Modeling the Factors Influencing the Activity Spaces of Bikeshare around Metro Stations: A Spatial Regression Model
Abstract
:1. Introduction
2. Literature Review
2.1. Travel Characteristics of Metro-Bikeshare Integration
2.2. Influential Factors of Bicycle-Metro Integration
3. Methodology
3.1. Multicollinearity
3.2. Spatial Autocorrelation
3.3. Regression Models
3.4. Data
3.4.1. Dependent Variable: Activity Space of Bikeshare around the Metro Station
3.4.2. Explanatory Variable: Social-Demographic, Travel-Related, and Built Environment Factors
3.5. Model Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Erdoğan, S.; Liu, C.; Ma, T. Bicycle Sharing and Transit: Does Capital Bikeshare Affect Metrorail Ridership in Washington, D.C. Transp. Res. Rec. 2015, 2534, 1–9. [Google Scholar]
- Shaheen, S.A.; Guzman, S.; Zhang, H. Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future. Transp. Res. Rec. 2010, 2143, 159–167. [Google Scholar] [CrossRef]
- Yahya, B. Overall Bike Effectiveness as a Sustainability Metric for Bike Sharing Systems. Sustainability 2017, 9, 2070. [Google Scholar] [CrossRef]
- Fishman, E. Bikeshare: A Review of Recent Literature. Transp. Rev. 2015, 36, 92–113. [Google Scholar] [CrossRef]
- Shaheen, S.A.; Martin, E.W.; Cohen, A.P. Public Bikesharing and Modal Shift Behavior: A Comparative Study of Early Bikesharing Systems in North America. Int. J. Transp. 2013, 1, 35–54. [Google Scholar] [CrossRef]
- Meddin, R.; Demaio, P.J. The Bike-Sharing World Map. Available online: http://www.bikesharingworld.com (accessed on 24 October 2018).
- Ji, Y.; Fan, Y. Public bicycle as a feeder mode to rail transit in China: The role of gender, age, income, trip purpose, and bicycle theft experience. Int. J. Sustain. Transp. 2017, 11, 308–317. [Google Scholar] [CrossRef]
- Pan, H.; Shen, Q.; Xue, S. Intermodal Transfer Between Bicycles and Rail Transit in Shanghai, China. Transp. Res. Rec. 2010, 2144, 181–188. [Google Scholar] [CrossRef]
- Fan, Y.; Guthrie, A.; Levinson, D. Waiting time perceptions at transit stops and stations: Effects of basic amenities, gender, and security. Transp. Res. Part A 2016, 88, 251–264. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Liu, K.-C. Evaluating bicycle-transit users’ perceptions of intermodal inconvenience. Transp. Res. Part A 2012, 46, 1690–1706. [Google Scholar] [CrossRef]
- Li, Z.-C.; Yao, M.-Z.; Lam, W.H.K.; Sumalee, A.; Choi, K. Modeling the Effects of Public Bicycle Schemes in a Congested Multi-Modal Road Network. Int. J. Sustain. Transp. 2015, 9, 282–297. [Google Scholar] [CrossRef]
- Shaheen, S.A. Shared-Use Vehicle Services for Sustainable Transportation: Carsharing, Bikesharing, and Personal Vehicle Sharing across the Globe. Int. J. Sustain. Transp. 2013, 7, 1–4. [Google Scholar] [CrossRef]
- Golledge, R.G.; Stimson, R.J. Spatial Behavior: A Geographic Perspective. Econ. Geogr. 1997, 74, 83–85. [Google Scholar]
- Nair, R.; Miller-Hooks, E.; Hampshire, R.C.; Bušić, A. Large-Scale Vehicle Sharing Systems: Analysis of Vélib’. Int. J. Sustain. Transp. 2013, 7, 85–106. [Google Scholar] [CrossRef]
- Martens, K. The bicycle as a feedering mode: Experiences from three European countries. Transp. Res. Part D 2004, 9, 281–294. [Google Scholar] [CrossRef]
- Rose, G.; Weliwitiya, H.; Tablet, B.; Johnson, M.; Subasinghe, A. Bicycle access to Melbourne metropolitan rail stations. In Proceedings of the 38th Australasian Transport Research Forum, Melbourne, Australia, 16–18 November 2016. [Google Scholar]
- Wang, R.; Liu, C. Bicycle-Transit Integration in the United States, 2001–2009. J. Public Transp. 2013, 16, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Hochmair, H.H. Assessment of Bicycle Service Areas around Transit Stations. Int. J. Sustain. Transp. 2014, 9, 15–29. [Google Scholar] [CrossRef]
- Flamm, B.J.; Rivasplata, C.R. Public Transit Catchment Areas: The Curious Case of Cycle-Transit Users. Transp. Res. Rec. 2014, 2419, 101–108. [Google Scholar] [CrossRef]
- Rietveld, P. The accessibility of railway stations: The role of the bicycle in The Netherlands. Transp. Res. Part D 2000, 5, 71–75. [Google Scholar] [CrossRef]
- Keijer, M.J.N.; Rietveld, P. How do people get to the railway station? The dutch experience. Transp. Plan. Technol. 2000, 23, 215–235. [Google Scholar] [CrossRef] [Green Version]
- Arbis, D.; Rashidi, T.H.; Dixit, V.V.; Vandebona, U. Analysis and planning of bicycle parking for public transport stations. Int. J. Sustain. Transp. 2014, 10, 495–504. [Google Scholar] [CrossRef]
- Molin, E.; Maat, K. Bicycle parking demand at railway stations: Capturing price-walking trade offs. Res. Transp. Econ. 2015, 53, 3–12. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Wang, W.; Feng, B. The Demand Analysis of Bike-and-ride in Rail Transit Stations based on Revealed and Stated Preference Survey. Procedia 2013, 96, 1260–1268. [Google Scholar] [CrossRef]
- Caulfield, B.; Brick, E.; Mccarthy, O.T. Determining bicycle infrastructure preferences—A case study of Dublin. Transp. Res. Part D 2012, 17, 413–417. [Google Scholar] [CrossRef]
- Hendricks, S.; Outwater, M. Demand Forecasting Model for Park-and-Ride Lots in King County, Washington. Transp. Res. Rec. 1998, 1623, 80–87. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S. Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing. Transp. Res. Part A 2017, 99, 46–60. [Google Scholar] [CrossRef]
- Anable, J. ‘Complacent Car Addicts’ or ‘Aspiring Environmentalists’? Identifying travel behaviour segments using attitude theory. Transp. Policy 2005, 12, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.B.; Mahmassani, H.S. Analysis of Stated Preferences for Intermodal Bicycle-Transit Interfaces. Transp. Res. Rec. 1997, 1556, 86–95. [Google Scholar] [CrossRef]
- Du, M.; Cheng, L. Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China. Sustainability 2018, 10, 1244. [Google Scholar] [CrossRef]
- Bachand-Marleau, J.; Larsen, J.; El-Geneidy, A.M. Much-Anticipated Marriage of Cycling and Transit How Will It Work? Transp. Res. Rec. 2011, 2247, 109–117. [Google Scholar] [CrossRef]
- Chen, L.; Pel, A.J.; Chen, X.; Sparing, D.; Hansen, I.A. Determinants of Bicycle Transfer Demand at Metro Stations: Analysis of Stations in Nanjing, China. Transp. Res. Rec. 2012, 2276, 131–137. [Google Scholar] [CrossRef]
- Martin, E. Evaluating Public Transit Modal Shift Dynamics in Response to Bikesharing: A Tale of Two Cities. J. Transp. Geogr. 2014, 41, 315–324. [Google Scholar] [CrossRef]
- Murphy, E.; Usher, J. The Role of Bicycle-sharing in the City: Analysis of the Irish Experience. Int. J. Sustain. Transp. 2015, 9, 116–125. [Google Scholar] [CrossRef]
- Yi, C.; Ma, X.; Ji, Y.; Xu, Y.; Liu, Y. Bikeshare as a Feeder Mode to Metro: Where, When, Who, and Why? In Proceedings of the 97th Annual Meeting on Compendium of Transportation Research Board, Washington, DC, USA, 11–15 January 2018. [Google Scholar]
- Ma, X.; Yang, M.; Ji, Y.; Jin, Y.; Tan, X. Understanding Bikeshare Mode as a Feeder to Metro by Isolating Metro–Bicycle Transfers from Smart Card Data. Transp. Policy 2018, 71, 57–69. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, W.; Ong, G.P.; Ji, Y. An Association Rule Based Method to Integrate Metro-Public Bicycle Smart Card Data for Trip Chain Analysis. J. Adv. Transp. 2018, 2018, 4047682. [Google Scholar] [CrossRef]
- Yang, M.; Liu, X.; Wang, W.; Li, Z.; Zhao, J. Empirical Analysis of a Mode Shift to Using Public Bicycles to Access the Suburban Metro: Survey of Nanjing, China. J. Urban Plan. Dev. 2016, 142, 05015011. [Google Scholar] [CrossRef]
- Chen, C.F.; Cheng, W.C. Sustainability SI: Exploring Heterogeneity in Cycle Tourists’ Preferences for an Integrated Bike-Rail Transport Service. Netw. Spat. Econ. 2014, 16, 83–97. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y. Associations between Public Transit Usage and Bikesharing Behaviors in The United States. Sustainability 2018, 10, 1868. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Deng, W. Exploring bikesharing travel time and trip chain by gender and day of the week. Transp. Res. Part C 2015, 58, 251–264. [Google Scholar] [CrossRef]
- La, L.; Puello, P.; Geurs, K. Modelling observed and unobserved factors in cycling to railway stations: Application to transit-oriented-developments in the Netherlands. Eur. J. Transp. Infrastruct. Res. 2015, 15, 27–50. [Google Scholar]
- Ji, Y.; Ma, X.; Yang, M.; Jin, Y.; Gao, L. Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach. Sustainability 2018, 10, 1526. [Google Scholar] [CrossRef]
- Riding the Bike-Share Boom: The Top Five Components of A Successful System. Available online: https://www.burness.com/creative-projects/itdp/ (accessed on 24 October 2018).
- Kutner, M.H.; Nachtsheim, C.; Neter, J. Applied Linear Regression Models; McGraw-Hill/Irwin: New York, NY, USA, 2004. [Google Scholar]
- Alexander, N. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. J. R. Stat. Soc. 2011, 174, 512–513. [Google Scholar] [CrossRef]
- Benassi, F.; Naccarato, A. Households in potential economic distress. A geographically weighted regression model for Italy, 2001–2011. Spat. Stat. 2017, 21, 362–376. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X.; Zhao, J. Understanding the usage of dockless bike sharing in Singapore. Int. J. Sustain. Transp. 2018, 12, 686–700. [Google Scholar] [CrossRef]
- Mejia-Dorantes, L.; Páez, A.; Vassallo, J.M. Analysis of House Prices to Assess Economic Impacts of New Public Transport Infrastructure: Madrid Metro Line 12. Transp. Res. Rec. 2011, 2245, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Chen, B.Y.; Cao, X.; Li, T.; Li, P. The spatial characteristics and influencing factors of modal accessibility gaps: A case study for Guangzhou, China. J. Transp. Geogr. 2017, 60, 21–32. [Google Scholar] [CrossRef]
- Fischer, M.M.; Wang, J. Spatial Data Analysis: Models, Methods and Techniques (Springer Briefs in Regional Science); Springer: Berlin, Germany, 2011. [Google Scholar]
- Lin, H.; Zhang, J.; Yang, P.; Liu, J. Development on Spatially Integrated Humanities and Social Science. Geo-Inf. Sci. 2006, 29, 1725–1734. [Google Scholar]
- O’Sullivan, D. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, by A. S. Fotheringham, C. Brunsdon, and M. Charlton. Geogr. Anal. 2003, 35, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Hurvich, C.M.; Simonoff, J.S.; Tsai, C.L. Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Stat. Soc. 1998, 60, 271–293. [Google Scholar] [CrossRef]
- Yuill, R.S. The Standard Deviational Ellipse; An Updated Tool for Spatial Description. Geogr. Ann. 1971, 53, 28–39. [Google Scholar] [CrossRef]
- Järv, O.; Ahas, R.; Witlox, F. Understanding monthly variability in human activity spaces: A twelve-month study using mobile phone call detail records. Transp. Res. Part C 2014, 38, 122–135. [Google Scholar] [CrossRef]
- Wong, S. The limitations of using activity space measurements for representing the mobilities of individuals with visual impairment: A mixed methods case study in the San Francisco Bay Area. J. Transp. Geogr. 2018, 66, 300–308. [Google Scholar] [CrossRef]
- Wang, B.; Shi, W.; Miao, Z. Confidence analysis of standard deviational ellipse and its extension into higher dimensional euclidean space. PLoS ONE 2015, 10, e0118537. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Ma, X.; Ji, Y.; Jin, Y.; Tan, X. Exploring Behavioral Heterogeneity in Passengers’ Preferences for an Integrated Metro-Bikeshare Transport Service: A Smartcard Data Approach. In Proceedings of the 97th Annual Meeting on Compendium of Transportation Research Board, Washington, DC, USA, 11–15 January 2018. [Google Scholar]
Independent Variables | Weekday | Weekend | ||
---|---|---|---|---|
Mean | St. Dev. | Mean | St. Dev | |
Social-Demographic Variables | ||||
Proportion of males (POM) | 0.56 | 0.12 | 0.60 | 0.11 |
Proportion of local residents (POLR) | 0.52 | 0.12 | 0.52 | 0.15 |
Proportion of users under 18 years old (PAGE1) | 0.01 | 0.02 | 0.03 | 0.04 |
Proportion of users between 19 and 35 years old (PAGE2) | 0.54 | 0.15 | 0.47 | 0.16 |
Proportion of users between 36 and 45 years old (PAGE3) | 0.21 | 0.07 | 0.21 | 0.16 |
Proportion of users between 46 years and retirement age (PAGE4) | 0.15 | 0.09 | 0.19 | 0.11 |
Proportion of users above retirement age (PAGE5) | 0.09 | 0.06 | 0.10 | 0.09 |
Travel-Related variables | ||||
Proportion of travel trips in peak hours (POPH) | 0.56 | 0.13 | 0.31 | 0.11 |
Average travel distance in metro (ADM) (km) | 9.73 | 1.82 | 9.78 | 1.87 |
Built Environment Variables | ||||
Road density (ROADD) (km/km2) | 65.47 | 19.17 | 67.41 | 21.12 |
Metro station density (METROD) (km2) | 1.22 | 0.75 | 1.20 | 0.61 |
Bikeshare station density (BIKED) km2) | 14.96 | 6.61 | 15.13 | 6.56 |
Bus stop density (BUSD) (km2) | 78.39 | 29.39 | 81.28 | 29.72 |
Resident density (RESD) (10,000 people/km2) | 1.21 | 0.82 | 1.23 | 0.82 |
Job density (JOBD) (10,000 jobs/km2) | 0.26 | 0.17 | 0.26 | 0.18 |
Distance to central business district, CBD (DTC) (km) | 5.67 | 3.65 | 5.42 | 3.35 |
Variables | Weekdays | Weekends | ||
---|---|---|---|---|
OLS | SEM | OLS | SEM | |
Social-Demographic Variables | ||||
POLR | −1.51 (−0.08) | −7.36 (−0.89) | 24.73 ** (2.31) | 15.89 ** (2.02) |
PAGE1 | −1.27 *** (−3.01) | −0.54 *** (−2.85) | −1.49 ** (−2.05) | −1.24 ** (−2.30) |
PAGE4 | 0.48 *** (2.81) | 0.27 *** (3.62) | 0.23 (0.97) | 0.21 (1.22) |
Travel-Related Variables | ||||
ADM | 0.57 (0.42) | −1.98 *** (−3.06) | 1.20 (1.37) | 0.56 (1.03) |
Built Environment Variables | ||||
ROADD | −0.57 ** (2.25) | −0.35 *** (3.15) | −0.02 (−0.14) | 0.01 (0.07) |
METROD | −13.69 ** (−2.41) | −13.59 *** (−5.53) | 0.33 (0.06) | −3.85 (−0.96) |
JOBD | −28.14 (−0.72) | −46.22 ** (2.21) | −53.49 ** (−1.96) | −28.27 ** (−2.23) |
DTC | −0.08 (−0.06) | 4.15 *** (4.64) | −2.19 *** (−2.99) | 3.51 *** −(2.76) |
/ | 0.15 *** (37.83) | / | 0.17 *** (13.08) | |
log-likelihood | −139.3447 | −104.5848 | −122.1881 | −101.7835 |
Adj R-squared | 0.5603 | 0.8249 | 0.4463 | 0.6747 |
AIC | 310.6849 | 241.1696 | 276.3762 | 235.567 |
Moran’s I of residuals | 0.8568 *** (5.62) | 0.2023 *** (9.12) | 0.6685 *** (5.77) | 0.3970 *** (5.70) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Ji, Y.; Jin, Y.; Wang, J.; He, M. Modeling the Factors Influencing the Activity Spaces of Bikeshare around Metro Stations: A Spatial Regression Model. Sustainability 2018, 10, 3949. https://doi.org/10.3390/su10113949
Ma X, Ji Y, Jin Y, Wang J, He M. Modeling the Factors Influencing the Activity Spaces of Bikeshare around Metro Stations: A Spatial Regression Model. Sustainability. 2018; 10(11):3949. https://doi.org/10.3390/su10113949
Chicago/Turabian StyleMa, Xinwei, Yanjie Ji, Yuchuan Jin, Jianbiao Wang, and Mingjia He. 2018. "Modeling the Factors Influencing the Activity Spaces of Bikeshare around Metro Stations: A Spatial Regression Model" Sustainability 10, no. 11: 3949. https://doi.org/10.3390/su10113949
APA StyleMa, X., Ji, Y., Jin, Y., Wang, J., & He, M. (2018). Modeling the Factors Influencing the Activity Spaces of Bikeshare around Metro Stations: A Spatial Regression Model. Sustainability, 10(11), 3949. https://doi.org/10.3390/su10113949