Prediction of Life Cycle Carbon Emissions of Sponge City Projects: A Case Study in Shanghai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area and Data
2.2. Accounting Boundary and Inventory
2.3. Accounting Model
2.3.1. Accounting for Direct Carbon Emissions
2.3.2. Accounting for Indirect Carbon Emissions
2.3.3. Accounting for the Carbon Sink
3. Results and Discussion
3.1. Carbon Emissions
3.2. Carbon Sink
3.3. Life Cyle Carbon Reduction
3.4. Uncertainty Analysis
3.5. Carbon Reduction Measures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Green, O.O.; Shuster, W.D.; Rhea, L.K.; Garmestani, A.S.; Thurston, H.W. Identification and Induction of Human, Social, and Cultural Capitals through an Experimental Approach to Stormwater Management. Sustainability 2012, 4, 1669–1682. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Fang, X.; Gong, Y.; Wang, W. In case studies of the sponge city program in China. In Proceedings of the World Environmental and Water Resources Congress, West Palm Beach, FL, USA, 22–26 May 2016; pp. 295–308. [Google Scholar]
- Xia, J.; Zhang, Y.Y.; Xiong, L.H.; Shan, H.E.; Wang, L.F.; Zhongbo, Y.U. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 1–7. [Google Scholar] [CrossRef]
- Li, H.; Ding, L.; Ren, M.; Li, C.; Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water 2017, 9, 594. [Google Scholar] [CrossRef]
- Liu, H.; Jia, Y.; Niu, C. “Sponge city” concept helps solve China’s urban water problems. Environ. Earth Sci. 2017, 76, 473. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; Resolution adopted by the General Assembly; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Mi, Z.; Meng, J.; Guan, D.; Shan, Y.; Liu, Z.; Wang, Y.; Feng, K.; Wei, Y.M. Pattern changes in determinants of Chinese emissions. Environ. Res. Lett. 2017, 12, 074003. [Google Scholar] [CrossRef] [Green Version]
- Mi, Z.; Meng, J.; Green, F.; Coffman, D.M.; Guan, D. China’s “exported carbon” peak: Patterns, drivers, and implications. Geophys. Res. Lett. 2018, 45, 4309–4318. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, H.; Zikhali, P.; Lv, Y. Carbon Emissions in China&58; A Spatial Econometric Analysis at the Regional Level. Sustainability 2014, 6, 6005–6023. [Google Scholar]
- Mao, X.; Jia, H.; Yu, S.L. Assessing the ecological benefits of aggregate LID-BMPs through modelling. Ecol. Model. 2017, 353, 139–149. [Google Scholar] [CrossRef]
- Wilson, C.E.; Hunt, W.F.; Winston, R.J.; Smith, P. Comparison of Runoff Quality and Quantity from a Commercial Low-Impact and Conventional Development in Raleigh, North Carolina. J. Environ. Eng. 2015, 141, 05014005. [Google Scholar] [CrossRef]
- Eckart, J.; Sieker, H.; Vairavamoorthy, K.; Alsharif, K. Flexible design of urban drainage systems: Demand led research for Hamburg-Wilhelmsburg. Rev. Environ. Sci. Bio-Technol. 2012, 11, 5–10. [Google Scholar] [CrossRef]
- Guan, M.; Sillanpää, N.; Koivusalo, H. Assessment of LID practices for restoring pre-development runoff regime in an urbanized catchment in southern Finland. Water Sci. Technol. 2015, 71, 1485–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Mikle, C.J.; Beurs, K.M.D.; Julian, J.P.; Mayer, P.M. Identifying priority sites for low impact development (LID) in a mixed-use watershed. Lands. Urban Plan. 2015, 140, 29–41. [Google Scholar] [CrossRef]
- Seo, M.; Jaber, F.H. Evaluation of the Effectiveness of Low Impact Development Practices (LIDs) under Various Conditions. Agric. Water Manag. 2014, 134, 110–118. [Google Scholar]
- Yeo, Y.; Shim, D.; Lee, J.-D.; Altmann, J. Driving forces of CO2 emissions in emerging countries: LMDI decomposition analysis on China and India’s residential sector. Sustainability 2015, 7, 16108–16129. [Google Scholar] [CrossRef]
- Ma, X.-W.; Ye, Y.; Shi, X.-Q.; Zou, L.-L. Decoupling economic growth from CO2 emissions: A decomposition analysis of China’s household energy consumption. Adv. Clim. Chang. Res. 2016, 7, 192–200. [Google Scholar] [CrossRef]
- Chapman, A.; Fujii, H.; Managi, S. Key Drivers for Cooperation toward Sustainable Development and the Management of CO2 Emissions: Comparative Analysis of Six Northeast Asian Countries. Sustainability 2018, 10, 244. [Google Scholar] [CrossRef]
- Yan, Q.; Wang, Y.; Baležentis, T.; Sun, Y.; Streimikiene, D. Energy-Related CO2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement. Energies 2018, 11, 1–25. [Google Scholar] [CrossRef]
- Molina-Moreno, V.; Leyva-Díaz, J.C.; Llorens-Montes, F.J.; Cortés-García, F.J. Design of indicators of circular economy as instruments for the evaluation of sustainability and efficiency in wastewater from pig farming industry. Water 2017, 9, 653. [Google Scholar] [CrossRef]
- Flynn, K.M.; Traver, P.R.G. Evaluation of Green Infrastructure Practices Using Life Cycle Assessment; Villanova University Villanova: Villanova, PA, USA, 2011. [Google Scholar]
- Spatari, S.; Yu, Z.; Montalto, F.A. Life cycle implications of urban green infrastructure. Environ. Pollut. 2011, 159, 2174. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Park, T.; Hyun, K.; Lee, W. Life cycle greenhouse-gas emissions from urban area with low impact development (LID). Adv. Environ. Res. 2013, 2, 279–290. [Google Scholar] [CrossRef]
- Moore, T.L.C.; Hunt, W.F. Predicting the carbon footprint of urban stormwater infrastructure. Ecol. Eng. 2013, 58, 44–51. [Google Scholar] [CrossRef]
- O’Sullivan, A.D.; Wicke, D.; Hengen, T.J.; Sieverding, H.L.; Stone, J.J. Life Cycle Assessment modelling of stormwater treatment systems. J. Environ. Manag. 2015, 149, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Getter, K.L.; Rowe, D.B.; Robertson, G.P.; Cregg, B.M.; Andresen, J.A. Carbon sequestration potential of extensive green roofs. Environ. Sci. Technol. 2009, 43, 7564–7570. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.M.; Vesely, E.T. Life-cycle energy and CO2 analysis of stormwater treatment devices. Water Sci. Technol. 2008, 58, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, N.R.; Osmond, D.L.; Winston, R.J.; Hunt, W.F. The capacity of roadside vegetated filter strips and swales to sequester carbon. Ecol. Eng. 2013, 54, 227–232. [Google Scholar] [CrossRef]
- Picek, T.; Čížková, H.; Dušek, J. Greenhouse gas emissions from a constructed wetland—Plants as important sources of carbon. Ecol. Eng. 2007, 31, 98–106. [Google Scholar] [CrossRef]
- Pan, T.; Zhu, X.D.; Ye, Y.P. Estimate of life-cycle greenhouse gas emissions from a vertical subsurface flow constructed wetland and conventional wastewater treatment plants: A case study in China. Ecol. Eng. 2011, 37, 248–254. [Google Scholar] [CrossRef]
- Klein, J.J.M.D.; Werf, A.K.V.D. Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecol. Eng. 2014, 66, 36–42. [Google Scholar] [CrossRef]
- Wu, H.; Li, L.; Jian, Z.; Guo, W.; Shuang, L.; Hai, L. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent. Bioresour. Technol. 2016, 219, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Loubet, P.; Roux, P.; Bellon-Maurel, V. WaLA, a versatile model for the life cycle assessment of urban water systems: Formalism and framework for a modular approach. Water Res. 2016, 88, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Mander, Ü.; Dotro, G.; Ebie, Y.; Towprayoon, S.; Chiemchaisri, C.; Nogueira, S.F.; Jamsranjav, B.; Kasak, K.; Truu, J.; Tournebize, J. Greenhouse gas emission in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 2014, 66, 19–35. [Google Scholar] [CrossRef]
- Brudler, S.; Arnbjerg-Nielsen, K.; Hauschild, M.Z.; Rygaard, M. Life cycle assessment of stormwater management in the context of climate change adaptation. Water Res. 2016, 106, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z. China’s Carbon Emissions Report 2016; Report for Harvard Belfer Center for Science and International Affairs; Harvard Belfer Center for Science and International Affairs: Cambridge, MA, USA, October 2016. [Google Scholar]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies Hayama: Kanagawa Prefecture, Japan, 2006; Volume 5. [Google Scholar]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; Nganga, J. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Xia, W. Study on Life Cycle Carbon Emissions of Residential Buildings. Master’s Thesis, Tianjin University, Tianjin, China, December 2011. [Google Scholar]
- Dingqin, F. Estimation and Analysis on Energy Consumption of Buildings in Shanghai. Master’s Thesis, Hefei University of Technology, Anhui, China, April 2012. [Google Scholar]
- Huapeng, Q.; Huizhou, Y. Urban Water System and Carbon Emission; China Science Publishing & Media Ltd.: Beijing, China, 2014; pp. 103–171. ISBN 7030416031. [Google Scholar]
- Kanghai, C. Research on Quantative Assessment Method of GHG Emission for Construction Projects. Master Thesis, Guangdong University of Technology, Guangdong, China, May 2014. [Google Scholar]
- Shang, W. Typical Residential Building Life Cycle Carbon Emissions Calculation Model and Case Study. Master Thesis, Southeast Jiaotong University, Chengdu, China, May 2014. [Google Scholar]
- Chunxia, Z. Estimation and Prediction Model of Carbon Emissions of Urban Infrastructure System Operations. Master Thesis, Southeast University, Nanjing, China, March 2012. [Google Scholar]
- Baseline Emission Factor of China’s Regional Power Grid in 2015. Available online: http://www.tanpaifang.com/tanguwen/2016/0612/53638.html (accessed on 30 September 2018).
- Wen-Ting, W.U.; Xia, G.Y.; Bao, Z.Y. The Assessment of the Carbon Fixation and Oxygen Release Value of the Urban Green Space in Hangzhou. Chin. Landsc. Archit. 2016, 32, 117–121. (In Chinese) [Google Scholar]
- Bin, S. Contrastive Research on Energy Conservation from the Application of Green Roof and Cool Roof—A Case Study for Office Building in Guangzhou. Master Thesis, Chongqing University, Chongqing, China, June 2016. [Google Scholar]
- Mi, Z.; Meng, J.; Guan, D.; Shan, Y.; Song, M.; Wei, Y.M.; Liu, Z.; Hubacek, K. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 2017, 8, 1712. [Google Scholar] [CrossRef] [PubMed]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Xu, C.; Hong, J.; Jia, H.; Liang, S.; Xu, T. Life cycle environmental and economic assessment of a LID-BMP treatment train system: A case study in China. J. Clean. Prod. 2017, 149, 227–237. [Google Scholar] [CrossRef]
- Kim, J.; Hong, T.; Koo, C.W. Economic and environmental evaluation model for selecting the optimum design of green roof systems in elementary schools. Environ. Sci. Technol. 2012, 46, 8475. [Google Scholar] [CrossRef] [PubMed]
- Jing, N.; Tian, L. Statistics on Rainfall Properties and Capacity Calculation of Rainwater Storage Tank in Shanghai. Chin. Water Wastewater 2006, 22, 48–51. (In Chinese) [Google Scholar]
- Molina-Moreno, V.; Utrilla, P.N.C.; Cortes-Garcia, F.J.; Pena-Garcia, A. The Use of Led Technology and Biomass to Power Public Lighting in a Local Context: The Case of Baeza (Spain). Energies 2018, 11, 1783. [Google Scholar] [CrossRef]
- Masdar City. Available online: https://en.wikipedia.org/wiki/Masdar_City#International_Renewable_Energy_Agency (accessed on 18 October 2018).
- Samsø. Available online: https://en.wikipedia.org/wiki/Sams%C3%B8 (accessed on 18 October 2018).
- Masdar: The Shifting Goalposts of Abu Dhabi’s Ambitious Eco-City. Available online: https://www.wired.co.uk/article/reality-hits-masdar (accessed on 18 October 2018).
Sponge City Facility | Material Consumption | Value | Unit |
---|---|---|---|
Rain garden (2462.2 m2) | Earthwork | 2462.2 | m3 |
Planting soil | 738.7 | m3 | |
Permeable geotextile | 2954.7 | m2 | |
Gravel | 738.7 | m3 | |
Impermeable membrane | 2955 | m2 | |
Overflow well | 102 | ||
Polyvinyl chloride (PVC) pipe | 847 | m | |
Plants | 2832 | m2 | |
Grassed swale (2800.6 m) | Earthwork | 994.9 | m3 |
Pebble | 31.9 | m3 | |
Gravel | 839.6 | m3 | |
Planting soil | 769.6 | m3 | |
Overflow well | 60 | ||
PVC pipe | 398 | m | |
Plants | 3848 | m2 | |
Permeable pavement (958 m2) | Permeable brick | 745 | m2 |
Medium sand | 26.82 | m2 | |
Permeable concrete | 89.4 | m3 | |
Impermeable geotextile | 900 | m2 | |
Stormwater storage module (360 m3) | Intercepting overflow well | 2 | |
PP module pond | 189.65 | m3 | |
PP module pond | 205.7 | m3 | |
Drain pump | 2 | ||
Electrical cabinet | 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Ren, J.; Xu, J.; Zheng, T.; Cheng, W.; Qiao, J.; Huang, J.; Li, G. Prediction of Life Cycle Carbon Emissions of Sponge City Projects: A Case Study in Shanghai, China. Sustainability 2018, 10, 3978. https://doi.org/10.3390/su10113978
Lin X, Ren J, Xu J, Zheng T, Cheng W, Qiao J, Huang J, Li G. Prediction of Life Cycle Carbon Emissions of Sponge City Projects: A Case Study in Shanghai, China. Sustainability. 2018; 10(11):3978. https://doi.org/10.3390/su10113978
Chicago/Turabian StyleLin, Xiaohu, Jie Ren, Jingcheng Xu, Tao Zheng, Wei Cheng, Junlian Qiao, Juwen Huang, and Guangming Li. 2018. "Prediction of Life Cycle Carbon Emissions of Sponge City Projects: A Case Study in Shanghai, China" Sustainability 10, no. 11: 3978. https://doi.org/10.3390/su10113978
APA StyleLin, X., Ren, J., Xu, J., Zheng, T., Cheng, W., Qiao, J., Huang, J., & Li, G. (2018). Prediction of Life Cycle Carbon Emissions of Sponge City Projects: A Case Study in Shanghai, China. Sustainability, 10(11), 3978. https://doi.org/10.3390/su10113978