Effects of Building Design Elements on Residential Thermal Environment
Abstract
:1. Introduction
2. Methods-Simulated Area and Configurations
2.1. Simulated Tool and Area
2.2. Simulated Configurations
3. Results and Discussion
3.1. The Effects of Building Density on Urban Thermal Environment
3.2. The Effects of Building Height on Urban Thermal Environment
3.3. The Effects of Building Layout on Urban Thermal Environment
3.4. The Effects of Green on Urban Thermal Environment
3.5. The Combined Effects of Building Density, Height, Layout and Green Ratio on Urban Thermal Environment
3.6. Uncertainties Associated with the ENVI-Met Model Solution
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Ta | air temperature |
ATa | average air temperature |
PMV | predicted mean vote |
APMV | average predicted mean vote |
UHI | Urban heat island |
SVF | sky view factor |
H/W | building aspect ratio |
CH | comfort hours |
EH | extreme hot hours |
WBGT | wet bulb globe temperature |
SET | standard effective temperature |
OUT_SET | outdoor standard effective temperature |
PET | physiological equivalent temperature |
UTCI | universal thermal climate index |
PPD | predicted percentage of dissatisfied |
H/W | height/width |
References
- United Nations. World Urbanization Prospects: The 2014 Revision; Population Division, Department of Economic and Social Affairs: New York, NY, USA, 2015. [Google Scholar]
- Kaloustian, N.; Diab, Y. Effects of urbanization on the urban heat island in Beirut. Urban Clim. 2015, 14, 154–165. [Google Scholar] [CrossRef]
- Kikon, N.; Singh, P.; Singh, S.K.; Vyas, A. Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustain. Cities Soc. 2016, 22, 19–28. [Google Scholar] [CrossRef]
- d’Alfano, F.R.; Olesen, B.W.; Palella, B.I. Povl Ole Fanger’s Impact Ten Years Later. Energy Build. 2017, 152, 243–249. [Google Scholar]
- Parsons, K. Human Thermal Environments: The Effects of Hot, Moderate and Cold Environments on Human Health, Comfort and Performance; CRC Press, Inc.: Boca Raton, FL, USA, 2014; pp. 67–68. [Google Scholar]
- Gilani, S.I.U.H.; Khan, M.H.; Pao, W. Thermal Comfort Analysis of PMV Model Prediction in Air Conditioned and Naturally Ventilated Buildings. Energy Procedia 2015, 75, 1373–1379. [Google Scholar] [CrossRef]
- Hirano, Y.; Fujita, T. Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 2012, 37, 371–383. [Google Scholar] [CrossRef]
- Taha, H. Meteorological, air-quality and emission-equivalence impacts of urban heat island control in California. Sustain. Cities Soc. 2015, 19, 207–221. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.I.; Etessam, I.; Maulud, K.N.A.; Tawil, N.M. Healthy Environment: The Need to Mitigate Urban Heat Island Effects on Human Health. Procedia Eng. 2011, 20, 61–70. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef]
- Ganeshan, M.; Murtugudde, R.; Imhoff, M.L. A multi-city analysis of the UHI-influence on warm season rainfall. Urban Clim. 2013, 6, 1–23. [Google Scholar] [CrossRef]
- Alcoforado, M.J.; Andrade, H. Global warming and the urban heat island. In Urban Ecology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 249–262. [Google Scholar]
- Morris, K.I.; Chan, A.; Morris, K.J.K.; Ooi, M.C.G.; Oozeer, M.Y.; Abakr, Y.A.; Nadzir, M.S.M.; Mohammed, I.Y. Urbanisation and urban climate of a tropical conurbation, Klang Valley, Malaysia. Urban Clim. 2017, 19, 54–71. [Google Scholar] [CrossRef]
- Doan, Q.-V.; Kusaka, H.; Ho, Q.-B. Impact of future urbanization on temperature and thermal comfort index in a developing tropical city: Ho Chi Minh City. Urban Clim. 2016, 17, 20–31. [Google Scholar] [CrossRef]
- Kikegawa, Y.; Genchi, Y.; Kondo, H.; Hanaki, K. Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building’s energy-consumption for air-conditioning. Appl. Energy 2006, 83, 649–668. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Lehmann, I.; Mathey, J.; Rößler, S.; Bräuer, A.; Goldberg, V. Urban vegetation structure types as a methodological approach for identifying ecosystem services—Application to the analysis of micro-climatic effects. Ecol. Indic. 2014, 42, 58–72. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Wei, Q. Urban green space landscape patterns and thermal environment investigations based on computational fluid dynamics. Acta Ecol. Sin. 2012, 32, 1951–1959. [Google Scholar]
- Su, W.; Zhang, Y.; Yang, Y.; Ye, G. Examining the Impact of Greenspace Patterns on Land Surface Temperature by Coupling LiDAR Data with a CFD Model. Sustainability 2014, 6, 6799–6814. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Pompeii, W.C., II; Hawkins, T.W. Assessing the impact of green roofs on urban heat island mitigation: A hardware scale modeling approach. Geogr. Bull. 2011, 52, 52–61. [Google Scholar]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of urban heat islands: Materials, utility programs, updates. Energy Build. 1995, 22, 255–265. [Google Scholar] [CrossRef]
- Yang, F.; Lau, S.S.Y.; Qian, F. Urban design to lower summertime outdoor temperatures: An empirical study on high-rise housing in Shanghai. Build. Environ. 2011, 46, 769–785. [Google Scholar] [CrossRef]
- Md Din, M.F.; Lee, Y.Y.; Ponraj, M.; Ossen, D.R.; Iwao, K.; Chelliapan, S. Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate. J. Therm. Biol. 2014, 41, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Akbari, H.; Menon, S.; Rosenfeld, A. Global cooling: Effect of urban albedo on global temperature. In Proceedings of the 28th AIVC and 2nd Palenc Conference, Building Low Energy Cooling and Ventilation Technologies in the 21st Century, Crete, Greece, 27–29 September 2007. [Google Scholar]
- Liu, W.; Gong, A.; Zhou, J.; Zhan, W. Investigation on relationships between urban building materials and land surface temperature through a multi-resource. Remote Sens. Approach 2011, 4, 46–53. [Google Scholar]
- Memon, R.A.; Leung, D.Y.C.; Liu, C.-H. Effects of building aspect ratio and wind speed on air temperatures in urban-like street canyons. Build. Environ. 2010, 45, 176–188. [Google Scholar] [CrossRef]
- Giridharan, R.; Lau, S.S.Y.; Ganesan, S.; Givoni, B. Lowering the outdoor temperature in high-rise high-density residential developments of coastal Hong Kong: The vegetation influence. Build. Environ. 2008, 43, 1583–1595. [Google Scholar] [CrossRef]
- Gál, T.; Lindberg, F.; Unger, J. Computing continuous sky view factors using 3D urban raster and vector databases: Comparison and application to urban climate. Theor. Appl. Climatol. 2008, 95, 111–123. [Google Scholar] [CrossRef]
- Wang, Y.; Akbari, H. Effect of Sky View Factor on Outdoor Temperature and Comfort in Montreal. Environ. Eng. Sci. 2014, 31, 272–287. [Google Scholar] [CrossRef]
- Oke, T.R. Street design and urban canopy layer climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Unger, J. Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. Int. J. Environ. Pollut. 2008, 36, 59–80. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Mayer, H. Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Sol. Energy 2007, 81, 742–754. [Google Scholar] [CrossRef]
- Deosthali, V. Assessment of impact of urbanization on climate: An application of bio-climatic index. Atmos. Environ. 1999, 33, 4125–4133. [Google Scholar] [CrossRef]
- Johansson, E.; Emmanuel, R. The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int. J. Biometeorol. 2006, 51, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Perini, K.; Magliocco, A. Effects of vegetation, urban density, building height and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 2014, 13, 495–506. [Google Scholar] [CrossRef]
- Ewing, R.; Rong, F. The impact of urban form on US residential energy use. Hous. Policy Debate 2008, 19, 1–30. [Google Scholar] [CrossRef]
- Steadman, R.G. The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. J. Appl. Meteorol. 1979, 18, 861–873. [Google Scholar] [CrossRef]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanger, P.O. Thermal Comfort; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Pickup, J.; de Dear, R. (Eds.) An outdoor thermal comfort index (OUT_SET*): Part I: The model and its assumptions. In Proceedings of the 15th International Congress of Biometeorology and International Conference on Urban Climatology, Sydney, Australia, 8–12 November 1999; Macquarie University: Sydney, Australia, 1999; pp. 279–283. [Google Scholar]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Jendritzky, G.; Maarouf, A.; Fiala, D.; Staiger, H. An update on the development of a Universal Thermal Climate Index. In Proceedings of the Conference on Biometeorology/Aerobiology & International Congress of Biometeorology, Kansas City, MO, USA, 28 October–1 November 2002. [Google Scholar]
- Alfano, F.R.D.A.; Palella, B.I.; Riccio, G. On the Transition Thermal Discomfort to Heat Stress as a Function of the PMV Value. Ind. Health 2013, 51, 285–296. [Google Scholar] [CrossRef]
- ISO 15265—Ergonomics of Thermal Environments−Strategy of Evaluation of the Risk for the Prevention of Constraints or Discomfort under Thermal Working Conditions; International Organisation for Standardization: Geneva, Switzerland, 2004.
- VDI 3787—Methods for the Human Biometeorological Evaluation of Climate and Air Quality for Urban and Regional Planning at Regional Level. Part I: Climate, Blatt 2/Part 2. Available online: http://www.oalib.com/references/13169540 (accessed on 21 December 2017).
- Ku, K.L.; Liaw, J.S.; Tsai, M.Y.; Liu, T.S. Automatic Control System for Thermal Comfort Based on Predicted Mean Vote and Energy Saving. IEEE Trans. Autom. Sci. Eng. 2014, 12, 378–383. [Google Scholar] [CrossRef]
- ENVI-MET: A Holistic Microclimate Model. Available online: http://www.envi-met.info/doku.php?id=apps:biomet_pmv#definition_range (accessed on 10 November 2017).
Parameters | Value |
---|---|
latitude and longitude of the simulated area | 118.78°, 32.08° |
Initial air temperature (K) | 301.9 |
Albedo of building wall | 0.2 |
Heat coefficient of building wall | 0.33 |
Roof albedo | 0.2 |
Heat coefficient of roof | 0.33 |
Wind direction | East wind |
Soil relative humidity (%) | 60 |
Initial soil temperature(K) | 294 |
Wind velocity (m/s) | 3 |
Air relative humidity (%) | 50 |
Building Density | 10% | 15% | 20% | 25% | 30% | 35% |
---|---|---|---|---|---|---|
CH (h) | 14 | 14 | 14 | 15 | 13 | 12 |
EH (h) | 3 | 3 | 2 | 1 | 3 | 4 |
ATa/°C | 28.3 | 28.2 | 28.1 | 27.8 | 28.0 | 28.7 |
APMV | 1.86 | 1.53 | 1.45 | 1.11 | 1.92 | 1.98 |
Building Height | 6 m | 20 m | 40 m | 60 m |
---|---|---|---|---|
CH (h) | 12 | 14 | 14 | 16 |
EH (h) | 3 | 2 | 1 | 1 |
ATa/°C | 28.3 | 28.1 | 28.0 | 27.7 |
APMV | 1.40 | 1.11 | 1.03 | 0.81 |
Building Layout | Point | Peripheral | Determinant |
---|---|---|---|
CH (h) | 10 | 9 | 10 |
EH (h) | 9 | 7 | 9 |
ATa/°C | 28.7 | 28.1 | 28.4 |
APMV | 1.21 | 1.09 | 1.13 |
Green Ratio | 0% | 10% | 20% | 30% | 40% | 50% |
---|---|---|---|---|---|---|
CH (h) | 11 | 11 | 12 | 12 | 13 | 13 |
EH (h) | 9 | 9 | 9 | 9 | 8 | 7 |
ATa/°C | 29.2 | 29.0 | 28.9 | 28.7 | 28.4 | 28.2 |
APMV | 2.33 | 2.31 | 2.14 | 1.99 | 1.46 | 1.04 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhang, X.; Lu, X.; Hu, J.; Pan, X.; Zhu, Q.; Su, W. Effects of Building Design Elements on Residential Thermal Environment. Sustainability 2018, 10, 57. https://doi.org/10.3390/su10010057
Yang Y, Zhang X, Lu X, Hu J, Pan X, Zhu Q, Su W. Effects of Building Design Elements on Residential Thermal Environment. Sustainability. 2018; 10(1):57. https://doi.org/10.3390/su10010057
Chicago/Turabian StyleYang, Yingbao, Xize Zhang, Xi Lu, Jia Hu, Xin Pan, Qin Zhu, and Weizhong Su. 2018. "Effects of Building Design Elements on Residential Thermal Environment" Sustainability 10, no. 1: 57. https://doi.org/10.3390/su10010057
APA StyleYang, Y., Zhang, X., Lu, X., Hu, J., Pan, X., Zhu, Q., & Su, W. (2018). Effects of Building Design Elements on Residential Thermal Environment. Sustainability, 10(1), 57. https://doi.org/10.3390/su10010057