Optimising Anaerobic Digestion of Manure Resources at a Regional Level
Abstract
:1. Introduction
1.1. Anaerobic Digestion from Manure Resources
1.2. Goal and Scope of the Study
1.3. Literature Review
2. Materials and Methods
2.1. Optimisation Model
2.2. Definition of Manure Treatment Alternatives
2.3. Input Data and Constraints
2.4. Objective Functions
2.4.1. Objective Function for Minimisation of Emissions
2.4.2. Objective Function for Maximisation of Profit
2.4.3. Objective Function for Minimisation of Emissions and Maximisation of Profit
2.5. Calculation of Potential Effect on Global Warming
2.6. Calculation of Economic Profit
2.7. Study Objects
3. Results
3.1. Optimisation of Manure Resources
3.2. Sensitivity Assessment
3.2.1. Energy Carrier and Demand on the Farms
3.2.2. Economic Support System
3.2.3. Agreements between Farmer and Centralised Plant
3.2.4. Transport Distance
3.2.5. High Costs for the Farm Scale Alternative
4. Discussion
4.1. Biogas Production from Manure as a Measure to Reduce Greenhouse Gases
4.2. The Profitability of Biogas Production for the Farmers
4.3. Further Improvement of the Optimisation Model
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
AD | Anaerobic digestion |
Anaerobic digestion | The production process of biogas and digestate |
Biogas | Gas with about 60% methane content produced from organic matter |
Biofertiliser | Digestate which is used as fertiliser |
Biomethane | Refined biogas with a methane content of 96% or more, with same properties as natural gas |
Capex | Capital expenditures |
Digestate | The slurry which is a co-product from anaerobic digestion |
GHG | Greenhouse gas |
Opex | Operational expenditures |
References
- Eurostat Agriculture—Greenhouse Gas Emission Statistics. 2015. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Agriculture_-_greenhouse_gas_emission_statistics (accessed on 13 October 2017).
- FAO Greenhouse Gas Emissions from Agriculture, Forestry and Other Land Use. 2014. Available online: http://www.fao.org/resources/infographics/infographics-details/en/c/218650/ (accessed on 1 November 2017).
- Norwegian Environment Agency. Kunnskapsgrunnlag for lavutslippsutvikling. In Klimatiltak og Utslippsbaner Mot 2030; M-386, Report Available in Norwegian only; Norwegian Environment Agency: Trondheim, Norway, 2015. [Google Scholar]
- Lantz, M.; Börjesson, P. Greenhouse gas and energy assessment of the biogas from co-digestion injected into the natural gas grid: A swedish case-study including effects on soil properties. Renew. Energy 2014, 71, 387–395. [Google Scholar] [CrossRef]
- Eurostat Agri-Environmental Indicator—Renewable Energy Production. 2013. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_renewable_energy_production (accessed on 13 October 2017).
- Huttunen, S.; Manninen, K.; Leskinen, P. Combining biogas LCA reviews with stakeholder interviews to analyse life cycle impacts at a practical level. J. Clean. Prod. 2014, 80, 5–16. [Google Scholar] [CrossRef]
- Olsson, L.; Fallde, M. Waste(d) potential: A socio-technical analysis of biogas production and use in Sweden. J. Clean. Prod. 2014, 98, 107–115. [Google Scholar] [CrossRef]
- Lyng, K.-A.; Nielsen, L.S.; Jacobsen, H.K.; Hanssen, O.J. The implications of environmental policies on biogas value chains—A case study comparison between Norway and Denmark. Unpublished manuscript. 2018. [Google Scholar]
- Ahlberg-Eliasson, K.; Nadeau, E.; Levén, L.; Schnürer, A. Production efficiency of Swedish farm-scale biogas plants. Biomass Bioenergy 2017, 97, 27–37. [Google Scholar] [CrossRef]
- Jansson, L.-E. Ekonomisk Utvärdering av Biogasproduktion på Gårdsnivå; Rapport i Projektet “Utvärdering av Biogasanläggningar på Gårdsnivå” (Report Available in Swedish only); Hushållningssällskapens Förbund: Stockholm, Sweden, 2014. [Google Scholar]
- Pettersen, I.; Grønlund, A.; Stensgård, A.; Walland, F. Klimatiltak i Norsk Jordbruk og Matsektor Kostnadsanalyse av Fem Tiltak; NIBIO Rapport; NIBIO: Ås, Norway, 2017; Volume 3. [Google Scholar]
- Landbruks- og Matdepartementet. Klimautfordringene—Landbruket en del av Løsningen; The Norwegian Department of Agriculture and food White Paper, St. meld. Nr. 39 (2008–2009); Landbruks- og Matdepartementet: Oslo, Norway, 2009. [Google Scholar]
- Jones, P.; Salter, A. Modelling the economics of farm-based anaerobic digestion in a UK whole-farm context. Energy Policy 2013, 62, 215–225. [Google Scholar] [CrossRef]
- Willeghems, G.; De Clercq, L.; Michels, E.; Meers, E.; Buysse, J. Can spatial reallocation of livestock reduce the impact of GHG emissions? Agric. Syst. 2016, 149, 11–19. [Google Scholar] [CrossRef]
- Silva, S.; Alçada-Almeida, L.; Dias, L.C. Multiobjective programming for sizing and locating biogas plants: A model and an application in a region of Portugal. Comput. Oper. Res. 2017, 83, 189–198. [Google Scholar] [CrossRef]
- Stensgård, A. Optimaliseringsmodell og Klimaregnskap for Avfallshåndtering. En Modell for Analyse og Optimalisering av Avfallshåndtering, Eksemplifisert Med Husholdningsavfall i Østfold. Master Thesis, Norwegian University of Life Sciences, Ås, Norway, 2014. [Google Scholar]
- Bjerkestrand, M. Optimising the Utilisation of Agricultural Manure for Biogas Production. A Model Based on the County of Vestfold in Norway. Master Thesis, Norwegian University of Life Sciences (NMBU), Ås, Norway, 2017. [Google Scholar]
- Microsoft Excel Solver. 2017. Available online: https://www.solver.com/ (accessed on 1 August 2017).
- Lyng, K.-A.; Modahl, I.S.; Møller, H.; Morken, J.; Briseid, T.; Hanssen, O.J. The BioValueChain model: A Norwegian model for calculating environmental impacts of biogas value chains. Int. J. Life Cycle Assess. 2015, 20, 490–520. [Google Scholar] [CrossRef]
- Morken, J.; Fjørtoft, K.; Briseid, T. Agricultural biogas plants—Energy balance. Nordic view to sustainable rural development. In Proceedings of the 25th NJF Congress, Riga, Latvia, 16–18 June 2015. [Google Scholar]
- Berglund, M.; Börjesson, P. Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 2006, 30, 254–266. [Google Scholar] [CrossRef]
- Hanssen, O.J. Personal Communication: Energy Use and Energy Costs from One Farm in Østfold, Norway; Ostfold Research: Krakeroy, Norway, 2017. [Google Scholar]
- Kythreotou, N.; Florides, G.; Tassou, S.A. A proposed methodology for the calculation of direct consumption of fossil fuels and electricity for livestock breeding, and its application to Cyprus. Energy 2012, 40, 226–235. [Google Scholar] [CrossRef]
- Overrein, A. Forenklet Enøk-Vurdering Mære Landbruksskole, Gris- og Kufjøs. Sivilingeniør Anders Overrein AS. Technical Report, in Norwegian Only. 2012. Available online: http://www.maere.no/images/dokumenter/rapporter/endelig_rapport_og_energivurderinger.pdf (accessed on 6 September 2017).
- Overrein, A. Forenklet Enøk-Vurdering Nervelle Gård. Sivilingeniør Anders Overrein AS. Technical Report, in Norwegian only. 2012. Available online: http://www.maere.no/images/dokumenter/rapporter/endelig_rapport_og_energivurderinger.pdf (accessed on 6 September 2017).
- Statistics Norway. Energy Consumption in Households, 2012; Statistics Norway: Oslo, Norway, 2014. [Google Scholar]
- Haugen, F.; Bakke, R.; Lie, B.; Hovland, J.; Vasdal, K. Optimal design and operation of a UASB reactor for dairy cattle manure. Comput. Electron. Agric. 2015, 111, 203–213. [Google Scholar] [CrossRef]
- Jinadasa, W.; Wakjera, E.J.; Bakke, R. Full Scale Process Design for Energy Recovery from Swine Manure. In 2010: Proceedings from Linnaeus ECO-TECH ’10. 2017. Available online: https://open.lnu.se/index.php/eco-tech/article/view/664 (accessed on 2 October 2017).
- Bakke, R.; (University College of South East Norway, Porsgrunn, Norway). Personal communication, 2017.
- Kallis, G.; Gómez-Baggethun, E.; Zografos, C. To value or not to value? That is not the question. Ecol. Econ. 2013, 94, 97–105. [Google Scholar] [CrossRef]
- Modahl, I.S.; Lyng, K.-A.; Møller, H.; Stensgård, A.; Arnøy, S.; Morken, J.; Briseid, T.; Hanssen, O.J.; Sørby, I. Biogas production from food waste and manure from cattle, pig and poultry. In Status 2016/Phase IV for Environmental Benefit and Value Chain Economy for the Norwegian Biogas Model BioValueChain, Ostfold Research Report OR 34.16; Ostfold Research: Krakeroy, Norway, 2016. (In Norwegian) [Google Scholar]
- PRé SimaPro Software. The Netherland, 2017. Available online: https://www.pre-sustainability.com/ (accessed on 11 May 2017).
- Swiss Centre for Life Cycle Inventories EcoInvent Database 3.3 Allocation Cut-Off by Classification. Available online: http://www.ecoinvent.org/database/system-models-in-ecoinvent-3/cut-off-system-model/allocation-cut-off-by-classification.html (accessed on 10 May 2017).
- IPCC Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). 2013. Available online: http://www.climatechange2013.org (accessed on 11 May 2017).
- Rodhe, L.K.K.; Ascue, J.; Willén, A.; Persson, B.V.; Nordberg, Å. Greenhouse gas emissions from storage and field application of anaerobically digested and non-digested cattle slurry. Agric. Ecosyst. Environ. 2015, 199, 358–368. [Google Scholar] [CrossRef]
- Jungbluth, N.; Chudacoff, M.; Dauriat, A.; Dinkel, F.; Doka, G.; Faist Emmenegger, M.; Gnansounou, E.; Kljun, N.; Schleiss, K.; Spielmann, M.; et al. Life Cycle Inventories of Bioenergy. Ecoinvent Report No. 17, v2.0; ESU-Services: Uster, Switzerland, 2007. [Google Scholar]
- Lantz, M.; Svensson, M.; Björnsson, L.; Börjesson, P. The prospects for an expansion of biogas systems in Sweden—Incentives, barriers and potentials. Energy Policy 2007, 35, 1830–1843. [Google Scholar] [CrossRef]
- Brogaard, L.K.; Petersen, P.H.; Nielsen, P.D.; Christensen, T.H. Quantifying capital goods for biological treatment of organic waste. Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. ISWA 2015, 33, 96–106. [Google Scholar] [CrossRef] [PubMed]
- ENTSO-E European Network of Transmission System Operators for Ectricity. 2017. Available online: https://www.entsoe.eu/data/Pages/default.aspx (accessed on 12 September 2017).
- Central Bank of Norway Annual Average of Daily Figures for Currency Exchange Rates from Euro to Norwegian Kroner (NOK). Central Bank of Norway/Norges Bank. Available online: http://www.norges-bank.no/Statistikk/Valutakurser/valuta/EUR/2015 (accessed on 24 May 2017).
- Innovation Norway The Funding Scheme Bioenergy Programme of Innovation Norway. 2017. Available online: http://www.innovasjonnorge.no/no/finansiering/bioenergiprogrammet/ (accessed on 20 May 2017).
- Landbruks- og Matdepartementet. FOR-2014-12-19-1815 Forskrift om Tilskudd for Levering av Husdyrgjødsel til Biogassanlegg (Regulation on Supply of Manure to Biogas Plants); Landbruks- og Matdepartementet: Oslo, Norway, 2015. [Google Scholar]
- Bjerkestrand, M. Sammenstilling av Modellene “Eksempelgård Svin, Med IN Støtte” og “Tranportkostnad Biorest og Gjødsel”. En Gjennomgang av Grunntall, Østfoldforskning AS. AR.05.16; Confidential Report; Ostfold Research: Krakeroy, Norway, 2016. (In Norwegian) [Google Scholar]
- Chantigny, M.H.; Angers, D.A.; Bélanger, G.; Rochette, P.; Eriksen-Hamel, N.; Bittman, S.; Buckley, K.; Massé, D.; Gasser, M.-O. Yield and Nutrient Export of Grain Corn Fertilized with Raw and Treated Liquid Swine Manure. Agron. J. 2008, 100, 1303–1309. [Google Scholar] [CrossRef]
- Thomas, B.W.; Li, X.; Nelson, V.; Hao, X. Anaerobically Digested Cattle Manure Supplied More Nitrogen with Less Phosphorus Accumulation than Undigested Manure. Agron. J. 2017, 109, 836–844. [Google Scholar] [CrossRef]
- Randby, J. Personal Communication: Statistics for Agriculture in Vestfold, Amount of Manure Produced on each Farm in Vestfold Based on Number of Animals; County Governor of Vestfold, Farming Department: Tonsberg, Norway, 2017. [Google Scholar]
- Norwegian Environment Agency CO2 Quota Price. 2017. Available online: http://www.miljodirektoratet.no/no/Tema/klima/CO2-priskompensasjon/Kvotepris-for-stottearet-2014/ (accessed on 19 October 2017).
- Norwegian Government Official Reports NOU 2015:15. Sett Pris på Miljøet, Rapport Fra Grønn Skattekommisjon; Norwegian Ministry of Finance: Oslo, Norway, 2015. (In Norwegian) [Google Scholar]
- Van Stappen, F.; Mathot, M.; Decruyenaere, V.; Loriers, A.; Delcour, A.; Planchon, V.; Goffart, J.-P.; Stilmant, D. Consequential environmental life cycle assessment of a farm-scale biogas plant. J. Environ. Manag. 2016, 175, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Lyng, K.-A.; Stensgård, A.; Hanssen, O.J.; Modahl, I.S. Relation between greenhouse gas emissions and economic profit for different configurations of biogas value chains. A case study on different levels of sector integration. J. Clean. Prod. 2017, submitted. [Google Scholar]
- Siegmeier, T.; Blumenstein, B.; Möller, D. Farm biogas production in organic agriculture: System implications. Agric. Syst. 2015, 139, 196–209. [Google Scholar] [CrossRef]
- Karlsson, N.P.E.; Halila, F.; Mattsson, M.; Hoveskog, M. Success factors for agricultural biogas production in Sweden: A case study of business model innovation. J. Clean. Prod. 2017, 142, 2925–2934. [Google Scholar] [CrossRef]
No Biogas | Farm Scale Plant | Centralised Plant | |
---|---|---|---|
Economic cost for farmer | No change | Investment in biogas plant, operational and maintenance costs | Investment in new storage, operational costs for delivering manure to plant and payment to centralised plant |
Income for farmer | No change | Avoided cost for heat at farm and governmental support per tonne manure | Storage rent from biogas plant and governmental support per tonne manure |
Emissions of greenhouse gases | Storage and spreading of manure | Pre-storage of manure, anaerobic digestion (energy use, capital goods), storage and spreading of digestate | Pre-storage of manure (emissions and capital goods), transport, anaerobic digestion (energy use and capital goods), transport, storage emissions and spreading of digestate |
Avoided emissions of greenhouse gases | Production and distribution of heat from electricity | Production and use of diesel as fuel for transport |
Life Cycle Phase | Emission | Cattle | Pig |
---|---|---|---|
Storage untreated manure | CH4 | 10.2 | 4.8 |
N2O | 0.123 | 0.789 | |
Spreading of manure | CH4 | 0 | 0 |
N2O | 0.547 | 0.385 | |
Pre-storage biogas | CH4 | 8.63 × 10−99 | 1.57 × 10−145 |
N2O | 1.18 × 10−100 | 2.56 × 10−147 | |
Storage digestate (no cover) | CH4 | 3.38 | 1.59 |
N2O | 0 | 0 | |
Storage digestate (with cover) | CH4 | 0 | 0 |
N2O | 0 | 0 | |
Spreading of digestate | CH4 | 0 | 0 |
N2O | 0.468 | 0.329 |
Type of Farm | Small | Large |
---|---|---|
Cattle farm | 6 | 2 |
Pig farm | 22 | 9 |
Combined farm | 6 | 5 |
All farms | 34 | 16 |
Minimisation of GHG Emissions | Economic Profit Maximisation | |||||
---|---|---|---|---|---|---|
No Biogas | Farm Scale Plant | Centralised Plant | No Biogas | Farm Scale Plant | Centralised Plant | |
Base case | 0 | 0 | 50 | 0 | 10 | 40 |
Energy demand at farm low | 0 | 0 | 50 | 0 | 3 | 47 |
Energy demand at farm high | 0 | 0 | 50 | 0 | 8 | 42 |
Substitution of oil combustion at farm | 0 | 0 | 50 | Not assessed | Not assessed | Not assessed |
No investment support | 0 | 0 | 50 | 0 | 3 | 47 |
No support for manure | 0 | 0 | 50 | 0 | 0 | 50 |
No storage rent | 0 | 0 | 50 | 0 | 47 | 3 |
Farm must pay for transport | 0 | 0 | 50 | 0 | 17 | 33 |
High Capex farm scale plant | 0 | 0 | 50 | 0 | 3 | 47 |
High Opex farm scale plant | 0 | 0 | 50 | 0 | 5 | 45 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyng, K.-A.; Bjerkestrand, M.; Stensgård, A.E.; Callewaert, P.; Hanssen, O.J. Optimising Anaerobic Digestion of Manure Resources at a Regional Level. Sustainability 2018, 10, 286. https://doi.org/10.3390/su10010286
Lyng K-A, Bjerkestrand M, Stensgård AE, Callewaert P, Hanssen OJ. Optimising Anaerobic Digestion of Manure Resources at a Regional Level. Sustainability. 2018; 10(1):286. https://doi.org/10.3390/su10010286
Chicago/Turabian StyleLyng, Kari-Anne, Mia Bjerkestrand, Aina Elstad Stensgård, Pieter Callewaert, and Ole Jørgen Hanssen. 2018. "Optimising Anaerobic Digestion of Manure Resources at a Regional Level" Sustainability 10, no. 1: 286. https://doi.org/10.3390/su10010286
APA StyleLyng, K.-A., Bjerkestrand, M., Stensgård, A. E., Callewaert, P., & Hanssen, O. J. (2018). Optimising Anaerobic Digestion of Manure Resources at a Regional Level. Sustainability, 10(1), 286. https://doi.org/10.3390/su10010286