620.62 | −38,935.09 |
Zhoushan | 25,689.63 | 96.77 | 400.00 | 4730.71 | 0.94 | 0.46 | 80.00 | 151,905.75 | −126,216.13 |
Taizhou | 187,045.14 | 583.15 | 400.00 | 5431.49 | 1.42 | 0.57 | 80.00 | 421,780.65 | −234,735.50 |
Total | 3,405,929.01 | 8490.78 | 400.00 | 6590.01 | 1.61 | 0.61 | 80.00 | 4,973,697.56 | −1,567,768.56 |
City | Shanghai | Nanjing | Wuxi | Changzhou | Suzhou | Nantong | Yangzhou | Zhenjiang |
Quality | 0.5673 | 0.6451 | 0.6362 | 0.6373 | 0.6004 | 0.6632 | 0.6750 | 0.6363 |
City | Taizhou | Hangzhou | Ningbo | Jiaxing | Huzhou | Shaoxing | Zhoushan | Taizhou |
Quality | 0.6647 | 0.6410 | 0.6915 | 0.6374 | 0.6616 | 0.6590 | 0.6715 | 0.6697 |
Value types | Components | Value ($/ha) |
---|---|---|
Provisioning value | Agricultural output value | 359.38 |
Regulating value | Value of regulating services | 2875.07 |
Cultural value | Food security value | 584.00 |
Social security value | 769.81 | |
Total value | —— | 4588.27 |
Value standard | —— | 4228.88 |
Region | Cropland Surplus (ha) | Cropland Quality Index | Standardized Compensation Area (ha) | Compensation Fund (Million $) |
---|---|---|---|---|
Shanghai | −691,272.26 | 0.57 | −617,317.55 | −2610.56 |
Nanjing | −198,407.23 | 0.65 | −201,450.96 | −851.91 |
Wuxi | −111,348.46 | 0.64 | −111,500.26 | −471.52 |
Changzhou | −411.83 | 0.64 | −413.12 | −1.75 |
Suzhou | −181,152.45 | 0.60 | −171,189.55 | −723.94 |
Nantong | 111,558.97 | 0.66 | 116,462.23 | 492.51 |
Yangzhou | 151,307.89 | 0.67 | 160,752.86 | 679.80 |
Zhenjiang | 44,609.95 | 0.64 | 44,679.72 | 188.95 |
Taizhou | 151,420.31 | 0.66 | 158,423.30 | 669.95 |
Hangzhou | −266,465.13 | 0.64 | −268,856.62 | −1136.96 |
Ningbo | −226,617.03 | 0.69 | −246,666.76 | −1043.12 |
Jiaxing | 38,169.51 | 0.64 | 38,291.97 | 161.93 |
Huzhou | 10,725.93 | 0.66 | 11,169.05 | 47.23 |
Shaoxing | −38,935.09 | 0.66 | −40,388.46 | −170.80 |
Zhoushan | −126,216.13 | 0.67 | −133,402.03 | −564.14 |
Taizhou | −234,735.50 | 0.67 | −247,435.08 | −1046.37 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhu, T.; Ou, M.; Pei, F.; Gan, X.; Ou, W.; Tao, Y. A Framework of Payment for Ecosystem Services to Protect Cropland: A Case Study of the Yangtze River Delta in China. Sustainability 2018, 10, 178. https://doi.org/10.3390/su10010178
Guo J, Zhu T, Ou M, Pei F, Gan X, Ou W, Tao Y. A Framework of Payment for Ecosystem Services to Protect Cropland: A Case Study of the Yangtze River Delta in China. Sustainability. 2018; 10(1):178. https://doi.org/10.3390/su10010178
Chicago/Turabian StyleGuo, Jie, Tianqi Zhu, Minghao Ou, Fengsong Pei, Xiaoyu Gan, Weixin Ou, and Yu Tao. 2018. "A Framework of Payment for Ecosystem Services to Protect Cropland: A Case Study of the Yangtze River Delta in China" Sustainability 10, no. 1: 178. https://doi.org/10.3390/su10010178
APA StyleGuo, J., Zhu, T., Ou, M., Pei, F., Gan, X., Ou, W., & Tao, Y. (2018). A Framework of Payment for Ecosystem Services to Protect Cropland: A Case Study of the Yangtze River Delta in China. Sustainability, 10(1), 178. https://doi.org/10.3390/su10010178