On the Use of Satellite Sentinel 2 Data for Automatic Mapping of Burnt Areas and Burn Severity
Abstract
:1. Introduction
- strengthen the science–policy–society nexus using a participatory approach, by improving already operational or experimentally tested climate services in Europe, tailoring relevant information for decision and policy-makers through a participative and circular approach, capacity building user-centric tools, specific training programs, dissemination activities; and
- increase the efficiency of decision- and policy-makers responses, to improve the preparedness level of our societies and to limit the high economic cost of the impact of climate variability on fire and post-fire risks, developing methods and specific procedures within the framework of fire and post-fire risk management in Europe at climatic time scales (from seasonal to longer time scales).
- ✓
- Contribute to European good governance and management of fire and post-fire risk to preserve natural vegetation and improve forest management problems, versus climate change and environmental impacts, and minimizing losses mainly focusing on fire in the wildland–urban interface and related to citizen health.
- ✓
- Environmentally protect both nature (flora, fauna, soil, atmosphere, landscape, ecosystems, etc.) and citizens and also provide assistance to stakeholders.
- ✓
- Train stakeholders to facilitate fire management as well as to identify and adopt suitable adaptation and mitigation strategies.
- ✓
- Improve the public perception of the European management capability of fire emergency crises.
2. Materials and Methods
2.1. Study Area
2.2. Method
- (1)
- Local Moran’s I: a high value of the index means positive correlation both for high values and for low values of intensity;
- (2)
- Local Geary’s C: detects areas of dissimilarity between events;
- (3)
- Getis and Ord’s Gi: a high value of the index means positive correlation for high values of intensity, while a low value of the index means positive correlation for low values of intensity.
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sustainable Development. Available online: https://sustainabledevelopment.un.org/topics/index.php?menu=1483 (accessed on 25 October 2018).[Green Version]
- Fire and Post-Fire Management. Available online: http://www.fao.org/forestry/firemanagement/en/ (accessed on 25 October 2018).
- Sentinel Data User Guide. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/document-library/-/asset_publisher/xlslt4309D5h/content/sentinel-2-user-handbook (accessed on 25 october 2018).
- Lasaponara, R. On the use of principal component analysis (PCA) for evaluating interannual vegetation anomalies from SPOT/VEGETATION NDVI temporal series. Ecol. Model. 2006, 194, 429–434. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Hall, J.V.; Loboda, T.V.; Giglio, L.; McCarty, G.W. A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote Sens. Environ. 2016, 184, 506–521. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Fernández-Manso, O. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wooster, M.J.; de Jong, M.C.; Xu, W. How well does the ‘small fire boost’ methodology used within the GFED4.1s fire emissions database represent the timing, location and magnitude of agricultural burning? Remote Sens. 2018, 10, 823. [Google Scholar] [CrossRef]
- Çolak, E.; Sunar, A.F. Remote sensing & GIS integration for monitoring the areas affected by forest fires: A case study in Izmir, Turkey. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 165–170. [Google Scholar]
- Pepe, M.; Parente, C. Burned Area Recognition by Change Detection Analysis Using Images Derived from Sentinel-2 Satellite: The Case Study of Sorrento Peninsula, Italy. J. Appl. Eng. Sci. 2018, 16, 225–232. [Google Scholar] [CrossRef]
- Engelbrecht, J.; Theron, A.; Vhengani, L. A normalised difference alpha-angle approach to burn scar extraction on multiple-polarisation Sar data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 4274–4277. [Google Scholar]
- Martinis, S.; Caspard, M.; Plank, S.; Clandillon, S.; Haouet, S. Mapping burn scars, fire severity and soil erosion susceptibility in Southern France using multisensoral satellite data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1099–1102. [Google Scholar]
- Guerrero, A.; Pineda, L.; Palà, V.; Corbera, J. Severity study in Albinyana (Catalunya) forest fire, using SENTINEL-2 data [Estudio de Severidad en el incendio de Albinyana (Catalunya) a partir de datos SENTINEL-2] (2017). Rev. Teledetecc. 2017, 49, 115–121. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X. Remote sensing techniques in monitoring post-fire effect sand patterns of forest recovery in boreal forest regions: A review. Remote Sens. 2014, 6, 470–520. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.-C.; Vázquez, Á.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef]
- Lanorte, A.; Danese, M.; Lasaponara, R.; Murgante, B. Multiscale mapping of burnt area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 42–51. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Balacco, G.; Figorito, B.; Tarantino, E.; Gioia, A.; Iacobellis, V. Space-time LAI variability in Northern Puglia (Italy) from SPOT VGTdata. Environ. Monitor. Assess. 2015, 187, 434. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, A.; Iacobellis, V.; Tarantino, E.; Gentile, F. Calibration of the AquaCrop model for winter wheat using MODIS LAIimages. Agric. Water Manag. 2016, 164, 304–316. [Google Scholar] [CrossRef]
- Novelli, A.; Tarantino, E.; Fratino, U.; Iacobellis, V.; Romano, G.; Gentile, F. A data fusion algorithm based on the Kalman filter toestimate leaf area index evolution in durum wheat by using field measurements and MODIS surface reflectance data. Remote Sens. Lett. 2016, 7, 476–484. [Google Scholar] [CrossRef]
- Tarantino, E. Monitoring spatial and temporal distribution of Sea Surface Temperature with TIR sensor data. Ital. J. Remote Sens. 2012, 44, 97–107. [Google Scholar] [CrossRef]
- Modica, G.; Pollino, M.; Solano, F. Sentinel-2 Imagery for Mapping Cork Oak (Quercus suber L.) Distribution in Calabria (Italy): Capabilities and Quantitative Estimation. In New Metropolitan Perspectives. ISHT 2018. Smart Innovation, Systems and Technologies; Calabrò, F., Della Spina, L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 100, pp. 60–67. [Google Scholar]
- Amato, F.; Maimone, B.; Martellozzo, F.; Nolè, G.; Murgante, B. The effects of urban policies on the development of urban areas. Sustainability 2016, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Modica, G.; Vizzari, M.; Pollino, M.; Fichera, C.R.; Zoccali, P.; di Fazio, S. Spatio-temporal analysis of the urban–rural gradient structure: An application in a Mediterranean mountainous landscape (Serra San Bruno, Italy). Earth Syst. Dyn. 2012, 3, 263–279. [Google Scholar] [CrossRef]
- Saganeiti, L.; Favale, A.; Pilogallo, A.; Scorza, F.; Murgante, B. Assessing Urban Fragmentation at Regional Scale Using Sprinkling Indexes. Sustainability 2018, 10, 3274. [Google Scholar] [CrossRef]
- Di Fazio, S.; Modica, G.; Zoccali, P. Evolution Trends of Land Use/Land Cover in a Mediterranean Forest Landscape in Italy. In Computational Science and Its Applications—ICCSA 2011, Part I, Lecture Notes in Computer Science; Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O., Eds.; Springer: Cham, Switzerland, 2011; Volume 6782, pp. 284–299. [Google Scholar]
- ERA 4CS Climate Initiative. Available online: http://jpi-climate.eu/nl/25223459-SERV_FORFIRE.html (accessed on 25 October 2018).
ΔNBR | Burn Severity |
---|---|
<−0.25 | High post-fire regrowth |
−0.25–−0.1 | Low post-fire regrowth |
−0.1–+0.1 | Unburned |
0.1–0.27 | Low-severity burn |
0.27–0.44 | Moderate–low severity burn |
0.44–0.66 | Moderate–high severity burn |
>0.66 | High-severity burn |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasaponara, R.; Tucci, B.; Ghermandi, L. On the Use of Satellite Sentinel 2 Data for Automatic Mapping of Burnt Areas and Burn Severity. Sustainability 2018, 10, 3889. https://doi.org/10.3390/su10113889
Lasaponara R, Tucci B, Ghermandi L. On the Use of Satellite Sentinel 2 Data for Automatic Mapping of Burnt Areas and Burn Severity. Sustainability. 2018; 10(11):3889. https://doi.org/10.3390/su10113889
Chicago/Turabian StyleLasaponara, Rosa, Biagio Tucci, and Luciana Ghermandi. 2018. "On the Use of Satellite Sentinel 2 Data for Automatic Mapping of Burnt Areas and Burn Severity" Sustainability 10, no. 11: 3889. https://doi.org/10.3390/su10113889
APA StyleLasaponara, R., Tucci, B., & Ghermandi, L. (2018). On the Use of Satellite Sentinel 2 Data for Automatic Mapping of Burnt Areas and Burn Severity. Sustainability, 10(11), 3889. https://doi.org/10.3390/su10113889