Reservoirs and Transmission Pathways of Resistant Indicator Bacteria in the Biotope Pig Stable and along the Food Chain: A Review from a One Health Perspective
Abstract
:1. Introduction
2. Background Information
2.1. Antibiotic Use in Livestock Production
2.2. Characteristics of Multidrug-Resistant Bacteria (MRSA and ESBL-E)
2.2.1. MRSA
2.2.2. ESBL and Resistance Genes
2.3. Bioavailability and Transmission Potential of Antibiotic-Resistant Bacteria
3. Reservoirs and Transmission Pathways of LA-MRSA and ESBL-E
3.1. Transmission Pathways
3.2. LA-MRSA and ESBL-E in Humans in the Stable Biotope
3.3. LA-MRSA and ESBL-E in Pigs
3.4. Reservoir Stable Environment
3.4.1. LA-MRSA and ESBL-E in Air and Dust
- Turbulence: Spread of bacteria due to air turbulence;
- Mechanical contact: Transmission of bacteria by direct contact (passive via stable equipment or active via persons/animals);
- Sedimentation: Reduction of circulation from the airborne state and subsequent deposit;
- Re-suspension: Bacteria not primarily and actively transported by air flow; and
- Re-entrainment: Re-return of already sedimented bacteria to the air [139].
3.4.2. LA-MRSA and ESBL-E in Water, Wastewater and Manure
3.5. LA-MRSA and ESBL-E in the Food Chain: Abattoir Biotope
4. Sustainable Biotope Approaches
4.1. Animal Health in the Livestock Biotope
- A high number of passages of host pathogens with potentially increased virulence within herds;
- Higher rates of the adhesion of pathogens;
- The rapid spread of pathogens via direct host contact, food, water, air, and living vectors;
- The use of high-performance animals that are more sensitive to environmental stressors;
- The neglect of hygiene principles, e.g., sufficient drying times during cleaning and disinfection; and
- The reduced possibility of individual health control and animal observation [143].
4.2. Preventive Health Management: Part of Quality Management
- Detect diseases while still in the subclinical stage;
- Prevent infections from progressing to a clinical stage and stop the spread from a single animal to the whole herd; and
- Identify and promptly eliminate stressors and risks to animal health from the environment.
- Pig supplying farms;
- Networks of primary producers; and
4.3. “One Health” Crossing Biotopes
5. Final Remarks, Recommendations and Future Directions
- -
- Healthy animals do not need antibiotic medication, thus further suppressing the risk of the occurrence of non-pathogenic resistant bacteria. The constant administration of antibiotics to animals will destroy potential antibiotics. Therefore, to save existing potential antibiotics, the government, physicians, and farm industries should limit the prescription of antibiotics to prevent antibiotic resistance, and people should not easily obtain access to self-medicated antibiotics, especially in developing countries.
- -
- Farmers and veterinarians come into contact with antimicrobial-resistant bacteria from pigs within the stable environment. Strong associations between the isolation of resistant commensal bacteria (both MRSA and ESLB-E) and contact with pigs and even the working hours in the stable could be made.
- -
- However, not only do animals present potential reservoirs or vectors for transferring resistance genes and resistant bacteria, but even farmers and farm workers themselves should also be considered for their transmission potential.
- -
- Thus, aside from organic factors, the inanimate environment such as the stable climate has a substantial influence on the well-being and health status of pigs and the tenacity of bacteria. Air and dust were clearly determined as sources for the contamination of humans and animals mainly with MRSA.
- -
- Wastewater in general (municipal, urban, with clinical and/or agroindustrial influence) serves as a melting pot for the possible horizontal transfer between resistance genes and multidrug-resistant bacteria. Whereas the impact of animal wastewater on surface water has yet to be investigated.
- -
- Many resistant bacteria in animal drinkers could be identified after cleaning and disinfection, which could lead to a vertical transfer of pathogens to newly arriving pigs. Therefore, methods for cleaning performances, especially regarding the water systems in pig stables, should be evaluated.
- -
- A high prevalence of ESBL-E was found in pig manure, indicating a high emission and transmission potential into the stable environment and their surroundings.
- -
- Contamination of meat with ESBL-producing E. coli and MRSA is no longer surprising. However, the growing diversity of ESBL-E indicates a growing dissemination of ESBL-genes in E. coli in meat products from porcine origin.
- Limit the purchase of new pigs to those that are accompanied with health certificates from the supply farms.
- Determine the MRSA/ESBL status (similar to the Salmonella monitoring), take part in a continued health-monitoring program and create financial incentives for reduction measures.
- Use workshops and training to transfer scientific knowledge and sensitize for reduction measures.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gilchrist, M.J.; Greko, C.; Wallinga, D.B.; Beran, G.W.; Riley, D.G.; Thorne, P.S. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Perspect. 2007, 115, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Mathew, A.G.; Cissell, R.; Liamthong, S. Antibiotic resistance in bacteria associated with food animals: A United States perspective of livestock production. Foodborne Pathog. Dis. 2007, 4, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Threlfall, E.J.; Ward, L.R.; Frost, J.A.; Willshaw, G.A. The emergence and spread of antibiotic resistance in food-borne bacteria. Int. J. Food Microbiol. 2000, 62, 1–5. [Google Scholar] [CrossRef]
- Pruden, A.; Larsson, D.G.; Amézquita, A.; Collignon, P.; Brandt, K.K.; Graham, D.W.; Lazorchak, J.M.; Suzuki, S.; Silley, P.; Snape, J.R.; et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ. Health Perspect. 2013, 121, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Escudero, E.; Vinué, L.; Teshager, T.; Torres, C.; Moreno, M.A. Resistance mechanisms and farm-level distribution of fecal Escherichia coli isolates resistant to extended-spectrum cephalosporins in pigs in Spain. Res. Vet. Sci. 2010, 88, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.H.; Damborg, P.; Andreasen, M.; Nielsen, S.S.; Guardabassi, L. Carriage and fecal counts of cefotaxime M-producing Escherichia coli in pigs: A longitudinal study. Appl. Environ. Microbiol. 2013, 79, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Broens, E.M.; Graat, E.A.; Van der Wolf, P.J.; Van de Giessen, A.W.; De Jong, M.C. Transmission of methicillin resistant Staphylococcus aureus among pigs during transportation from farm to abattoir. Vet. J. 2011, 189, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Broens, E.M.; Graat, E.A.; van der Wolf, P.J.; van de Giessen, A.W.; van Duijkeren, E.; Wagenaar, J.A.; van Nes, A.; Mevius, D.J.; de Jong, M.C. MRSA CC398 in the pig production chain. Prev. Vet. Med. 2011, 98, 182–189. [Google Scholar] [CrossRef] [PubMed]
- van Duijkeren, E.; Ikawaty, R.; Broekhuizen-Stins, M.J.; Jansen, M.D.; Spalburg, E.C.; de Neeling, A.J.; Allaart, J.G.; van Nes, A.; Wagenaar, J.A.; Fluit, A.C. Transmission of methicillin-resistant Staphylococcus aureus strains between different kinds of pig farms. Vet. Microbiol. 2008, 126, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Geisthövel, S.; Schmithausen, R.; Stemmer, F.; El-Sade, M.; Hoerauf, A.; Exner, M.; Bierbaum, G.; Bekeredjian-Ding, I.; Petersen, B. Occurrence of MRSA and ESBL in different habitats and different stages of the pork production chain. In Proceedings of the DACH Epidemiologietagung “Tiergesundheit und Ökonomie”, Zürich, Schweiz, 3–5 September 2014. [Google Scholar]
- Hunter, P.A.; Dawson, S.; French, G.L.; Goossens, H.; Hawkey, P.M.; Kuijper, E.J.; Nathwani, D.; Taylor, D.J.; Teale, C.J.; Warren, R.E.; et al. Antimicrobial-resistant pathogens in animals and man: Prescribing, practices and policies. J. Antimicrob. Chemother. 2010, 65 (Suppl. 1), i3–i17. [Google Scholar] [CrossRef] [PubMed]
- Hawkey, P.M.; Jones, A.M. The changing epidemiology of resistance. J. Antimicrob. Chemother. 2009, 64 (Suppl. 1), i3–i10. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Mehrotra, M.; Ghimire, S.; Adewoye, L. Beta-Lactam resistance and beta-lactamases in bacteria of animal origin. Vet. Microbiol. 2007, 121, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Stephan, R.; Nüesch-Inderbinen, M. Distribution of virulence factors in ESBL-producing Escherichia coli isolated from the environment, livestock, food and humans. Sci. Total Environ. 2016, 541, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westphal-Settele, K.; Konradi, S.; Balzer, F.; Schönfeld, J.; Schmithausen, R. The environment as a reservoir for antimicrobial resistance: A growing problem for public health? Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018, 61, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Mehndiratta, P.L.; Bhalla, P. Use of antibiotics in animal agriculture & emergence of methicillin-resistant Staphylococcus aureus (MRSA) clones: Need to assess the impact on public health. Indian J. Med. Res. 2014, 140, 339–344. [Google Scholar] [PubMed]
- Liverani, M.; Waage, J.; Barnett, T.; Pfeiffer, D.U.; Rushton, J.; Rudge, J.W.; Loevinsohn, M.E.; Scoones, I.; Smith, R.D.; Cooper, B.S.; et al. Understanding and managing zoonotic risk in the new livestock industries. Environ. Health Perspect. 2013, 121, 873–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mather, A.E.; Matthews, L.; Mellor, D.J.; Reeve, R.; Denwood, M.J.; Boerlin, P.; Reid-Smith, R.J.; Brown, D.J.; Coia, J.E.; Browning, L.M.; et al. An ecological approach to assessing the epidemiology of antimicrobial resistance in animal and human populations. Proc. Biol. Sci. 2012, 279, 1630–1639. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Assessment of the Public Health Significance of Methicillin Resistant Staphylococcus Aureus (MRSA) in Animals and Foods; EFSA: Parma, Italy, 2009. [Google Scholar]
- Da Costa, P.M.; Loureiro, L.; Mator, A.J.F. Transfer of multidrug-resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef] [PubMed]
- BfR. ESBL-Bildende Bakterien in Lebensmitteln und Deren Übertragbarkeit auf den Menschen; Bundesinstitut für Risikobewertung (BfR): Berlin, Germany, 2010. [Google Scholar]
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef] [PubMed]
- Guenther, S.; Ewers, C.; Wieler, L.H. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front. Microbiol. 2011, 2, 246. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Nathaus, R.; Layer, F.; Strommenger, B.; Altmann, D.; Witte, W. Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA) CC398 with and without exposure to pigs. PLoS ONE 2009, 4, e6800. [Google Scholar] [CrossRef] [PubMed]
- Deiters, C.; Günnewig, V.; Friedrich, A.W.; Mellmann, A.; Köck, R. Are cases of Methicillin-resistant Staphylococcus aureus clonal complex (CC) 398 among humans still livestock-associated? Int. J. Med. Microbiol. 2015, 305, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Van den Bogaard, A.E.; Stobberingh, E.E. Epidemiology of resistance to antibiotics. Links between animals and humans. Int. J. Antimicrob. Agents 2000, 14, 327–335. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M.; Hasman, H.; Agersø, Y.; Jensen, L.B.; Harksen, S.; Svensmark, B. First description of blaCTX-M-1-carrying Escherichia coli isolates in Danish primary food production. J. Antimicrob. Chemother. 2006, 57, 1258–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebana, E.; Batchelor, M.; Hopkins, K.L.; Clifton-Hadley, F.A.; Teale, C.J.; Foster, A.; Barker, L.; Threlfall, E.J.; Davies, R.H. Longitudinal farm study of extended-spectrum beta-lactamase-mediated resistance. J. Clin. Microbiol. 2006, 44, 1630–1634. [Google Scholar] [CrossRef] [PubMed]
- De Boer, E.; Zwartkruis-Nahuis, J.T.; Wit, B.; Huijsdens, X.W.; de Neeling, A.J.; Bosch, T.; van Oosterom, R.A.; Vila, A.; Heuvelink, A.E. Prevalence of methicillin-resistant Staphylococcus aureus in meat. Int. J. Food Microbiol. 2009, 134, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Wulf, M.W.; Verduin, C.M.; van Nes, A.; Huijsdens, X.; Voss, A. Infection and colonization with methicillin resistant Staphylococcus aureus ST398 versus other MRSA in an area with a high density of pig farms. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Van Cleef, B.A.; Verkade, E.J.; Wulf, M.W.; Buiting, A.G.; Voss, A.; Huijsdens, X.W.; van Pelt, W.; Mulders, M.N.; Kluytmans, J.A. Prevalence of livestock-associated MRSA in communities with high pig-densities in The Netherlands. PLoS ONE 2010, 5, e9385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monaco, M.; Pedroni, P.; Sanchini, A.; Bonomini, A.; Indelicato, A.; Pantosti, A. Livestock-associated methicillin-resistant Staphylococcus aureus responsible for human colonization and infection in an area of Italy with high density of pig farming. BMC Infect. Dis. 2013, 13, 258. [Google Scholar] [CrossRef] [PubMed]
- Aubry-Damon, H.; Grenet, K.; Sall-Ndiaye, P.; Che, D.; Cordeiro, E.; Bougnoux, M.E.; Rigaud, E.; Le Strat, Y.; Lemanissier, V.; Armand-Lefèvre, L.; et al. Antimicrobial resistance in commensal flora of pig farmers. Emerg. Infect. Dis. 2004, 10, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Köck, R.; Schaumburg, F.; Mellmann, A.; Köksal, M.; Jurke, A.; Becker, K.; Friedrich, A.W. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS ONE 2013, 8, e55040. [Google Scholar] [CrossRef] [PubMed]
- Köck, R.; Bischoff, M.; Cuny, C.; Eckmanns, T.; Fetsch, A.; Harmsen, D.; Goerge, T.; Oberheitmann, B.; Schwarz, S.; Selhorst, T.; et al. The burden of zoonotic MRSA colonization and infection in Germany. Berl. Munch. Tierarztl. Wochenschr. 2014, 127, 384–398. [Google Scholar] [PubMed]
- Bisdorff, B.; Scholhölter, J.L.; Claußen, K.; Pulz, M.; Nowak, D.; Radon, K. MRSA-ST398 in livestock farmers and neighbouring residents in a rural area in Germany. Epidemiol. Infect. 2012, 140, 1800–1808. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Kuskowski, M.A.; Smith, K.; O’Bryan, T.T.; Tatini, S. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J. Infect. Dis. 2005, 191, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Overdevest, I.; Willemsen, I.; Rijnsburger, M.; Eustace, A.; Xu, L.; Hawkey, P.; Heck, M.; Savelkoul, P.; Vandenbroucke-Grauls, C.; van der Zwaluw, K.; et al. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg. Infect. Dis. 2011, 17, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, L.; Spangholm, D.J.; Pedersen, K.; Jensen, L.B.; Emborg, H.D.; Agersø, Y.; Aarestrup, F.M.; Hammerum, A.M.; Frimodt-Møller, N. Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients. Int. J. Food Microbiol. 2010, 142, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Rousseau, J. Attempted eradication of methicillin-resistant staphylococcus aureus colonisation in horses on two farms. Equine Vet. J. 2005, 37, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Friese, A.; Schulz, J.; Hoehle, L.; Fetsch, A.; Tenhagen, B.A.; Hartung, J.; Roesler, U. Occurrence of MRSA in air and housing environment of pig barns. Vet. Microbiol. 2012, 158, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Y.; Cai, J.C.; Zhou, H.W.; Chi, D.; Zhang, X.F.; Chen, W.L.; Zhang, R.; Chen, G.X. Molecular typing of CTX-M-producing escherichia coli isolates from environmental water, swine feces, specimens from healthy humans, and human patients. Appl. Environ. Microbiol. 2013, 79, 5988–5996. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.P.; Hillman, K.; Fenlon, D.R.; Low, J.C. Transfer of antibiotic resistance between commensal and pathogenic members of the Enterobacteriaceae under ileal conditions. J. Appl. Microbiol. 2003, 95, 428–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, J.L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. Biol. Sci. 2009, 276, 2521–2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietsch, M.; Irrgang, A.; Roschanski, N.; Brenner Michael, G.; Hamprecht, A.; Rieber, H.; Käsbohrer, A.; Schwarz, S.; Rösler, U.; Kreienbrock, L.; et al. Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genom. 2018, 19, 601. [Google Scholar] [CrossRef] [PubMed]
- Hammerum, A.M.; Heuer, O.E. Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clin. Infect. Dis. 2009, 48, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, B.; Kueffer, C. Transdisciplinarity in EcoHealth: Status and future prospects. Ecohealth 2008, 5, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Zinsstag, J.; Schelling, E.; Waltner-Toews, D.; Tanner, M. From “one medicine” to “one health” and systemic approaches to health and well-being. Prev. Vet. Med. 2011, 101, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Haxton, E.; Sinigoj, S.; Betson, M.; Riviere-Cinnamond, A. Evidence-based added value of One Health: The Network for Evaluation of One Health (NEOH). One Health Sweden 2015. Available online: http://neoh.onehealthglobal.net/wp-content/uploads/sites/2/2015/01/NEOH-UPDATES-NOV-2015.pdf (accessed on 23 October 2018). [CrossRef] [PubMed]
- Köck, R.; Kreienbrock, L.; van Duijkeren, E.; Schwarz, S. Antimicrobial resistance at the interface of human and veterinary medicine. Vet. Microbiol. 2017, 200, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Denis, O.; Suetens, C.; Hallin, M.; Catry, B.; Ramboer, I.; Dispas, M.; Willems, G.; Gordts, B.; Butaye, P.; Struelens, M.J. Methicillin-resistant Staphylococcus aureus ST398 in swine farm personnel, Belgium. Emerg. Infect. Dis. 2009, 15, 1098–1101. [Google Scholar] [CrossRef] [PubMed]
- Alanis, A.J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005, 36, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Smet, A.; Martel, A.; Persoons, D.; Dewulf, J.; Heyndrickx, M.; Herman, L.; Haesebrouck, F.; Butaye, P. Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: Molecular aspects, mobility and impact on public health. FEMS Microbiol. Rev. 2010, 34, 295–316. [Google Scholar] [CrossRef] [PubMed]
- GERMAP. GERMAPAntibiotikaresistenz und -verbrauchBericht über den Antibiotikaverbrauch und die Verbreitung von Antibiotikaresistenzen in der Human- und VeterinÄrmedizin in Deutschland; GERMAP/PEG: Langen, Germany, 2015. [Google Scholar]
- BMEL. Lagebild zum Antibiotikaeinsatz; BMELV: Bonn, Germany, 2017. [Google Scholar]
- BVL. Zweite Datenerhebung zur Antibiotikagabe in der Tiermedizin; BVL: Berlin, Germany, 2017. [Google Scholar]
- Callens, B.; Persoons, D.; Maes, D.; Laanen, M.; Postma, M.; Boyen, F.; Haesebrouck, F.; Butaye, P.; Catry, B.; Dewulf, J. Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds. Prev. Vet. Med. 2012, 106, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Trolldernier, H. Zu Grundlagen der Antibiotikaresistenz. Mh Vet. Med. 1975, 41, 234–237. [Google Scholar]
- Hering, J.; Hille, K.; Frömke, C.; von Münchhausen, C.; Hartmann, M.; Schneider, B.; Friese, A.; Roesler, U.; Merle, R.; Kreienbrock, L. Prevalence and potential risk factors for the occurrence of cefotaxime resistant Escherichia coli in German fattening pig farms—A cross-sectional study. Prev. Vet. Med. 2014, 116, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Gothe, C.; Petersen, B. Qualitätsmerkmal Tierwohl; Rhenish Friedrich-Wilhelms University: Bonn, Germany, 2018. [Google Scholar]
- TierSchG. Tierschutzgesetz in der Fassung der Bekanntmachung vom 18. Mai 2006. (BGBl. I S. 1206, 1313), das Zuletzt Durch Artikel 141 des Gesetzes vom. März 2017 (BGBl. I S. 626) Geändert Worden ist. 1972. Available online: https://www.tierhyg.vetmed.uni-muenchen.de/tierschutz/tierschutzlinks/ts_downloads/tschg.pdf (accessed on 23 October 2018).
- Bollwahn, W. Grauer Arzneimittelmarkt. Aufklären, keine neuen Gesetze. Top Agrar 1981, 9, 63–67. [Google Scholar]
- Aarestrup, F. Sustainable farming: Get pigs off antibiotics. Nature 2012, 486, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.; Markey, B.; ME, C.; Donnelly, W.; Leonard, C. Veterinary Microbiology and Microbial Disease; Blackwell Sciences Ltd.: Oxford, UK, 2002. [Google Scholar]
- Kenner, J.; O’Connor, T.; Piantanida, N.; Fishbain, J.; Eberly, B.; Viscount, H.; Uyehara, C.; Hospenthal, D. Rates of carriage of methicillin-resistant and methicillin-susceptible Staphylococcus aureus in an outpatient population. Infect. Control Hosp. Epidemiol. 2003, 24, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Okuma, K.; Ma, X.X.; Yuzawa, H.; Hiramatsu, K. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: Genomic island SCC. Drug Resist. Updat. 2003, 6, 41–52. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Cui, L.; Kuroda, M.; Ito, T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 2001, 9, 486–493. [Google Scholar] [CrossRef]
- Pinho, M.G.; Filipe, S.R.; de Lencastre, H.; Tomasz, A. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J. Bacteriol. 2001, 183, 6525–6531. [Google Scholar] [CrossRef] [PubMed]
- Alm, R.A.; McLaughlin, R.E.; Kos, V.N.; Sader, H.S.; Iaconis, J.P.; Lahiri, S.D. Analysis of Staphylococcus aureus clinical isolates with reduced susceptibility to ceftaroline: An epidemiological and structural perspective. J. Antimicrob. Chemother. 2014, 69, 2065–2075. [Google Scholar] [CrossRef] [PubMed]
- Moisan, H.; Pruneau, M.; Malouin, F. Binding of ceftaroline to penicillin-binding proteins of Staphylococcus aureus and Streptococcus pneumoniae. J. Antimicrob. Chemother. 2010, 65, 713–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovering, A.L.; Gretes, M.C.; Safadi, S.S.; Danel, F.; de Castro, L.; Page, M.G.; Strynadka, N.C. Structural insights into the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of ceftobiprole. J. Biol. Chem. 2012, 287, 32096–32102. [Google Scholar] [CrossRef] [PubMed]
- De Lencastre, H.; Chung, M.; Westh, H. Archaic strains of methicillin-resistant Staphylococcus aureus: Molecular and microbiological properties of isolates from the 1960s in Denmark. Microb. Drug Resist. 2000, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jevons, M.P. “Celbenin” resistant staphylococci. Br. Med. J. 1961, 1, 124–125. [Google Scholar] [CrossRef]
- Devriese, L.A.; Van Damme, L.R.; Fameree, L. Methicillin (cloxacillin)-resistant Staphylococcus aureus strains isolated from bovine mastitis cases. Zentralbl. Veterinarmed. B 1972, 19, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Price, L.B.; Stegger, M.; Hasman, H.; Aziz, M.; Larsen, J.; Andersen, P.S.; Pearson, T.; Waters, A.E.; Foster, J.T.; Schupp, J.; et al. Staphylococcus aureus CC398: Host adaptation and emergence of methicillin resistance in livestock. MBio 2012, 3. [Google Scholar] [CrossRef] [PubMed]
- Catry, B.; Van Duijkeren, E.; Pomba, M.C.; Greko, C.; Moreno, M.A.; Pyörälä, S.; Ruzauskas, M.; Sanders, P.; Threlfall, E.J.; Ungemach, F.; et al. Reflection paper on MRSA in food-producing and companion animals: Epidemiology and control options for human and animal health. Epidemiol. Infect. 2010, 138, 626–644. [Google Scholar] [CrossRef] [PubMed]
- Witte, W.; Strommenger, B.; Stanek, C.; Cuny, C. Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg. Infect. Dis. 2007, 13, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.R. Livestock-associated Staphylococcus aureus: Origin, evolution and public health threat. Trends Microbiol. 2012, 20, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Cuny, C.; Friedrich, A.; Kozytska, S.; Layer, F.; Nübel, U.; Ohlsen, K.; Strommenger, B.; Walther, B.; Wieler, L.; Witte, W. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int. J. Med. Microbiol. 2010, 300, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Lowder, B.V.; Guinane, C.M.; Ben Zakour, N.L.; Weinert, L.A.; Conway-Morris, A.; Cartwright, R.A.; Simpson, A.J.; Rambaut, A.; Nübel, U.; Fitzgerald, J.R. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2009, 106, 19545–19550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, P.A. Extended-spectrum beta-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef] [PubMed]
- Bradford, P.A.; Petersen, P.J.; Fingerman, I.M.; White, D.G. Characterization of expanded-spectrum cephalosporin resistance in E. coli isolates associated with bovine calf diarrhoeal disease. J. Antimicrob. Chemother. 1999, 44, 607–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, P.A.; Urban, C.; Mariano, N.; Projan, S.J.; Rahal, J.J.; Bush, K. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein. Antimicrob. Agents Chemother. 1997, 41, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L.; Mulazimoglu, L.; Casellas, J.M.; Ko, W.C.; Goossens, H.; Von Gottberg, A.; Mohapatra, S.; Trenholme, G.M.; Klugman, K.P.; McCormack, J.G.; et al. Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum beta-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clin. Infect. Dis. 2000, 30, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Kaase, M. Carbapenemases in gram-negative bacteria. Current data and trends of resistance resulting from the work of national reference centres. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2012, 55, 1401–1404. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R. Emerging carbapenemases: A global perspective. Int. J. Antimicrob. Agents 2010, 36 (Suppl. 3), S8–S14. [Google Scholar] [CrossRef]
- Patel, G.; Bonomo, R.A. Status report on carbapenemases: Challenges and prospects. Expert Rev. Anti Infect. Ther. 2011, 9, 555–570. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M. Beta-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 1995, 8, 557–584. [Google Scholar] [CrossRef] [PubMed]
- Tham, J.; Walder, M.; Melander, E.; Odenholt, I. Prevalence of extended-spectrum beta-lactamase-producing bacteria in food. Infect. Drug Resist. 2012, 5, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D. Infections with extended-spectrum beta-lactamase-producing enterobacteriaceae: Changing epidemiology and drug treatment choices. Drugs 2010, 70, 313–333. [Google Scholar] [CrossRef] [PubMed]
- Naseer, U.; Sundsfjord, A. The CTX-M conundrum: Dissemination of plasmids and Escherichia coli clones. Microb. Drug Resist. 2011, 17, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; Gregson, D.B.; Church, D.L.; Elsayed, S.; Laupland, K.B. Community-wide outbreaks of clonally related CTX-M-14 beta-lactamase-producing Escherichia coli strains in the Calgary health region. J. Clin. Microbiol. 2005, 43, 2844–2849. [Google Scholar] [CrossRef] [PubMed]
- Smet, A.; Martel, A.; Persoons, D.; Dewulf, J.; Heyndrickx, M.; Catry, B.; Herman, L.; Haesebrouck, F.; Butaye, P. Diversity of extended-spectrum beta-lactamases and class C beta-lactamases among cloacal Escherichia coli Isolates in Belgian broiler farms. Antimicrob. Agents Chemother. 2008, 52, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.B.; Wang, H.N.; Zou, L.K.; Tang, J.N.; Zhao, Y.W.; Ye, M.Y.; Tang, J.Y.; Zhang, Y.; Zhang, A.Y.; Yang, X.; et al. Detection of CTX-M-15, CTX-M-22, and SHV-2 extended-spectrum beta-lactamases (ESBLs) in Escherichia coli fecal-sample isolates from pig farms in China. Foodborne Pathog. Dis. 2009, 6, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Geser, N.; Stephan, R.; Korczak, B.M.; Beutin, L.; Hächler, H. Molecular identification of extended-spectrum-β-lactamase genes from Enterobacteriaceae isolated from healthy human carriers in Switzerland. Antimicrob. Agents Chemother. 2012, 56, 1609–1612. [Google Scholar] [CrossRef] [PubMed]
- Kiiru, J.; Kariuki, S.; Goddeeris, B.M.; Butaye, P. Analysis of β-lactamase phenotypes and carriage of selected β-lactamase genes among Escherichia coli strains obtained from Kenyan patients during an 18-year period. BMC Microbiol. 2012, 12, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.A.; Hasan, F.; Ahmed, S.; Hameed, A. Characteristics, epidemiology and clinical importance of emerging strains of Gram-negative bacilli producing extended-spectrum beta-lactamases. Res. Microbiol. 2004, 155, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Frost, L.S.; Leplae, R.; Summers, A.O.; Toussaint, A. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol. 2005, 3, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Malachowa, N.; DeLeo, F.R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 2010, 67, 3057–3071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Valentin, L.; Sharp, H.; Hille, K.; Seibt, U.; Fischer, J.; Pfeifer, Y.; Michael, G.B.; Nickel, S.; Schmiedel, J.; Falgenhauer, L.; et al. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: An approach to quantify the distribution of ESBL types between different reservoirs. Int. J. Med. Microbiol. 2014, 304, 805–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nehring, S.; Albrecht, U. Biotop, Habitat, Mikrohabitat—Ein Diskussionsbeitrag zur Begriffsdefinition. Lauterbonia 2000, 38, 75–84. [Google Scholar]
- Lötzli, K. Ökosystem. In Handbuch zur Ökologie; Kuttler: Berlin, Germany, 1993; pp. 288–295. Available online: https://www.zobodat.at/pdf/Lauterbornia_2000_38_0075-0084.pdf (accessed on 30 October 2018).
- Broens, E.M. Livestock-Associated Methicillin Resistant Staphylococcus Aureus in Pigs—Prevalence, Risk Factors and Transmission Dynamics; Wageningen University: Wageningen, The Netherlands, 2011. [Google Scholar]
- Armand-Lefevre, L.; Ruimy, R.; Andremont, A. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg. Infect. Dis. 2005, 11, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Graveland, H.; Wagenaar, J.A.; Bergs, K.; Heesterbeek, H.; Heederik, D. Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PLoS ONE 2011, 6, e16830. [Google Scholar] [CrossRef] [PubMed]
- Lozano, C.; Aspiroz, C.; Charlez, L.; Gómez-Sanz, E.; Toledo, M.; Zarazaga, M.; Torres, C. Skin lesion by methicillin-resistant Staphylococcus aureus ST398-t1451 in a Spanish pig farmer: Possible transmission from animals to humans. Vector Borne Zoonotic Dis. 2011, 11, 605–607. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.J.; Bos, M.E.; Duim, B.; Urlings, B.A.; Heres, L.; Wagenaar, J.A.; Heederik, D.J. Livestock-associated MRSA ST398 carriage in pig slaughterhouse workers related to quantitative environmental exposure. Occup. Environ. Med. 2012, 69, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Agersø, Y.; Vigre, H.; Cavaco, L.M.; Josefsen, M.H. Comparison of air samples, nasal swabs, ear-skin swabs and environmental dust samples for detection of methicillin-resistant Staphylococcus aureus (MRSA) in pig herds. Epidemiol. Infect. 2014, 142, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
- Agersø, Y.; Aarestrup, F.M.; Pedersen, K.; Seyfarth, A.M.; Struve, T.; Hasman, H. Prevalence of extended-spectrum cephalosporinase (ESC)-producing Escherichia coli in Danish slaughter pigs and retail meat identified by selective enrichment and association with cephalosporin usage. J. Antimicrob. Chemother. 2012, 67, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, L.; Kurbasic, A.; Skjøt-Rasmussen, L.; Ejrnaes, K.; Porsbo, L.J.; Pedersen, K.; Jensen, L.B.; Emborg, H.D.; Agersø, Y.; Olsen, K.E.; et al. Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog. Dis. 2010, 7, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L. Sixty years of antimicrobial use in animals: what is next? Vet. Rec. 2013, 173, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Smet, A.; Martel, A.; Persoons, D.; Dewulf, J.; Heyndrickx, M.; Cloeckaert, A.; Praud, K.; Claeys, G.; Catry, B.; Herman, L.; et al. Comparative analysis of extended-spectrum-β-lactamase-carrying plasmids from different members of Enterobacteriaceae isolated from poultry, pigs and humans: Evidence for a shared β-lactam resistance gene pool? J. Antimicrob. Chemother. 2009, 63, 1286–1288. [Google Scholar] [CrossRef] [PubMed]
- Wulf, M.W.; Tiemersma, E.; Kluytmans, J.; Bogaers, D.; Leenders, A.C.; Jansen, M.W.; Berkhout, J.; Ruijters, E.; Haverkate, D.; Isken, M.; et al. MRSA carriage in healthcare personnel in contact with farm animals. J. Hosp. Infect. 2008, 70, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Vanderhaeghen, W.; Hermans, K.; Haesebrouck, F.; Butaye, P. Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol. Infect. 2010, 138, 606–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köck, R.; Harlizius, J.; Bressan, N.; Laerberg, R.; Wieler, L.H.; Witte, W.; Deurenberg, R.H.; Voss, A.; Becker, K.; Friedrich, A.W. Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) among pigs on German farms and import of livestock-related MRSA into hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1375–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, J.G.; Pires, J.; Kueffer, M.; Semaani, E.; Endimiani, A.; Hilty, M.; Oppliger, A. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae and Methicillin-Resistant Staphylococcus aureus in pig farms in Switzerland. Sci. Total Environ. 2017, 603–604, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Schouten, J.M.; Bouwknegt, M.; van de Giessen, A.W.; Frankena, K.; De Jong, M.C.; Graat, E.A. Prevalence estimation and risk factors for Escherichia coli O157 on Dutch dairy farms. Prev. Vet. Med. 2004, 64, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Correira-Gomes, C.; Economou, T.; Bailey, T.; Brazdil, P.; Vieira-Pinto, M.; Niza-Ribiero, J. Simulation Model for Salmonella Typhimurium on a Farrow-to-Finish herd. In Proceedings of the 10th International Conference on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork, Lisbon, Portugal, 9–12 September 2013. [Google Scholar]
- Grøntvedt, C.A.; Elstrøm, P.; Stegger, M.; Skov, R.L.; Skytt Andersen, P.; Larssen, K.W.; Urdahl, A.M.; Angen, Ø.; Larsen, J.; Åmdal, S.; et al. Methicillin-Resistant Staphylococcus aureus CC398 in humans and pigs in Norway: A “One Health” perspective on introduction and transmission. Clin. Infect. Dis. 2016, 63, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Cernicchiaro, N.; Pearl, D.L.; Ghimire, S.; Gyles, C.L.; Johnson, R.P.; LeJeune, J.T.; Ziebell, K.; McEwen, S.A. Risk factors associated with Escherichia coli O157:H7 in Ontario beef cow-calf operations. Prev. Vet. Med. 2009, 92, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Snow, L.C.; Warner, R.G.; Cheney, T.; Wearing, H.; Stokes, M.; Harris, K.; Teale, C.J.; Coldham, N.G. Risk factors associated with extended spectrum beta-lactamase Escherichia coli (CTX-M) on dairy farms in North West England and North Wales. Prev. Vet. Med. 2012, 106, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Schmithausen, R.M.; Schulze-Geisthoevel, S.V.; Stemmer, F.; El-Jade, M.; Reif, M.; Hack, S.; Meilaender, A.; Montabauer, G.; Fimmers, R.; Parcina, M.; et al. Analysis of transmission of MRSA and ESBL-E among pigs and farm personnel. PLoS ONE 2015, 10, e0138173. [Google Scholar] [CrossRef] [PubMed]
- Broens, E.M.; Graat, E.A.; Van der Wolf, P.J.; Van de Giessen, A.W.; De Jong, M.C. Prevalence and risk factor analysis of livestock associated MRSA-positive pig herds in The Netherlands. Prev. Vet. Med. 2011, 102, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Schmithausen, R.M.; Kellner, S.R.; Schulze-Geisthoevel, S.V.; Hack, S.; Engelhart, S.; Bodenstein, I.; Al-Sabti, N.; Reif, M.; Fimmers, R.; Körber-Irrgang, B.; et al. Eradication of methicillin-resistant Staphylococcus aureus and of Enterobacteriaceae expressing extended-spectrum beta-lactamases on a model pig farm. Appl. Environ. Microbiol. 2015, 81, 7633–7643. [Google Scholar] [CrossRef] [PubMed]
- Mannion, C.; Leonard, F.C.; Lynch, P.B.; Egan, J. Efficacy of cleaning and disinfection on pig farms in Ireland. Vet. Rec. 2007, 161, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, C.; Steinhoff-Wagner, J.; Petersen, B. Evaluation of methods for determining cleaning performances in pig stables. J. Anim. Sci. 2017, 95, 48. [Google Scholar] [CrossRef]
- Wellington, E.M.; Boxall, A.B.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect. Dis. 2013, 13, 155–165. [Google Scholar] [CrossRef]
- Young, J.S.; Gormley, E.; Wellington, E.M. Molecular detection of Mycobacterium bovis and Mycobacterium bovis BCG (Pasteur) in soil. Appl. Environ. Microbiol. 2005, 71, 1946–1952. [Google Scholar] [CrossRef] [PubMed]
- Gaze, W.H.; Burroughs, N.; Gallagher, M.P.; Wellington, E.M. Interactions between Salmonella typhimurium and Acanthamoeba polyphaga, and observation of a new mode of intracellular growth within contractile vacuoles. Microb. Ecol. 2003, 46, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.R. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect. 2002, 4, 413–423. [Google Scholar] [CrossRef]
- Hiroi, M.; Harada, T.; Kawamori, F.; Takahashi, N.; Kanda, T.; Sugiyama, K.; Masuda, T.; Yoshikawa, Y.; Ohashi, N. A survey of β-lactamase-producing Escherichia coli in farm animals and raw retail meat in Shizuoka Prefecture, Japan. Jpn. J. Infect. Dis. 2011, 64, 153–155. [Google Scholar] [PubMed]
- Blanc, V.; Mesa, R.; Saco, M.; Lavilla, S.; Prats, G.; Miró, E.; Navarro, F.; Cortés, P.; Llagostera, M. ESBL- and plasmidic class C beta-lactamase-producing E. coli strains isolated from poultry, pig and rabbit farms. Vet. Microbiol. 2006, 118, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Mesa, R.J.; Blanc, V.; Blanch, A.R.; Cortés, P.; González, J.J.; Lavilla, S.; Miró, E.; Muniesa, M.; Saco, M.; Tórtola, M.T.; et al. Extended-spectrum beta-lactamase-producing Enterobacteriaceae in different environments (humans, food, animal farms and sewage). J. Antimicrob. Chemother. 2006, 58, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Müller, W.; Wieser, P.; Woiwode, J. Zur Größe koloniebildender Einheiten in der Stallluft. Berl. Münch. Tierärztl. Wschr. 1977, 90, 6–11. [Google Scholar]
- Green, C.F.; Gibbs, S.G.; Tarwater, P.M.; Mota, L.C.; Scarpino, P.V. Bacterial plume emanating from the air surrounding swine confinement operations. J. Occup. Environ. Hyg. 2006, 3, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Hartung, J.; Seedorf, J.; Trickl, T.; Gronauer, H. Emission of particulates from a pig farm with central air exhaust in the pig stall. Deutsche Tierarztliche Wochenschrift 1998, 105, 244–245. [Google Scholar] [PubMed]
- Zucker, B.A.; Trojan, S.; Müller, W. Airborne gram-negative bacterial flora in animal houses. J. Vet. Med. B Infect. Dis. Vet. Public Health 2000, 47, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Künneken, J. Simulation der Tier-Bakterium-Umwelt-Interaktion im Biotop “Abferkelstall”; University of Bonn: Bonn, Germany, 1991. [Google Scholar]
- Hartung, J.; Whyte, R. Erfassung und Bewertung von Luftverunreinigungen in der Nutztierhaltung. Atemwegs-Lungenkr. 1994, 20, 17–25. [Google Scholar]
- Venglovský, J.; Gregová, G.; Kmeť, V.; Sasáková, N. Detection of airborne microorganisms and antibiotic resistance from animal housing facilities. In Proceedings of the XVth International Congress of the International Society for Animal Hygiene, Vienna, Austria, 12–16 August 2011; pp. 813–815. [Google Scholar]
- Hilliger, H.G. Determination of bacterial flora in stall air. Zentralbl Veterinarmed B 1984, 31, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Benbough, J.E. Death mechanisms in airborne Escherichia coli. J. Gen. Microbiol. 1967, 47, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Gundermann, K.O. Life-span of bacterial strains in dust as influenced by various degrees of air humidity. Zentralbl Bakteriol Orig B 1972, 156, 422–429. [Google Scholar] [PubMed]
- Hoffmann, D.H. Experimental endogenous inflammation of the internal eye by Candida albicans. Ophthalmoscopic, histological and microbiological studies on the course of the infection in rabbits. Ophthalmologica 1966, 151, 1–84. [Google Scholar] [PubMed]
- Weese, J.S.; DaCosta, T.; Button, L.; Goth, K.; Ethier, M.; Boehnke, K. Isolation of methicillin-resistant Staphylococcus aureus from the environment in a veterinary teaching hospital. J. Vet. Intern. Med. 2004, 18, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, S.G.; Green, C.F.; Tarwater, P.M.; Scarpino, P.V. Airborne antibiotic resistant and nonresistant bacteria and fungi recovered from two swine herd confined animal feeding operations. J. Occup. Environ. Hyg. 2004, 1, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.E.; Verstappen, K.M.; van Cleef, B.A.; Dohmen, W.; Dorado-García, A.; Graveland, H.; Duim, B.; Wagenaar, J.A.; Kluytmans, J.A.; Heederik, D.J. Transmission through air as a possible route of exposure for MRSA. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, C.; Schmithausen, R.M.; Sib, E.; Meyer, I.; Petersen, B.; Steinhoff-Wagner, J. Preventive effect of nasal lavage with physiologic saline on the colonization with MRSA after working in porcine stable. J. Anim. Sci. 2017, 95, 250. [Google Scholar] [CrossRef]
- Bos, M.E.; Taverne, F.J.; van Geijlswijk, I.M.; Mouton, J.W.; Mevius, D.J.; Heederik, D.J.; SDa, N.V.M.A. Consumption of antimicrobials in pigs, veal calves, and broilers in the Netherlands: Quantitative results of nationwide collection of data in 2011. PLoS ONE 2013, 8, e77525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenke, C.; Pospiech, J.; Reutter, T.; Altmann, B.; Truyen, U.; Speck, S. Impact of different supply air and recirculating air filtration systems on stable climate, animal health, and performance of fattening pigs in a commercial pig farm. PLoS ONE 2018, 13, e0194641. [Google Scholar] [CrossRef] [PubMed]
- Laube, H.; Friese, A.; von Salviati, C.; Guerra, B.; Rösler, U. Transmission of ESBL/AmpC-producing Escherichia coli from broiler chicken farms to surrounding areas. Vet. Microbiol. 2014, 172, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Von Salviati, C.; Laube, H.; Guerra, B.; Roesler, U.; Friese, A. Emission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas. Vet. Microbiol. 2015, 175, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Dohmen, W.; Schmitt, H.; Bonten, M.; Heederik, D. Air exposure as a possible route for ESBL in pig farmers. Environ. Res. 2017, 155, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Laube, H.; Friese, A.; von Salviati, C.; Guerra, B.; Käsbohrer, A.; Kreienbrock, L.; Roesler, U. Longitudinal monitoring of extended-spectrum-beta-lactamase/AmpC-producing Escherichia coli at German broiler chicken fattening farms. Appl. Environ. Microbiol. 2013, 79, 4815–4820. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A. Presence of CTX-M-1 Group Extended-Spectrum-ß-Lactamase in Dust from Dutch Pig Farms; Utrecht University: Utrecht, The Netherlands, 2014. [Google Scholar]
- Lupo, A.; Coyne, S.; Berendonk, T.U. Origin and evolution of antibiotic resistance: The common mechanisms of emergence and spread in water bodies. Front. Microbiol. 2012, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Martínez, J.L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Coleman, B.L.; Salvadori, M.I.; McGeer, A.J.; Sibley, K.A.; Neumann, N.F.; Bondy, S.J.; Gutmanis, I.A.; McEwen, S.A.; Lavoie, M.; Strong, D.; et al. The role of drinking water in the transmission of antimicrobial-resistant E. coli. Epidemiol. Infect. 2012, 140, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, T.; Kohnen, W.; Jansen, B.; Obst, U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol. Ecol. 2003, 43, 325–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulamattathil, S.G.; Esterhuysen, H.A.; Pretorius, P.J. Antibiotic-resistant gram-negative bacteria in a virtually closed water reticulation system. J. Appl. Microbiol. 2000, 88, 930–937. [Google Scholar] [PubMed]
- Kaspar, C.W.; Burgess, J.L.; Knight, I.T.; Colwell, R.R. Antibiotic resistance indexing of Escherichia coli to identify sources of fecal contamination in water. Can. J. Microbiol. 1990, 36, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Ozgumus, O.B.; Celik-Sevim, E.; Alpay-Karaoglu, S.; Sandalli, C.; Sevim, A. Molecular characterization of antibiotic resistant Escherichia coli strains isolated from tap and spring waters in a coastal region in Turkey. J. Microbiol. 2007, 45, 379–387. [Google Scholar] [PubMed]
- Gao, P.; Munir, M.; Xagoraraki, I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci. Total Environ. 2012, 421–422, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Madec, J.Y.; Haenni, M.; Ponsin, C.; Kieffer, N.; Rion, E.; Gassilloud, B. Sequence Type 48 Escherichia coli Carrying the blaCTX-M-1 IncI1/ST3 Plasmid in Drinking Water in France. Antimicrob. Agents Chemother. 2016, 60, 6430–6432. [Google Scholar] [CrossRef] [PubMed]
- Zarfel, G.; Lipp, M.; Gürtl, E.; Folli, B.; Baumert, R.; Kittinger, C. Troubled water under the bridge: Screening of River Mur water reveals dominance of CTX-M harboring Escherichia coli and for the first time an environmental VIM-1 producer in Austria. Sci. Total Environ. 2017, 593–594, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Kittinger, C.; Lipp, M.; Baumert, R.; Folli, B.; Koraimann, G.; Toplitsch, D.; Liebmann, A.; Grisold, A.J.; Farnleitner, A.H.; Kirschner, A.; et al. Antibiotic resistance patterns of pseudomonas spp. isolated from the River Danube. Front. Microbiol. 2016, 7, 586. [Google Scholar] [CrossRef] [PubMed]
- LeJeune, J.T.; Besser, T.E.; Merrill, N.L.; Rice, D.H.; Hancock, D.D. Livestock drinking water microbiology and the factors influencing the quality of drinking water offered to cattle. J. Dairy Sci. 2001, 84, 1856–1862. [Google Scholar] [CrossRef]
- LeJeune, J.T.; Besser, T.E.; Hancock, D.D. Cattle water troughs as reservoirs of Escherichia coli O157. Appl. Environ. Microbiol. 2001, 67, 3053–3057. [Google Scholar] [CrossRef] [PubMed]
- Pletinckx, L.J.; Verhegghe, M.; Dewulf, J.; Crombé, F.; De Bleecker, Y.; Rasschaert, G.; Goddeeris, B.M.; De Man, I. Screening of poultry-pig farms for methicillin-resistant Staphylococcus aureus: Sampling methodology and within herd prevalence in broiler flocks and pigs. Infect. Genet. Evol. 2011, 11, 2133–2137. [Google Scholar] [CrossRef] [PubMed]
- Porrero, M.C.; Mentaberre, G.; Sánchez, S.; Fernández-Llario, P.; Casas-Díaz, E.; Mateos, A.; Vidal, D.; Lavín, S.; Fernández-Garayzábal, J.F.; Domínguez, L. Carriage of Staphylococcus aureus in free-living wild animals in Spain. Appl. Environ. Microbiol. 2014. [Google Scholar] [CrossRef] [PubMed]
- van der Wolf, P.J.; Rothkamp, A.; Junker, K.; de Neeling, A.J. Staphylococcus aureus (MSSA) and MRSA (CC398) isolated from post-mortem samples from pigs. Vet. Microbiol. 2012, 158, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Exner, M.; Kramer, A.; Lajoie, L.; Gebel, J.; Engelhart, S.; Hartemann, P. Prevention and control of health care-associated waterborne infections in health care facilities. Am. J. Infect. Control 2005, 33, S26–S40. [Google Scholar] [CrossRef] [PubMed]
- Hartung, J. Rules to control drinking water supply systems in livestock farming. Deutsche Tierarztliche Wochenschrift 2000, 107, 302–304. [Google Scholar] [PubMed]
- Hartung, J.; Kamphues, J. Do we need regulation of drinking water for animals? Recommendations for the water supply of farm animals and pets. Deutsche Tierarztliche Wochenschrift 2000, 107, 343–345. [Google Scholar] [PubMed]
- Jutkina, J.; Marathe, N.P.; Flach, C.F.; Larsson, D.G.J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 2018, 616–617, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Hölzel, C.S.; Schwaiger, K.; Harms, K.; Küchenhoff, H.; Kunz, A.; Meyer, K.; Müller, C.; Bauer, J. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria. Environ. Res. 2010, 110, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, L.; Jouini, A.; Klibi, N.; Dziri, R.; Alonso, C.A.; Boudabous, A.; Ben Slama, K.; Torres, C. Detection of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in vegetables, soil and water of the farm environment in Tunisia. Int. J. Food Microbiol. 2015, 203, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Purohit, M.R.; Chandran, S.; Shah, H.; Diwan, V.; Tamhankar, A.J.; Stålsby Lundborg, C. Antibiotic resistance in an Indian rural community: A ‘One-Health’ observational study on commensal coliform from humans, animals, and water. Int. J. Environ. Res. Public Health 2017, 14, 386. [Google Scholar] [CrossRef] [PubMed]
- Vital, P.G.; Zara, E.S.; Paraoan, C.E.M.; Dimasupil, A.Z.; Abello, J.J.M.; Santos, I.T.G.; Rivera, W.L. Antibiotic resistance and extended-spectrum Beta-Lactamase production of Escherichia coli isolated from irrigation waters in selected urban farms in metro Manila, Philippines. Water 2018, 10, 548. [Google Scholar] [CrossRef]
- Zurfluh, K.; Power, K.A.; Klumpp, J.; Wang, J.; Fanning, S.; Stephan, R. A novel Tn3-like composite transposon harboring blaVIM-1 in Klebsiella pneumoniae spp. pneumoniae isolated from river water. Microb. Drug Resist. 2015, 21, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.E.; Watabe, M.; Millar, B.C.; Loughrey, A.; McCalmont, M.; Goldsmith, C.E.; Heaney, J.C.; Buckley, T.; Egan, C.; McDowell, D.A.; et al. Screening of clinical, food, water and animal isolates of Escherichia coli for the presence of blaCTX-M extended spectrum beta-lactamase (ESBL) antibiotic resistance gene loci. Ulster Med. J. 2010, 79, 85–88. [Google Scholar] [PubMed]
- Ikegbunam, M.N.; Anagu, L.O.; Iroha, I.R.; Ejikeugwu, C.E.; Esimone, C.O. Abattoirs as non-hospital source of extended spectrum beta lactamase producers: Confirmed by the double disc synergy test and characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometry. PLoS ONE 2014, 9, e94461. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Sannes, M.R.; Croy, C.; Johnston, B.; Clabots, C.; Kuskowski, M.A.; Bender, J.; Smith, K.E.; Winokur, P.L.; Belongia, E.A. Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002–2004. Emerg. Infect. Dis. 2007, 13, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Vincent, C.; Boerlin, P.; Daignault, D.; Dozois, C.M.; Dutil, L.; Galanakis, C.; Reid-Smith, R.J.; Tellier, P.P.; Tellis, P.A.; Ziebell, K.; et al. Food reservoir for Escherichia coli causing urinary tract infections. Emerg. Infect. Dis. 2010, 16, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Lavilla, S.; González-López, J.J.; Miró, E.; Domínguez, A.; Llagostera, M.; Bartolomé, R.M.; Mirelis, B.; Navarro, F.; Prats, G. Dissemination of extended-spectrum beta-lactamase-producing bacteria: The food-borne outbreak lesson. J. Antimicrob. Chemother. 2008, 61, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Normanno, G.; Dambrosio, A.; Lorusso, V.; Samoilis, G.; Di Taranto, P.; Parisi, A. Methicillin-resistant Staphylococcus aureus (MRSA) in slaughtered pigs and abattoir workers in Italy. Food Microbiol. 2015, 51, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Sommer, M. Epidemiologische Untersuchungen zur Tiergesundheit in Schweinezuchtbeständen unter besonderer Berücksichtigung von Managementfaktoren und des Einsatzes von Antibiotika und Homöopathika; Hanover University: Hanover, Germany, 2009. [Google Scholar]
- Walker, B.; Holling, C.S.; Carpenter, S.; Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 2004, 5, 9. [Google Scholar] [CrossRef]
- Rauw, W.M.; Kanis, E.; Noordhuizen-Stassen, E.N.; Grommers, F.J. Undesirable side effects of selection for high production efficiency in farm animals: A review. Livest. Prod. Sci. 1998, 56, 15–33. [Google Scholar] [CrossRef]
- Tenhagen, B.-A.; Fetsch, A.; Alt, K.; Käsbohrer, A.; Bräunig, A.; Appel, B. MRSA in herds of fattening pigs in Germany—Associated risk factors. In Proceedings of the Safe Pork 2009, Québec, QC, Canada, 30 September–2 October 2009. [Google Scholar]
- Thielen, T.L.; Castle, S.S.; Terry, J.E. Anterior ocular infections: An overview of pathophysiology and treatment. Ann. Pharmacother. 2000, 34, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff-Wagner, J. Ethische Zielkonflikte aus agrarwissenschaftlicher Perspektive. 2018; unpublished data. [Google Scholar]
- Hörügel, K. Tiergesundheitsmanagement in der Schweinehaltung. Schriftenreihe der Sächsischen Landesanstalt für Landwirtschaft 2001, 7, 63–67. [Google Scholar]
- Böckel, V. Untersuchungen zur quantitativen Bewertung der Tiergesundheit von Schweinebeständen; Hanover University: Hanover, Germany, 2008. [Google Scholar]
- Berns, G. Einbindung von Check-Listen und mobilen Analyselabor in Beratungskonzepte zur Erweiterung von Gesundheitsvorsorge- und Qualitätsmanagementsystemen in der Schweinefleischerzeugung; University of Bonn: Bonn, Germany, 1996. [Google Scholar]
- Düsseldorf, S. Concept of key Performance Indicators Controlling Consumer Oriented Quality and Herd Health Management in a Bavarian Pork Chain; Univertiy of Bonn: Bonn, Germany, 2013. [Google Scholar]
- Ellebrecht, A. Nutzenbetrachtung Internetbasierter Informationssysteme im Einzel- und Überbetrieblichen Gesundheitsmanagement; University of Bonn: Bonn, Germany, 2008. [Google Scholar]
- Ellebrecht, S. Application Concept for Combined Preventive Quality Management methods in inter-Enterprise Health Management in Pork Chains; University of Bonn: Bonn, Germany, 2012. [Google Scholar]
- Gymnich, S. Haptoglobin als Screeningparameter im Gesundheitsmanagement von Ferkelaufzuchtbetrieben; University of Bonn: Bonn, Germany, 2001. [Google Scholar]
- Klauke, T. Risk Based Approach towards More Sustainablilty in European Pig Production; University of Bonn: Bonn, Germany, 2012. [Google Scholar]
- Mack, A. Konzeption für Die Anwendung Computergestützter Techniken im Gesundheitsmanagement Fleischerzeugender Ketten; University of Bonn: Bonn, Germany, 2009. [Google Scholar]
- Schütz, V. Modell zur Planung von Dienstleistungen für das Überbetriebliche Gesundheitsmanagement in der Fleischwirtschaft; University of Bonn: Bonn, Germany, 2009. [Google Scholar]
- Welz, M. Bewertung von Erkrankungen als Qualitätshemmende Faktoren mit Hilfe der Fehler- Möglichkeits- und Einfluss-Analyse (FMEA) im Rahmen der Erzeugung von Qualitätsfleisch; Bonn University: Bonn, Germany, 1993. [Google Scholar]
- Schulze Althoff, G. Konzept und Erprobung von Werkzeugen für Grenzüberschreitende, Kettenübergreifende Qualitätsmanagementsysteme in der Schweinefleischerzeugung; University of Bonn: Bonn, Germany, 2007. [Google Scholar]
- Petersen, B.; Nüssel, M.; Hamer, M. Quality and risk management in agri-food chains. In European Review of Agricultural Economics; Wageningen Academic Publishers: Wageningen, The Netherlands, 2014; pp. 1–3. [Google Scholar]
- Schulze Althoff, G.; Breuer, O.; Jaeger, F.; Petersen, B. Working together to improve early warning—Cross border approaches to advancing prevention concepts. Fleischwirtsch. Int. 2007, 2, 55–58. [Google Scholar]
- Petersen, J.V.; Andersen, J.K.; Sørensen, F.; Knudsen, H. Food safety on the slaughterline: Inspection of pig heads. Vet. Rec. 2002, 150, 782–784. [Google Scholar] [CrossRef] [PubMed]
- Petersen, B.; Spiller, A.; Theuvsen, L. Vom Viehmarkter zum Dienstleistungsprofi; GIQS: Bonn, Germany, 2010. [Google Scholar]
- Lehnert, H. Animal health monitoring. TopAgrar 2009, 11, 12–17. [Google Scholar]
- Schiefer, G. Tracking, Tracing and Business Process Interests: A Framework for Analysis. In Proceedings of the 26th Conference of the International Association of Agricultural Economists, Queensland, Australia, 12–16 August 2006. [Google Scholar]
- Van der Vorst, J. Effective Food Supply Chains. Generating, Modelling and Evaluating Supply Chain Scenarios; University Wageningen: Wageningen, The Netherlands, 2000. [Google Scholar]
- Petersen, B.; Lehnert, S. Qualitätsmanagement Maßgeschneidert für die Agrar- und Ernährungswirtschaft; Rheinische Friedrich-Wilhelms-Universität Bonn, International FoodNetCenter: Bonn, Germany, 2017; Volume 1. [Google Scholar]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Anderson, K.L.; Correa, M.T.; Lyman, R.; Ruffin, F.; Reller, L.B.; Fowler, V.G. Transmission of MRSA between companion animals and infected human patients presenting to outpatient medical care facilities. PLoS ONE 2011, 6, e26978. [Google Scholar] [CrossRef] [PubMed]
- Häsler, B. (NEOH) Network for Evaluation of One Health. Available online: http://www.accelopment.com/de/projects/neoh (accessed on 23 October 2018).
- Steinhoff-Wagner, J.; Ilg, Y.; Tappe, E.-V.; Lehnert, S.; Lehnert, H.; Petersen, B. One Health-Konzepte und ihre Umsetzung—Forschungsprojekte, Hochschulausbildung und Netzwerkinitiativen; ATD: Bonn, Germany, 2017; Volume 2. [Google Scholar]
- De Neeling, A.J.; van den Broek, M.J.; Spalburg, E.C.; van Santen-Verheuvel, M.G.; Dam-Deisz, W.D.; Boshuizen, H.C.; van de Giessen, A.W.; van Duijkeren, E.; Huijsdens, X.W. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet. Microbiol. 2007, 122, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Dickhöfer, D. Haptoglobin als Screeningparameter für Atemwegserkrankungen des Schweines; University of Bonn and University of Veterinary Medicine Hannover: Hannover, Germany, 2002. [Google Scholar]
- Lipperheide, C.; Knura, S.; Petersen, B. Sicherung der Regionalen Vermarktung von Ferkeln für Nordrhein-Westfälische Qualitätsfleischprogramme Durch die Einführung Überbetrieblicher Gesundheitsmanagement- und Frühwarnsysteme; Lehr- und Forschungsschwerpunkt “Umweltverträgliche und Standortgerechte Landwirtschaft”: Bonn, Germany, 1999. [Google Scholar]
- BMEL. 16. AMG-Novelle des Arzneimittelgesetzes; BMELV: Bonn, Germany, 2014. [Google Scholar]
- QS. Wenn es um Fleisch geht. Qualität. Warenkunde. Küchentechniken. Rezeptideen. In Qualitätssicherung. Vom Landwirt bis zur Ladentheke; QS: Bonn, Germany, 2011; Available online: https://www.q-s.de/flip/ratgeber_fleisch/files/assets/downloads/publication.pdf (accessed on 23 October 2018).
- Merle, R.; Kösters, S.; May, T.; Portsch, U.; Blaha, T.; Kreienbrock, L. Serological Salmonella monitoring in German pig herds: Results of the years 2003–2008. Prev. Vet. Med. 2011, 99, 229–233. [Google Scholar] [CrossRef] [PubMed]
Level | Definition |
---|---|
Primary prevention | Structural, group-based and individual measures to prevent the occurrence of disturbances |
Secondary prevention | Preventive measures initiated once the pathogen has been identified in order to prevent progression of the disturbance |
Tertiary prevention | Measures to prevent aggravation of the disturbance and mitigate the effects of the disturbance |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmithausen, R.M.; Schulze-Geisthoevel, S.V.; Heinemann, C.; Bierbaum, G.; Exner, M.; Petersen, B.; Steinhoff-Wagner, J. Reservoirs and Transmission Pathways of Resistant Indicator Bacteria in the Biotope Pig Stable and along the Food Chain: A Review from a One Health Perspective. Sustainability 2018, 10, 3967. https://doi.org/10.3390/su10113967
Schmithausen RM, Schulze-Geisthoevel SV, Heinemann C, Bierbaum G, Exner M, Petersen B, Steinhoff-Wagner J. Reservoirs and Transmission Pathways of Resistant Indicator Bacteria in the Biotope Pig Stable and along the Food Chain: A Review from a One Health Perspective. Sustainability. 2018; 10(11):3967. https://doi.org/10.3390/su10113967
Chicago/Turabian StyleSchmithausen, Ricarda Maria, Sophia Veronika Schulze-Geisthoevel, Céline Heinemann, Gabriele Bierbaum, Martin Exner, Brigitte Petersen, and Julia Steinhoff-Wagner. 2018. "Reservoirs and Transmission Pathways of Resistant Indicator Bacteria in the Biotope Pig Stable and along the Food Chain: A Review from a One Health Perspective" Sustainability 10, no. 11: 3967. https://doi.org/10.3390/su10113967
APA StyleSchmithausen, R. M., Schulze-Geisthoevel, S. V., Heinemann, C., Bierbaum, G., Exner, M., Petersen, B., & Steinhoff-Wagner, J. (2018). Reservoirs and Transmission Pathways of Resistant Indicator Bacteria in the Biotope Pig Stable and along the Food Chain: A Review from a One Health Perspective. Sustainability, 10(11), 3967. https://doi.org/10.3390/su10113967