When a Good Is a Bad (or a Bad Is a Good)—Analysis of Data from an Ambiguous Nonmarket Valuation Setting
Abstract
:1. Introduction
2. Previous Research
3. The Empirical Application
3.1. Brief Background
3.2. The Contingent Valuation Survey
4. Analytical Framework
4.1. Theoretical Welfare Measures
4.2. WTP-WTA Data Pooling
4.3. Improve Statistical Efficiency with Additional Preference Information
- (i)
- In favour (and no to payment amount):
- (ii)
- Not in favour together with no to payment amount implies ,
- (iii)
- Not in favour together with yes to payment amount implies .
- (iv)
- Similarly, in the WTA version:
- (v)
- In favour (and yes to compensation amount) implies ,
- (vi)
- Not in favour together with no to compensation amount implies ,
- (vii)
- Not in favour together with yes to compensation amount implies .
5. Econometric Estimation
5.1. Basic Results
5.2. Conditioning on Visual Perceptions
5.3. Additional Robustness Checks
6. Discussion and Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Haab, T.C.; McConnel, K.E. Referendum Models and Negative Willingness to Pay: Alternative Solutions. J. Environ. Econ. Manag. 1997, 32, 251–270. [Google Scholar] [CrossRef]
- Kriström, B. Spike models in contingent valuation. Am. J. Agric. Econ. 1997, 79, 1013–1023. [Google Scholar] [CrossRef]
- Bohara, A.K.; Kerkvliet, J.; Berrens, R.P. Addressing Negative Willingness to Pay in Dichotomous Choice Contingent Valuation. Environ. Resour. Econ. 2001, 20, 173–195. [Google Scholar] [CrossRef]
- Amiguesa, J.P.; Boulatoff (Broadhead), C.; Desaiguesc, B.; Gauthierd, C.; Keithe, J.E. The benefits and costs of riparian analysis habitat preservation: A willingness to accept/willingness to pay contingent valuation approach. Ecol. Econ. 2002, 43, 17–31. [Google Scholar] [CrossRef]
- Aadland, D.; Caplan, A.J. Willingness to Pay for Curbside Recycling with Detection and Mitigation of Hypothetical Bias. Am. J. Agric. Econ. 2003, 85, 492–502. [Google Scholar] [CrossRef]
- Atkinson, G.; Day, B.; Morato, S.; Palmer, C. ‘Amenity’ or ‘eyesore’? Negative willingness to pay for options to replace electricity transmission towers. Appl. Econ. Lett. 2004, 11, 203–208. [Google Scholar] [CrossRef]
- Hanemann, W.M.; Kanninen, B.J. The Statistical Analysis of Discrete-Response CV Data. In Valuing Environmental Preferences: Theory and Practice of the Contingent Valuation Method in the US, EC, and Developing Countries; Bateman, I.J., Willis, K.G., Eds.; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Carson, R.T.; Hanemann, W.M. Contingent Valuation. In Handbook of Environmental Economics; Mäler, K.G., Vincent, J., Eds.; North-Holland: Amsterdam, The Netherlands, 2005; Volume 2. [Google Scholar]
- Steltzer, E. Cape Wind—Public Values and Perceptions: Application of Contingent Valuation Method. Master’s Thesis, University of New Hampshire, Durham, NH, USA, 2006. [Google Scholar]
- Groothuis, P.; Groothuis, J.; Whitehead, J. Green vs. green: Measuring the compensation required to site electrical generation windmills in a viewshed. Energy Policy 2008, 36, 1545–1550. [Google Scholar] [CrossRef]
- Koundouri, P.; Kountoris, K.; Kyriaki, R. Valuing a wind farm construction: A contingent valuation study in Greece. Energy Policy 2009, 37, 1939–1944. [Google Scholar] [CrossRef]
- Hanemann, W.M.; Loomis, J.B.; Kanninen, B.J. Statistical Efficiency of Double-Bounded Dichotomous Choice Contingent Valuation. Am. J. Agric. Econ. 1991, 73, 1255–1263. [Google Scholar] [CrossRef]
- Stigka, E.K.; Paravantis, J.A.; Mihalakakou, G.K. Social Acceptance of Renewable Energy Sources: A Review of Contingent Valuation Application. Renew. Sustain. Energy Rev. 2014, 32, 100–106. [Google Scholar] [CrossRef]
- Cohen, J.J.; Reichl, J.; Schmidthaler, M. Re-focusing research efforts on the public acceptance of energy infrastructure: A critical review. Energy 2014, 76, 4–9. [Google Scholar] [CrossRef]
- Van Rensburg, T.M.; Kelley, H.; Jeserich, N. What influences the probability of wind farm planning approval: Evidence from Ireland. Ecol. Econ. 2015, 111, 12–22. [Google Scholar] [CrossRef]
- Johnsen, E.; Nemet, G.F. Willingness to Pay for Climate Policy: A review of Estimates; La Follette School of Public Affairs Working Paper Series No. 2010–2011; University of Wisconsin-Madison: Madison, WI, USA, 2010. [Google Scholar]
- Ek, K.; Persson, L. Wind farms—Where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden. Ecol. Econ. 2014, 105, 193–203. [Google Scholar] [CrossRef]
- Navrud, S.; Bråten, K.G. Consumers’ Preferences for Green and Brown Electricity: A Choice Modelling Approach. Revue d’Economie Politique 2007, 117, 795–811. [Google Scholar] [CrossRef]
- Ladenburg, J.; Dubgaard, A. Willingness to pay for reduced visual disamenities from offshore wind farms in Denmark. Energy Policy 2007, 35, 4059–4071. [Google Scholar] [CrossRef]
- Bergmann, A.; Colombo, S.; Hanley, N. Rural versus urban preferences for renewable energy developments. Ecol. Econ. 2008, 65, 616–625. [Google Scholar] [CrossRef]
- Meyerhoff, J.; Ohl, C.; Hartje, V. Landscape externalities from onshore windpower. Energy Policy 2010, 38, 82–92. [Google Scholar] [CrossRef]
- Krueger, A.D.; Parsons, G.R.; Firestone, J. Valuing the visual disamenity of offshore wind power projects at varying distance from the shore: An application on the Delaware Shoreline. Land Econ. 2011, 87, 268–283. [Google Scholar] [CrossRef]
- Borcher, A.M.; Duke, J.M.; Parsons, G.R. Does willingness to pay for green energy differ by source? Energy Policy 2007, 35, 3327–3334. [Google Scholar] [CrossRef]
- Dimitropoulos, A.; Kontoleon, A. Assessing the determinants of local acceptability of wind-farm investment: A choice experiment in the Greek Aegean Islands. Energy Policy 2009, 37, 1842–1854. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Cherry, T.L. Willingness to pay for a Green Energy program: A comparison of ex-ante and ex-post hypothetical bias mitigation approaches. Resour. Energy Econ. 2007, 29, 247–261. [Google Scholar] [CrossRef]
- Nomura, N.; Akai, M. Willingness to pay for green electricity in Japan as estimated through contingent valuation method. Appl. Energy 2004, 78, 453–463. [Google Scholar] [CrossRef]
- Boulatoff, C.; Boyer, C. Using contingent valuation with undergraduate students to elicit a community’s preferences for wind farm development. Appl. Econ. Lett. 2010, 17, 1361–1366. [Google Scholar] [CrossRef]
- Preez, M.; Menzies, G.; Sale, M.; Hosking, S. Measuring the indirect costs associated with the establishment of a wind farm: An application of the contingent valuation method. J. Energy S. Afr. 2012, 23, 2–7. [Google Scholar]
- McCartney, A. The social value of seascapes in the Jurien Bay Marine Park: And Assessment of positive and negative preferences for change. J. Agric. Econ. 2006, 57, 577–594. [Google Scholar] [CrossRef]
- Alvarez-Farizo, B.; Hanley, N. Using conjoint analysis to quantify public preferences over the environmental impacts of wind farms: An example from Spain. Energy Policy 2002, 30, 107–116. [Google Scholar] [CrossRef]
- Landry, C.E.; Allen, T.; Cherry, T.; Whitehead, J.C. Wind turbines and coastal recreation demand. Resour. Energy Econ. 2012, 34, 93–111. [Google Scholar] [CrossRef]
- Jensen, C.U.; Panduro, T.E.; Lundhede, T.H. The vindication of Don Quixote: The impact of noise and visual pollution from wind turbines. Land Econ. 2014, 90, 668–682. [Google Scholar] [CrossRef]
- Bateman, I.J.; Carson, R.T.; Day, B.; Hanemann, M.; Hanley, N.; Hett, T.; Jones-Lee, M.; Loomes, G.; Mourato, S.; Özdemiroḡlu, E.; et al. Economic Valuation with Stated Preference Techniques: A Manual; Edward Elgar: Cheltenham, UK, 2002. [Google Scholar]
- Haughton, J.; Giuffre, D.; Barrett, J. Blowing in the Wind: Offshore Wind and the Cape Cod Economy; Unpublished Report; Beacon Hill Institute; Suffolk University: Boston, MA, USA, 2003. [Google Scholar]
- Wikipedia. Cape Wind. 2016. Available online: http://en.wikipedia.org/wiki/Cape_Wind (accessed on 20 December 2016).
- Firestone, J.; Kempton, W. Public opinion about large offshore wind power: Underlying factors. Energy Policy 2007, 35, 1584–1598. [Google Scholar] [CrossRef]
- Dillman, D.A. Mail and Internet Surveys: The Tailored Design Method, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Arrow, K.; Solow, R.; Portney, P.R.; Leamer, E.E.; Radner, R.; Schuman, H. Report of the NOAA panel on contingent valuation. Fed. Regist. 1993, 58, 4601–4614. [Google Scholar]
- Mitchell, R.C.; Carson, R.T. Using Surveys to Value Public Goods: The Contingent Valuation Method; Hopkins University Press: Baltimore, MD, USA, 1989. [Google Scholar]
- Plott, C.R.; Zeiler, K. The Willingness to Pay–Willingness to Accept Gap, the “Endowment Effect”, Subject Misconceptions, and Experimental Procedures for Eliciting Valuations. Am. Econ. Rev. 2005, 95, 530–545. [Google Scholar] [CrossRef]
- Freeman, A.M. The Measurement of Environmental and Resource Values. Theory and Methods, 2nd ed.; Resources for the Future Press: Washington, DC, USA, 2003. [Google Scholar]
- Cameron, T.A. A new paradigm for valuing non-market goods using referendum data: Maximum likelihood estimation by censored logistic regression. J. Environ. Econ. Manag. 1988, 15, 355–379. [Google Scholar] [CrossRef]
- Haab, T.C.; McConnel, K.E. Valuing Environmental and Natural Resources. The Econometrics of Nonmarket Valuation; Edward Elgar Publishing: Cheltenham, UK, 2002. [Google Scholar]
- Krekel, C.; Zerrahn, A. Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data. J. Environ. Econ. Manag. 2017, 82, 221–238. [Google Scholar] [CrossRef]
- Knapp, L.; Ladenburg, J. How spatial relationships influence economic preferences for wind power—A review. Energies 2015, 8, 6177–6201. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Yang, Y. Wind energy development and its environmental impact: A review. Renew. Sustain. Energy Rev. 2012, 16, 1031–1039. [Google Scholar] [CrossRef]
- Ladenburg, J.; Lutzeyer, S. The economics of visual disamenity reductions of offshore wind farms—Review and suggestions for an emerging field. Renew. Sustain. Energy Rev. 2012, 16, 6793–6802. [Google Scholar] [CrossRef]
- Carson, R.T. Contingent Valuation: A Practical Alternative When Prices Aren’t Available. J. Econ. Perspect. 2012, 26, 27–42. [Google Scholar] [CrossRef]
- Kling, C.L.; Phaneuf, D.J.; Zhao, J. From Exxon to BP: Has Some Number Become Better than No Number? J. Econ. Perspect. 2012, 26, 3–26. [Google Scholar] [CrossRef]
Study | Method Employed | What Is Being Valued | Preference Assumption | Property Right | Welfare Measure |
---|---|---|---|---|---|
Groothuis, Groothuis, Whitehead (Energy Policy, 2008) [10] | Contingent valuation | Construction of windmills | Negative preferences | Status quo | Willingness to Accept |
Kondouri, Kontouris, Remoundou (Energy Policy, 2009) [11] | Contingent valuation | Construction of wind farm | Positive preferences | Status quo | Willingness to Pay |
Ek, Persson (Ecological Economics, 2014) [17] | Choice experiment | Wind farms, multiple attributes | Positive/Negative preferences | Renewable energy development | Willingness to pay/willingness to accept |
Navrud, Bråten (Revue économie politique, 2007) [18] | Choice experiment | Renewable energy, multiple sources | No assumption | Status quo (import of coal-generated electricity) | Willingness to pay |
Ladenburg, Dubgaard (Energy Policy, 2007) [19] | Choice experiment | Visual dis- amenities associated with coastal windmills | Negative Preferences | Renewable energy development | Willingness to Pay |
Bergmann, Colombo, Hanley (Ecological Economics, 2008) [20] | Choice experiment | Renewable energy, multiple attributes | Positive/Negative preferences | No assumption | Willingness to pay/willingness to accept |
Meyerhoff, Ohl, Hartje (Energy Policy, 2010) [21] | Choice experiment | Wind power, multiple attributes | Negative preferences | Renewable energy development | Willingness to pay |
Krueger, Parsons, Firestone (Land Economics, 2011) [22] | Choice experiment | Visual Dis-amenities, offshore wind turbines | Negative preferences | Expansion of coal and natural gas power | Willingness to pay |
Borchers, Duke, Parsons (Energy Policy, 2007) [23] | Choice experiment | Renewable energy from different sources | Positive preferences | Status quo | Willingness to pay |
Dimitropoulos, Kontoleon (Energy Policy, 2009) [24] | Choice experiment | Wind farms, multiple attributes | Negative preferences | Status quo | Willingness to accept |
Whitehead, Cherry (Resource and Energy Economics, 2007) [25] | Contingent valuation | Purchase of green energy | Positive preferences | Status Quo | Willingness to Pay |
Nomura, Akai (Applied Energy, 2004) [26] | Contingent valuation | Green energy | Positive preferences | Status quo | Willingness to pay |
Boulatoff, Boyer (Applied Economics Letters, 2010) [27] | Contingent valuation | Wind farm | Positive/Negative Preferences | Status quo | Willingness to pay/willingness to accept |
Preez, Menzies, Hosking (Journal of Energy in Southern Africa, 2012) [28] | Contingent valuation | Wind farm | Negative preferences | Renewable energy development | Willingness to accept |
McCartney (Journal of Agricultural Economics, 2006) [29] | Contingent valuation | Wind farm | Positive/Negative Preferences | Renewable energy development | Willingness to pay |
Álvarez-Farizo, Hanley (Energy Policy, 2002) [30] | Choice experiment/Contingent ranking | Wind farm, multiple attributes | Negative preferences | Renewable energy development | Willingness to pay |
Landry, Allen, Cherry, Whitehead (Resource and Energy Economics, 2012) [31] | Travel cost method & stated behaviour method | Change in recreational values from offshore wind development | No assumption | Renewable energy development | Consumer surplus, compensating variation |
Jensen, Panduro, Lundhede (Land Economics, 2014) [32] | Hedonic pricing | Noise & visual impacts of wind turbines | No assumption | Renewable energy development | Change in housing prices |
Bid Amounts | NWTP | %YES WTP | NWTA | %YES WTA |
---|---|---|---|---|
$1 | 36 | 47% | 42 | 62% |
2 | 46 | 35% | 46 | 52% |
5 | 42 | 38% | 47 | 38% |
10 | 46 | 35% | 44 | 43% |
25 | 46 | 46% | 47 | 66% |
50 | 51 | 25% | 46 | 52% |
75 | 45 | 18% | 41 | 66% |
100 | 44 | 30% | 35 | 80% |
200 | 44 | 23% | 44 | 80% |
$350 | 56 | 21% | 50 | 78% |
All Bids | 456 | 31% | 442 | 61% |
Variable | Description | Mean | St. Dev. | Min | Max |
---|---|---|---|---|---|
DUMUGLY | 0–1 Indicator of wind turbines perceived as “ugly” (yes = 1) | 0.22 | 0.42 | 0 | 1 |
DUMNEUTRAL | 0–1 Indicator of wind turbines perceived as neither “ugly” nor “beautiful” (yes = 1) | 0.47 | 0.50 | 0 | 1 |
DUM BEAUTY | 0–1 Indicator of wind turbines perceived as “beautiful” (yes = 1) | 0.31 | 0.46 | 0 | 1 |
HHINC | Household annual gross income (USD) | 81,071.24 | 47,464.65 | 7500 | 175,000 |
AGE | Respondent Age (years) | 56.60 | 14.68 | 16 | 95 |
EDU | Years of Schooling | 15.21 | 2.74 | 4 | 20 |
DUMWTP | 0–1 Indicator for WTP versus WTA scenario (WTP = 1) | 0.51 | 0.50 | 0 | 1 |
DUMSTATE | 0–1 Indicator for state (versus local) sub-sample (state = 1) | 0.45 | 0.50 | 0 | 1 |
DUMINFAVOR | 0–1 Indicator for “in favour” of project (in favour = 1) | 0.47 | 0.50 | 0 | 1 |
MODEL 1: INTERCEPT ONLY | MODEL 2: VISUAL PERCEPTIONS | |||||||||||
Full Sample | State Sub-Sample | Local Sub-Sample | Full Sample | State Sub-Sample | Local Sub-Sample | |||||||
VARIABLE | Est. | Sig. | Est. | Sig. | Est. | Sig. | Est. | Sig. | Est. | Sig. | Est. | Sig. |
INTERCEPT | −166.033 | 0.000 | −373.980 | 0.002 | 24.670 | 0.460 | 443.090 | 0.000 | 224.055 | 0.022 | 511.329 | 0.000 |
DUMNEUTRAL | −643.145 | 0.000 | −615.124 | 0.002 | −568.617 | 0.000 | ||||||
DUMBEAUTY | −896.722 | 0.000 | −819.013 | 0.001 | −838.172 | 0.000 | ||||||
HHINC | ||||||||||||
AGE | ||||||||||||
EDU | ||||||||||||
Sigma | 610.616 | 0.000 | 531.380 | 0.000 | 594.696 | 0.000 | 465.454 | 0.000 | 489.878 | 0.000 | 427.744 | 0.000 |
Number of obs. | 898 | 406 | 492 | 898 | 406 | 492 | ||||||
Wald Stat. | 39.42 | 10.94 | 28.70 | |||||||||
Prob > Chi2 | 0.0000 | 0.0042 | 0.0000 | |||||||||
Mean HS [95% CI] | −$166.03 | [−249,−83] | −$373.91 | [−613,−135] | $24.67 | [−41,90] | −$134.19 | [−202,−66] | −$316.28 | [−522,−110] | −$12.89 | [−68,43] |
MODEL 3: DEMOGRAPHICS | MODEL 4: FULL SPECIFICATION | |||||||||||
Full Sample | State Sub-Sample | Local Sub-Sample | Full Sample | State Sub-Sample | Local Sub-Sample | |||||||
VARIABLE | Est. | Sig. | Est. | Sig. | Est. | Sig. | Est. | Sig. | Est. | Sig. | Est. | Sig. |
INTERCEPT | −322.413 | 0.104 | −525.840 | 0.097 | 344.702 | 0.169 | 381.258 | 0.023 | 228.325 | 0.418 | 668.787 | 0.003 |
DUMNEUTRAL | −634.277 | 0.000 | −608.455 | 0.002 | −557.761 | 0.000 | ||||||
DUMBEAUTY | −888.518 | 0.000 | −813.631 | 0.001 | −825.998 | 0.000 | ||||||
HHINC | 0.002 | 0.005 | 0.001 | 0.175 | 0.002 | 0.031 | 0.001 | 0.069 | 0.000 | 0.710 | 0.001 | 0.083 |
AGE | 1.587 | 0.382 | 0.075 | 0.977 | −1.680 | 0.478 | −0.116 | 0.938 | −0.345 | 0.892 | −2.451 | 0.202 |
EDU | −5.709 | 0.582 | 2.589 | 0.858 | −23.614 | 0.100 | −0.925 | 0.915 | −1.133 | 0.936 | −7.054 | 0.524 |
Sigma | 607.726 | 0.000 | 534.427 | 0.000 | 579.864 | 0.000 | 463.479 | 0.000 | 489.900 | 0.000 | 419.001 | 0.000 |
Number of obs. | 898 | 406 | 492 | 898 | 406 | 492 | ||||||
Wald Stat. | 8.29 | 2.41 | 6.23 | 39.57 | 10.94 | 28.59 | ||||||
Prob > Chi2 | 0.0405 | 0.4918 | 0.1008 | 0.0000 | 0.0527 | 0.0000 | ||||||
Mean HS [95% CI] | −$166.78 | [−250,−83] | −$374.29 | [−615,−134] | $29.75 | [−35,95] | −$133.65 | [−201,−66] | −$316.94 | [−523,−111] | −$7.27 | [−62,48] |
Full Sample | N | Mean | St. Err. | 95% CI | |
HS ALL | 898 | −$133.655 | 34.493 | −$201 | −$66 |
HS-UGLY | 200 | $436.933 | 72.090 | $296 | $578 |
HS-NEUTRAL | 424 | −$197.345 | 47.036 | −$290 | −$105 |
HS-BEAUTY | 274 | −$451.585 | 83.781 | −$616 | −$287 |
State Sample | N | Mean | St. Err. | 95% CI | |
HS ALL | 406 | −$316.943 | 105.316 | −$523 | −$111 |
HS-UGLY | 55 | $218.602 | 98.404 | $26 | $411 |
HS-NEUTRAL | 206 | −$389.852 | 129.609 | −$644 | −$136 |
HS-BEAUTY | 145 | −$595.029 | 186.819 | −$961 | −$229 |
Local Sample | N | Mean | St. Err. | 95% CI | |
HS ALL | 492 | −$7.271 | 27.984 | −$62 | $48 |
HS-UGLY | 145 | $508.112 | 93.132 | $326 | $691 |
HS-NEUTRAL | 218 | −$49.649 | 40.023 | −$128 | $29 |
HS-BEAUTY | 129 | −$317.886 | 79.982 | −$475 | −$161 |
DUMWTP | DIFF (WTP-WTA) | |||
---|---|---|---|---|
Specification | Est. Coeff. | p-Value | Lower 95% | Upper 95% |
Model 1-Full | −99.289 | 0.068 | −206 | 7 |
Model 1-State | −137.590 | 0.097 | −300 | 25 |
Model 1-Local | −38.514 | 0.565 | −170 | 93 |
Model 2-Full | −104.743 | 0.023 | −195 | −14 |
Model 2-State | −122.533 | 0.128 | −280 | 35 |
Model 2-Local | −77.706 | 0.153 | −184 | 29 |
Model 3-Full | −92.826 | 0.086 | −199 | 13 |
Model 3-State | −135.921 | 0.104 | −300 | 28 |
Model 3-Local | −27.272 | 0.677 | −156 | 101 |
Model 4-Full | −100.038 | 0.029 | −190 | −10 |
Model 4-State | −121.921 | 0.129 | −279 | 36 |
Model 4-Local | −68.971 | 0.197 | −174 | 36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudding, P.; Kipperberg, G.; Bond, C.; Cullen, K.; Steltzer, E. When a Good Is a Bad (or a Bad Is a Good)—Analysis of Data from an Ambiguous Nonmarket Valuation Setting. Sustainability 2018, 10, 208. https://doi.org/10.3390/su10010208
Gudding P, Kipperberg G, Bond C, Cullen K, Steltzer E. When a Good Is a Bad (or a Bad Is a Good)—Analysis of Data from an Ambiguous Nonmarket Valuation Setting. Sustainability. 2018; 10(1):208. https://doi.org/10.3390/su10010208
Chicago/Turabian StyleGudding, Petter, Gorm Kipperberg, Craig Bond, Kelly Cullen, and Eric Steltzer. 2018. "When a Good Is a Bad (or a Bad Is a Good)—Analysis of Data from an Ambiguous Nonmarket Valuation Setting" Sustainability 10, no. 1: 208. https://doi.org/10.3390/su10010208
APA StyleGudding, P., Kipperberg, G., Bond, C., Cullen, K., & Steltzer, E. (2018). When a Good Is a Bad (or a Bad Is a Good)—Analysis of Data from an Ambiguous Nonmarket Valuation Setting. Sustainability, 10(1), 208. https://doi.org/10.3390/su10010208