Comparison of Regular Atmospheric Storage versus Modified Atmospheric Packaging on Postharvest Quality of Organically Grown Lowbush and Half-Highbush Blueberries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Storage Conditions
- a control, consisting of four regular atmospheric storage (RA) punnets only;
- four regular atmosphere punnets sealed in a 30 μm thick low-density polyethylene (LDPE) modified atmosphere bag (product of Estiko, Estonia);
- four regular atmosphere punnets sealed in an Xtend® modified atmosphere blueberry bag (Stepac, Israel).
2.2. Gas Measurements
2.3. Subjective Quality Measurements
2.4. Fruit Quality Analyses
2.5. Colour Measurements
2.6. Statistical Analysis
3. Results and Discussion
3.1. Storage Time
3.2. O2 and CO2 Changes during Storage
3.3. Fruit Firmness
3.4. Fruit Shrivelling
3.5. Fruit Decay
3.6. Chemical Composition
3.7. Fruit Colour Changes during Storage
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Paniagua, A.C.; East, A.R.; Heyes, J.A. Interaction of temperature control deficiencies and atmosphere conditions during blueberry storage on quality outcomes. Postharvest Biol. Technol. 2014, 95, 50–59. [Google Scholar] [CrossRef]
- Cappellini, R.A.; Ceponis, M.J.; Koslow, G. Nature and extent of losses in consumer-grade samples of blueberries in Greater New York. HortScience 1982, 17, 55–56. [Google Scholar]
- Smittle, D.A.; Miller, W.R. Rabbiteye blueberry storage life and fruit quality in controlled atmospheres and air storage. J. Am. Soc. Hort. Sci. 1988, 113, 723–728. [Google Scholar]
- Beaudry, R.M.; Cameron, A.C.; Shirazi, A.; Dostal-Lange, D.L. Modified-atmosphere packaging of blueberry fruit: Effect of temperature on package O2 and CO2. J. Am. Soc. Hort. Sci. 1992, 117, 436–441. [Google Scholar]
- Chiabrando, V.; Giacalone, G. Studies on shelf life of ‘Lateblue’ highbush blueberries. Food Sci. Technol. Int. 2008, 14, 199–205. [Google Scholar] [CrossRef]
- Moggia, C.; Lobos, G.A.; Retamales, J.B. Modified atmosphere packaging in blueberries: Effect of harvest time and moment of bag sealing. Acta Hortic. 2014, 1017, 153–158. [Google Scholar] [CrossRef]
- Alsmairat, N.; Contreras, C.; Hancock, J.; Callow, P.; Beaudry, R. Use of combinations of commercially relevant O2 and CO2 partial pressures to evaluate the sensitivity of nine highbush blueberry fruit cultivars to controlled atmospheres. HortScience 2011, 46, 74–79. [Google Scholar]
- Hancock, J.; Gallow, P.; Serçe, S.; Hanson, E.; Beaudry, R. Effect of cultivar, controlled atmosphere storage, and fruit ripeness on the long-term storage and highbush blueberries. HortTechnology 2008, 18, 199–205. [Google Scholar]
- Cappellini, R.A.; Stretch, A.W.; Maiello, J.M. Fungi associated with blueberries held at various storage times and temperatures. Phytopathology 1972, 62, 68–69. [Google Scholar] [CrossRef]
- Sanford, K.A.; Lidster, P.D.; McRae, K.B.; Jackson, E.D.; Lawrence, R.A.; Stark, R.; Prange, R.K. Lowbush blueberry quality changes in response to mechanical damage and storage temperature. J. Am. Soc. Hort. Sci. 1991, 116, 47–51. [Google Scholar]
- Giacalone, G.; Chiabrando, V. Problems and methods to improve the market-life of berry fruit. In Berries: Properties, Consumption and Nutrition Problems and Methods to Improve the Market-Life of Berry Fruit; Tuberoso, C., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2012; pp. 179–196. [Google Scholar]
- Mattos, L.M.; Moretti, C.L.; Ferreira, M.D. Modified atmosphere packaging for perishable plant products. In Polypropylene; Dogan, F., Ed.; InTech: Vienna, Austria, 2012; pp. 95–110. [Google Scholar] [CrossRef]
- Tarand, A.; Jaagus, J.; Kallis, A. Eesti Kliima Minevikus ja Tänapäeval; Tartu Ülikooli Kirjastus: Tartu, Estonia, 2013; p. 632. (In Estonian) [Google Scholar]
- Paal, T.; Starast, M.; Noormets-Šanski, M.; Vool, E.; Tasa, T.; Karp, K. Influence of liming and fertilization on lowbush blueberry in harvested peat field condition. Sci. Hortic. 2011, 130, 157–163. [Google Scholar] [CrossRef]
- Starast, M.; Karp, K.; Vool, E.; Paal, T.; Albert, T. Effect of NPK fertilization and elemental sulphur on growth and yield of lowbush blueberry. Agric. Food Sci. 2007, 16, 34–45. [Google Scholar] [CrossRef]
- Tasa, T.; Starast, M.; Vool, E.; Moor, U.; Karp, K. Influence of soil type on half-highbush blueberry productivity. Agric. Food Sci. 2012, 21, 409–420. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. Word Reference Base for Soil Resources 2006, 2nd ed.; Word Soil Resources Reports 2006, No 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Infia TR80/58mm PET Punnet Base (+ BUBBLEPAD). 2015. Produce Packaging. Fresh Produce Packaging Solutions. Available online: http://www.producepackaging.co.uk/products/trays-punnets-lids/plastic/infia-tr8058mm-pet-punnet-base-%28plus-bubblepad%29.aspx (accessed on 6 May 2018).
- Schotsmans, W.; Molan, A.; MacKay, B. Controlled Atmosphere Storage of Rabbiteye Blueberries Enhances Postharvest Quality Aspects; Institute of Food Nutrition and Human Health, Massey University: Auckland, New Zealand, 2007. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-Visible spectroscopy. In Current Protocols in Food Analytical Chemistry; Giusti, M.M., Wrolstad, R.E., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Kalt, W.; McRae, K.B.; Hamilton, L.C. Relationship between surface color and other maturity indices in wild lowbush blueberries. Can. J. Plant Sci. 1995, 75, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Kim, H.K.; Yam, K.L. Respiration rate of blueberry in modified atmosphere at various temperatures. J. Am. Soc. Hort. Sci. 1992, 117, 925–929. [Google Scholar]
- Peano, C.; Girgenti, V.; Baudino, C.; Giuggioli, N.R. Blueberry supply chain in Italy: Management, innovation and sustainability. Sustainability 2017, 9, 261. [Google Scholar] [CrossRef]
- Valero, D.; Serrano, M. Postharvest Biology and Technology for Preserving Fruit Quality; CRC/Taylor & Francis: Boca Raton, FL, USA, 2010; p. 287. [Google Scholar]
- Fidler, J.C.; North, C.J. The effect of conditions of storage on the respiration of apples. I. The effects of temperature and concentrations of carbon dioxide and oxygen on the production of carbon dioxide and uptake of oxygen. J. Hortic. Sci. 1967, 42, 189–206. [Google Scholar] [CrossRef]
- Kader, A.A. (Ed.) Post-Harvest Technology of Horticultural Crops, 3rd ed.; University of California, Division of Agriculture and Natural Resources Publication: Oakland, CA, USA, 2002; 535p. [Google Scholar]
- Moor, U.; Põldma, P.; Tõnutare, T.; Moor, A.; Starast, M. The effect of modified atmosphere storage on the postharvest quality of the raspberry ’Polka’. Agron. Res. 2014, 12, 745–752. [Google Scholar]
- Moor, U.; Mölder, K.; Põldma, P.; Tõnutare, T. Postharvest quality of ’Sonata’, ’Honeoye’ and ’Polka’ strawberries as affected by modified atmosphere packages. Acta Hortic. 2012, 945, 55–62. [Google Scholar] [CrossRef]
- Giuggioli, N.R.; Girgenti, V.; Peano, C. Qualitative performance and consumer acceptability of starch films for the blueberry modified atmosphere packaging storage. Pol. J. Food Nutr. Sci. 2017, 67, 129–136. [Google Scholar] [CrossRef]
- Hall, I.V.; Forsyth, F.R. Respiration rates of developing fruits of the lowbush blueberry. Can. J. Plant Sci. 1966, 47, 157–159. [Google Scholar] [CrossRef]
- Prange, R.K.; Asiedu, S.K.; DeEll, J.R.; Westgarth, A.R. Quality of Fundy and Blomidon lowbush blueberries: Effects of storage atmosphere, duration and fungal inoculation. Can. J. Plant Sci. 1995, 75, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Ballington, J.R.; Ballanger, W.E.; Swallow, W.H.; Galletta, G.J.; Kushmann, L.J. Fruit quality characterization of 11 Vaccinium Species. J. Am. Soc. Hort. Sci. 1984, 109, 684–689. [Google Scholar]
- Vicente, A.R.; Ortugno, C.; Rosli, R.; Powell, A.L.T.; Greve, L.C.; Labavitch, J.M. Temporal sequence of cell wall disassembly events in developing fruits. 2. Analysis of Blueberry (Vaccinium Species). J. Agric. Food Chem. 2007, 55, 4125–4130. [Google Scholar] [CrossRef] [PubMed]
- Fava, J.; Alzamora, S.M.; Castro, M.A. Structure and nanostructure of the outer tangential epidermal cell wall in Vaccinium corymbosum L. (Blueberry) fruits by balanching, freezing–thawing and ultrasound. Food Sci. Technol. Int. 2006, 12, 241–251. [Google Scholar] [CrossRef]
- Connor, A.M.; Luby, J.J.; Hancock, J.F.; Berkheimer, S.; Hanson, E.J. Changes in fruit antioxidant activity among blueberry cultivars during cold–temperature storage. J. Agric. Food Chem. 2002, 50, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.W., Jr.; Sherman, W.B.; Sharpe, R.H. Evaluation and inheritance of fruit color, size, scar, firmness and plant vigor in blueberry. HortScience 1974, 9, 20–22. [Google Scholar]
- Finn, C.E.; Luby, J.J. Inheritance of fruit quality traits in blueberry. J. Am. Soc. Hort. Sci. 1992, 117, 617–621. [Google Scholar]
- Ehlenfeldt, M.K.; Martin, R.B., Jr. A survey of fruit firmness in highbush blueberry and species-introgressed blueberry cultivars. HortScience 2002, 37, 386–389. [Google Scholar]
- Giongo, L.; Poncetta, P.; Loretti, P.; Costa, F. Texture profiling of blueberries (Vaccinium spp.) during fruit development, ripening and storage. Postharvest Biol. Technol. 2013, 76, 34–39. [Google Scholar] [CrossRef]
- Almenar, E.; Samsudin, H.; Auras, R.; Harte, B.; Rubino, M. Postharvest shelf life extension of blueberries using a biodegradable package. Food Chem. 2008, 110, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Chen, C.-T.; Yin, J.-J. Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chem. 2010, 120, 199–204. [Google Scholar] [CrossRef]
- Echeverría, G.V.; Cañumir, J.V.; Serri, G.H. Postharvest behaviour of highbush blueberry fruits cv. O’Neal cultivated with different organic fertilization treatments. Chil. J. Agric. Res. 2009, 69, 391–399. [Google Scholar] [CrossRef]
- Abeles, F.B.; Morgan, P.W.; Saltveit, M.E., Jr. Ethylene in Plant Biology, 2nd ed.; Academic Press: San Diego, CA, USA, 1992; p. 414. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Z.; Chen, X. Effect of high oxygen atmospheres on fruit decay and quality in Chinese bayberries, strawberries and blueberries. Food Control 2008, 19, 470–474. [Google Scholar] [CrossRef]
- Jackson, E.D.; Sanford, K.A.; Lawrence, R.A.; McRae, K.B.; Stark, R. Lowbush blueberry quality changes in response to prepacking delays and holding temperatures. Postharvest Biol. Technol. 1999, 5, 117–126. [Google Scholar] [CrossRef]
- Kalt, W.; McDonald, J. Chemical composition of lowbush blueberry cultivars. J. Am. Soc. Hort. Sci. 1996, 121, 142–146. [Google Scholar]
- Duan, J.; Wu, R.; Strik, B.C.; Zhao, Y. Effect of edible coatings on quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biol. Technol. 2011, 59, 71–79. [Google Scholar] [CrossRef]
- Gonçalves, C.F.; Guiné, R.P.F.; Gonçalves, F.; Costa, D.V.T.A. Physical-Chemical Properties of Blueberry as Influenced by Production and Conservation Processes. International Conference on Engineering, University of Beira Interior, Covilhã, Portugal; 2–4 December 2015. Available online: http://repositorio.ipv.pt/bitstream/10400.19/2993/1/2015_Covilha_ICEUBI_Ata_Daniela_Mirtilo%20Prop.pdf (accessed on 12 June 2018).
- Beaudry, R. Blueberry quality characteristics and how they can be optimized. In Annual Report of the Michigan State Horticultural Society, 122nd ed.; Michigan State Horticultural Society: East Lansing, MI, USA, 1992; pp. 140–145. [Google Scholar]
- Albrigo, L.E.; Hall, I.V. Waxes and other surface characteristics of fruits and leaves of native Vaccinium elliotti Chapm. J. Am. Soc. Hort. Sci. 1980, 105, 230–235. [Google Scholar]
- Kushman, L.I.; Ballinger, W.E. Relation of quality indices of individual blueberries to photoelectric measurement of anthocyanin content. J. Am. Soc. Hort. Sci. 1975, 100, 561–564. [Google Scholar]
- Duarte, C.; Guerra, M.; Daniel, P.; Camelo, A.L.; Yommi, A. Quality changes of highbush blueberries fruit stored in CA with different CO2 levels. J. Food Sci. 2009, 74, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.; Oliveira, J.; Neves, P.; Gameiro, P.; Santos-Buelga, C.; de Freitas, V.; Mateus, N. Antioxidant properties of prepared blueberry (Vaccinium myrtillus) extracts. J. Agric. Food Chem. 2005, 53, 6896–6902. [Google Scholar] [CrossRef] [PubMed]
- Sinelli, N.; Spinardi, A.; Egidio, V.D.; Mignani, I.; Casiraghi, E. Evaluation of quality and nutraceutical content of bluberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biol. Technol. 2008, 50, 31–36. [Google Scholar] [CrossRef]
- Ayhan, Z.; Eştürk, O.; Müftüoğlu, F. Effects of coating, modified atmosphere (MA) and plastic film on the physical and sensory properties of apricot. Acta Hortic. 2010, 876, 143–150. [Google Scholar] [CrossRef]
- Saftner, R.; Polascock, J.; Ehlenfeldt, M.K.; Vinyar, B. Instrumental and sensory quality characteristics of blueberry fruit from twelve cultivars. Postharvest Biol. Technol. 2008, 49, 19–26. [Google Scholar] [CrossRef]
- Eum, H.L.; Hong, S.C.; Chun, C.; Shin, S., II; Lee, B.Y.; Kim, H.K.; Hong, S.J. Influence of temperature during transport on shelf-life quality of highbush blueberries (Vaccinium corymbosum L. cvs. Bluetta, Duke). Hort. Environ. Biotechnol. 2013, 54, 123–133. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Blueberries and their anthocyanins: Factors affecting biosynthesis and properties. Compr. Rev. Food Sci. 2011, 10, 303–320. [Google Scholar] [CrossRef]
- Ballinger, W.E.; Maness, E.P.; Galletta, G.J.; Kushman, L.J. Anthocyanin of ripe fruit of a pink-fruited hybrid of highbush blueberries, Vaccinium corymbosum L. J. Am. Soc. Hort. Sci. 1972, 97, 381–384. [Google Scholar]
Lowbush Blueberry | ‘Northblue’ | |||||
---|---|---|---|---|---|---|
RA | LDPE | Xtend® | RA | LDPE | Xtend® | |
Firmness (points) | 5.0b | 5.3ab | 6.0a | 7.3A | 7.0A | 7.0A |
Shrivelling (%) | 13.0a | 3.0c | 5.0b | 0.1B | 0.1B | 2.0A |
Decay (%) | 0.1b | 0.4a | 0.1b | 3.0C | 15.0A | 7.0B |
Lowbush Blueberry | ‘Northblue’ | |||||||
---|---|---|---|---|---|---|---|---|
Pre-storage | After storage | Pre-storage | After storage | |||||
RA | LDPE | Xtend® | RA | LDPE | Xtend® | |||
DM (%) | 13.6b | 13.6b | 13.6b | 15.1a | 13.1B | 13.9AB | 13.2B | 14.5A |
ACY (mg/100 g) | 53c | 151a | 96b | 110b | 41B | 103A | 101A | 103A |
SSC (%) | 13.1b | 12.5c | 12.3c | 14.0a | 13.4C | 14.4A | 12.4D | 13.9B |
TA (%) | 0.15b | 0.14b | 0.18b | 0.27a | 0.66D | 0.73C | 0.82B | 0.89A |
SSC:TA | 88b | 94a | 67c | 52d | 20A | 20A | 15B | 16B |
Colour Measurement | Lowbush Blueberry | ’Northblue’ | ||||||
---|---|---|---|---|---|---|---|---|
Pre-storage | After Storage | Pre-storage | After Storage | |||||
RA | LDPE | Xtend® | RA | LDPE | Xtend® | |||
Surface (with wax) colour | ||||||||
L* | 29.3a | 29.7a | 29.5a | 25.6b | 29.0A | 26.0B | 28.9A | 27.0B |
a* | 1.07b | 0.7c | 0.8bc | 2.0a | 0.4C | 1.0B | 0.8B | 1.5A |
b* | –5.6b | –6.3b | –6.0b | –4.4a | –4.7B | –4.0A | –4.3A | –4.0A |
C* | 5.7ab | 6.3a | 6.1ab | 5.5b | 4.7A | 4.1B | 4.4AB | 4.4AB |
h* | 281b | 277b | 280b | 297a | 275B | 284AB | 282AB | 291A |
Surface (without wax) colour | ||||||||
L* | 23.5a | 22.9a | 22.7a | 23.4a | 24.1A | 24.1A | 24.0A | 24.2A |
a* | 1.1a | 0.9a | 0.9a | 1.1a | 0.8B | 1.3A | 1.6A | 1.6A |
b* | –0.8bc | –0.6a | –1.0c | –1.9d | 0.0A | –1.5C | –1.0B | –0.9B |
C* | 1.4b | 1.2b | 1.4b | 2.3a | 0.8B | 2.1A | 2.0A | 1.9A |
h* | 325a | 327a | 314b | 306b | 116D | 313C | 324B | 330A |
Flesh colour | ||||||||
L* | 39.1a | 41.3a | 36.8b | 36.3b | 48.9B | 48.0B | 55.7A | 52.3AB |
a* | 2.4c | 4.3b | 5.3a | 5.8a | –2.9C | –0.9A | –2.9C | –2.3B |
b* | 3.6a | 3.9a | 2.9b | 2.8b | 9.3C | 8.8C | 11.2B | 13.3A |
C* | 5.0c | 6.1b | 6.5b | 7.4a | 9.8C | 8.9C | 11.7B | 13.5A |
h* | 90b | 44d | 68c | 200a | 105A | 94B | 103A | 99AB |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koort, A.; Moor, U.; Põldma, P.; Kaiser, C.; Starast, M. Comparison of Regular Atmospheric Storage versus Modified Atmospheric Packaging on Postharvest Quality of Organically Grown Lowbush and Half-Highbush Blueberries. Sustainability 2018, 10, 3916. https://doi.org/10.3390/su10113916
Koort A, Moor U, Põldma P, Kaiser C, Starast M. Comparison of Regular Atmospheric Storage versus Modified Atmospheric Packaging on Postharvest Quality of Organically Grown Lowbush and Half-Highbush Blueberries. Sustainability. 2018; 10(11):3916. https://doi.org/10.3390/su10113916
Chicago/Turabian StyleKoort, Angela, Ulvi Moor, Priit Põldma, Clive Kaiser, and Marge Starast. 2018. "Comparison of Regular Atmospheric Storage versus Modified Atmospheric Packaging on Postharvest Quality of Organically Grown Lowbush and Half-Highbush Blueberries" Sustainability 10, no. 11: 3916. https://doi.org/10.3390/su10113916
APA StyleKoort, A., Moor, U., Põldma, P., Kaiser, C., & Starast, M. (2018). Comparison of Regular Atmospheric Storage versus Modified Atmospheric Packaging on Postharvest Quality of Organically Grown Lowbush and Half-Highbush Blueberries. Sustainability, 10(11), 3916. https://doi.org/10.3390/su10113916