An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Land-Use Matrix and Markov Chain Model
2.3.2. Spatial Autocorrelation Analysis
2.3.3. Evaluation of Grassland Degradation and Restoration
3. Results
3.1. Land-Use Conversion Since 1990
3.1.1. General Trend of LUCC between 1990 and 2015
3.1.2. Land-Use Conversion Since 1990
3.2. Grassland Degradation and Restoration since 1990
3.3. Spatial Autocorrelation of LUCC in Inner Mongolia
4. Discussion
4.1. Relationships between Land-Use Policy and Land Conversion before 2000
4.2. Relationship between Land-Use Policy and Land Conversion after 2000
5. Conclusions
- (1)
- In 1990–2015, land-use changed dramatically in IM (i.e., in 13% or 123,445 km2 of the total area, including eight land-use types). Woodland increased the most, followed by built-up land and dense grassland. Moderately dense grassland decreased the most, followed by sparse grassland. The changes in water bodies and unused land covered less than 300 km2. The most obvious changes occurred in the eastern and northeastern regions.
- (2)
- During the first period (1990–2000), all land-use change activities were relatively stable, with TPs of at least 0.92. Before 2000, most of the increased cropland was converted from grassland, and the grassland coverage decreased. In contrast, in 2000–2015, land-use change activities became stronger as compared to before 2000 due to decreased TPs of all land-use types. The major land-use processes in this period were increased grassland area and improved coverage.
- (3)
- The trend of grassland degradation was prevented after 2000. Before 2000, grassland degradation (in 31,829.8 km2 or 2.8% of the total area of Inner Mongolia) was the major grassland change process. After 2000, the major grassland conversion process was restoration, and 99,910.2 km2 (8.7% of the total area) of grassland was restored.
- (4)
- The Moran’s I values of most land-use types in IM increased after 2000, and the land-use change activities became much stronger. The spatial autocorrelations of land-use type and land-use change modes were highly related to the environmental protection policies, especially after 2000.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, Y.; Deng, X.; Li, X.; Ma, E. Comparison of multinomial logistic regression and logistic regression: Which is more efficient in allocating land use? Front. Earth Sci. 2014, 8, 512–523. [Google Scholar] [CrossRef]
- Verburg, P.H.; Chen, Y. Spatial explorations of land use change and grain production in China. Agric. Ecosyst. Environ. 2000, 82, 333–354. [Google Scholar] [CrossRef]
- Verburg, P.H.; Kok, K.; Pontius, R.G.; Veldkamp, A. Modeling Land-Use and Land-Cover Change. In Land-Use and Land-Cover Change; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 117–135. ISBN 978-3-540-32201-6. [Google Scholar]
- Nendel, C.; Hu, Y.; Lakes, T. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015—A case study from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595–1606. [Google Scholar] [CrossRef]
- Hu, Y. An Analysis of Land-Use and Land-Cover Change in the Zhujiang–Xijiang Economic Belt, China, from 1990 to 2017. Appl. Sci. 2018, 8, 1524. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote. Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Trisurat, Y.; Shrestha, R.P.; Alkemade, R. (Eds.) Land Use, Climate Change and Biodiversity Modeling: Perspectives and Applications; IGI Global: Hershey, PA, USA, 2011; ISBN 978-1-60960-619-0. [Google Scholar]
- Taylor, C.M.; Lambin, E.F.; Stephenne, N.; Harding, R.J.; Essery, R.L.H. The Influence of Land Use Change on Climate in the Sahel. J. Clim. 2002, 15, 3615–3629. [Google Scholar] [CrossRef]
- Bathrellos, G.; Skilodimou, H.; Soukis, K.; Koskeridou, E. Temporal and Spatial Analysis of Flood Occurrences in the Drainage Basin of Pinios River (Thessaly, Central Greece). Land 2018, 7, 106. [Google Scholar] [CrossRef]
- Yang, D.; Kanae, S.; Oki, T.; Koike, T.; Musiake, K. Global potential soil erosion with reference to land use and climate changes. Hydrol. Process. 2003, 17, 2913–2928. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Miao, L.; Zhu, F.; Sun, Z.; Moore, J.C.; Cui, X. China’s Land-Use Changes during the Past 300 Years: A Historical Perspective. Int. J. Environ. Res. Public Health 2016, 13. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Zhu, F.; He, B.; Ferrat, M.; Liu, Q.; Cao, X.; Cui, X. Synthesis of China’s land use in the past 300 years. Glob. Planet. Chang. 2013, 100, 224–233. [Google Scholar] [CrossRef]
- Bain, I. Sustainable Development in Western China: Managing People, Livestock and Grasslands in Pastoral Areas. Colin G. Brown, Scott A Waldron, John W. Longworth. Cheltenham, United Kingdom. Edward Elgar. 2008. xvii + 294 pp £ 69.95. ISBN: 1-84542-744-0. Mt. Res. Dev. 2010, 30, 59–60. [Google Scholar] [CrossRef]
- Akiyama, T.; Kawamura, K. Grassland degradation in China: Methods of monitoring, management and restoration. Grassl. Sci. 2007, 53, 1–17. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Bai, W.; Yan, J.; Ding, M.; Shen, Z.; Li, S.; Zheng, D. Characteristics of grassland degradation and driving forces in the source region of the Yellow River from 1985 to 2000. J. Geogr. Sci. 2006, 16, 131–142. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, J.; Buyantuev, A.; Zhang, Q.; Dong, J.; Kang, S.; Zhang, J. Understanding grassland degradation and restoration from the perspective of ecosystem services: A case study of the Xilin river basin in Inner Mongolia, China. Sustainability 2016, 8, 1–17. [Google Scholar] [CrossRef]
- Kim, E.-S.; Park, D.K.; Zhao, X.; Hong, S.K.; Koh, K.S.; Suh, M.H.; Kim, Y.S. Sustainable management of grassland ecosystems for controlling Asian dusts and desertification in Asian continent and a suggestion of Eco-Village study in China. Ecol. Res. 2006, 21, 907–911. [Google Scholar] [CrossRef]
- Wang, X.; Bennett, J. Policy analysis of the Conversion of Cropland to Forest and Grassland Program in China. Environ. Econ. Policy Stud. 2008, 9, 119–143. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Schwarze, R. Pathways to Sustainable Grassland Development in China, Findings of Three Case Studies. UFZ Discussion Papers, January 2014. [Google Scholar]
- Liu, M.; Dries, L.; Heijman, W.; Huang, J.; Zhu, X.; Hu, Y.; Chen, H. The Impact of Ecological Construction Programs on Grassland Conservation in Inner Mongolia, China. Land Degrad. Dev. 2018, 29, 326–336. [Google Scholar] [CrossRef]
- Li, S.; Verburg, P.H.; Lv, S.; Wu, J.; Li, X. Spatial analysis of the driving factors of grassland degradation under conditions of climate change and intensive use in Inner Mongolia, China. Reg. Environ. Chang. 2012, 12, 461–474. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z. Quantitative Analysis of Driving Factors of Grassland Degradation: A Case Study in Xilin River Basin, Inner Mongolia. Sci. World J. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.; Ruimin, H. Grazing resource management and grassland degradation in Northern China. J. Resour. Ecol. 2011, 2, 286–288. [Google Scholar] [CrossRef]
- Zhou, W.; Gang, C.; Zhou, L.; Chen, Y.; Li, J.; Ju, W.; Odeh, I. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecol. 2014, 55, 86–96. [Google Scholar] [CrossRef]
- Thwaites, R.; de Lacy, T.; Hong, L.Y.; Hua, L.X. Property rights, social change, and grassland degradation in Xilingol Biosphere Reserve, Inner Mongolia, China. Soc. Nat. Resour. 1998, 11, 319–338. [Google Scholar] [CrossRef]
- Cao, J.; Yeh, E.T.; Holden, N.M.; Qin, Y.; Ren, Z. The Roles of Overgrazing, Climate Change and Policy as Drivers of Degradation of China’s Grasslands. Nomadic Peoples 2013, 17, 82–101. [Google Scholar] [CrossRef]
- Han, J.G.; Zhang, Y.J.; Wang, C.J.; Bai, W.M.; Wang, Y.R.; Han, G.D.; Li, L.H. Rangeland degradation and restoration management in China. Rangel. J. 2008, 30, 233. [Google Scholar] [CrossRef]
- Li, W.; Huntsinger, L. China’s Grassland Contract Policy and its Impacts on Herder Ability to Benefit in Inner Mongolia: Tragic Feedbacks. Ecol. Soc. 2011, 16. [Google Scholar] [CrossRef]
- Liu, M. China’s Grassland Policies and the Inner Mongolian Grassland System. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2017. [Google Scholar]
- Du, B.; Zhen, L.; Yan, H.; de Groot, R. Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China. Sustainability 2016, 8, 1314. [Google Scholar] [CrossRef]
- Jiang, G.; Han, X.; Wu, J. Restoration and Management of the Inner Mongolia Grassland Require a Sustainable Strategy. AMBIO J. Hum. Environ. 2006, 35, 269–270. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Zhao, J.; Pu, F.; Li, Y.; Xu, J.; Li, N.; Zhang, Y.; Guo, J.; Pan, Z. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China. PLoS ONE 2017, 12, e0185690. [Google Scholar] [CrossRef] [PubMed]
- Jepson, P.; Jarvie, J.K.; MacKinnon, K.; Monk, K.A. The end for Indonesia’s lowland forests? 2001, 292, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Gollnow, F.; Lakes, T. Policy change, land use, and agriculture: The case of soy production and cattle ranching in Brazil, 2001–2012. Appl. Geogr. 2014, 55, 203–211. [Google Scholar] [CrossRef]
- Fischer, B.; Klauer, B.; Schiller, J. Prospects for sustainable land-use policy in Germany: Experimenting with a sustainability heuristic. Ecol. Econ. 2013, 95, 213–220. [Google Scholar] [CrossRef]
- Fischer, B.; Jöst, F.; Klauer, B. Is a Sustainable Land-Use Policy in Germany Possible; University of Heidelberg: Heidelberg, Germany, 2009. [Google Scholar]
- Akram, M.; Qian, Z.; Wenjun, L. Policy Analysis in Grassland Management of Xilingol Prefecture, Inner Mongolia. In The Future of Drylands; Lee, C., Schaaf, T., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 493–505. ISBN 978-1-4020-6969-7. [Google Scholar]
- Mu, S.; Zhou, S.; Chen, Y.; Li, J.; Ju, W.; Odeh, I.O.A. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland, China. Glob. Planet. Chang. 2013, 108, 29–41. [Google Scholar] [CrossRef]
- Zhan, J.; Shi, N.; He, S.; Lin, Y. Factors and mechanism driving the land-use conversion in Jiangxi Province. J. Geogr. Sci. 2010, 20, 525–539. [Google Scholar] [CrossRef]
- Shao, L.; Chen, H.; Zhang, C.; Huo, X. Effects of Major Grassland Conservation Programs Implemented in Inner Mongolia since 2000 on Vegetation Restoration and Natural and Anthropogenic Disturbances to Their Success. Sustainability 2017, 9, 466. [Google Scholar] [CrossRef]
- Sun, B.; Li, Z.; Gao, Z.; Guo, Z.; Wang, B.; Hu, X.; Bai, L. Grassland degradation and restoration monitoring and driving forces analysis based on long time-series remote sensing data in Xilin Gol League. Acta Ecol. Sin. 2017, 37, 219–228. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Li, A.; Liang, C. Historical landscape dynamics of Inner Mongolia: Patterns, drivers, and impacts. Landsc. Ecol. 2015, 30, 1579–1598. [Google Scholar] [CrossRef]
- Xie, Y.; Li, W. Why do Herders Insist on Otor? Maintaining Mobility in Inner Mongolia. Nomadic Peoples 2008, 12, 35–52. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Lu, N.; Wilske, B. Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environ. Res. Lett. 2009, 4, 045010. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Sun, B.; del Barrio, G.; Li, X.; Wang, H.; Bai, L.; Wang, B.; Zhang, W. Land degradation assessment by applying relative rue in Inner Mongolia, China, 2001–2010. In Proceedings of the 2014 IEEE International on Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 1449–1452. [Google Scholar]
- Zhao, X.; Hu, H.; Shen, H.; Zhou, D.; Zhou, L.; Myneni, R.B.; Fang, J. Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landsc. Ecol. 2015, 30, 1599–1611. [Google Scholar] [CrossRef]
- Zhen, L.; Li, F.; Yan, H.M.; Liu, G.H.; Liu, J.Y.; Zhang, H.Y.; Du, B.Z.; Wu, R.Z.; Sun, C.Z.; Wang, C. Herders’ willingness to accept versus the public sector’s willingness to pay for grassland restoration in the Xilingol League of Inner Mongolia, China. Environ. Res. Lett. 2014, 9, 045003. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Huang, J.; Huang, Q.; Rozelle, S.; Gibson, J. Do roads lead to grassland degradation or restoration? A case study in Inner Mongolia, China. Environ. Dev. Econ. 2011, 16, 751–773. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Shi, G.; Jiang, N.; Yao, L. Land Use and Cover Change during the Rapid Economic Growth Period from 1990 to 2010: A Case Study of Shanghai. Sustainability 2018, 10, 426. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. Earth Sci. 2003, 46, 373–384. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Zhan, J.Y.; Deng, X.; Jiang, O.; Shi, N. The Application of System Dynamics and CLUE-S Model in Land Use Change Dynamic Simulation: A Case Study in Taips County, Inner Mongolia of China. In Proceedings of the 2007 Conference on Systems Science, Management Science and System Dynamics: Sustainable Development and Complex Systems, Shanghai, China, 22–27 July 2007; pp. 2781–2790. [Google Scholar]
- Zheng, Y.; Xu, Z.; Kemp, D.; Akahashi, T.; Jones, R. Modeling Optimal Grazing Management for Grassland Rehabilitation on the Typical Steppe: A Case Study in Taipusi Banner, Inner Mongolia, China. Philipp. Agric. Sci. 2011, 93, 420–428. [Google Scholar]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Arai, E.; del Bon Espirito-Santo, F.; Freitas, R.; Morisette, J. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2006, 103, 14637–14641. [Google Scholar] [CrossRef] [PubMed]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xu, X.; Shao, Q. Grassland degradation in the “Three-River Headwaters” region, Qinghai Province. J. Geogr. Sci. 2008, 18, 259–273. [Google Scholar] [CrossRef]
- Müller-Hansen, F.; Cardoso, M.F.; Dalla-Nora, E.L.; Donges, J.F.; Heitzig, J.; Kurths, J.; Thonicke, K. A matrix clustering method to explore patterns of land-cover transitions in satellite-derived maps of the Brazilian Amazon. Nonlinear Process. Geophys. 2017, 24, 113–123. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, Y.; Zheng, X. Simulation of land-use scenarios for Beijing using CLUE-S and Markov composite models. Chin. Geogr. Sci. 2013, 23, 92–100. [Google Scholar] [CrossRef]
- Han, H.; Yang, C.; Song, J. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Cao, S. Markov Processes in Modeling Land Use and Land Cover Change in Tibetan Platau. In Proceedings of the 2011 International Conference on Remote Sensing, Nanjing, China, 24–26 June 2011; pp. 457–459. [Google Scholar]
- Chu, H.-J.; Wu, C.-F.; Lin, Y.-P. Incorporating Spatial Autocorrelation with Neural Networks in Empirical Land-Use Change Models. Environ. Plan. B Plan. Des. 2013, 40, 384–404. [Google Scholar] [CrossRef]
- Biondini, M.; Kandus, P. Transition matrix analysis of land-cover change in the accretion area of the Lower Delta of the Paraná River (Argentina) reveals two succession pathways. Wetlands 2006, 26, 981–991. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Gao, L.; Qiao, G. To Fence or Not to Fence? Perceptions and Attitudes of Herders in Inner Mongolia. In Proceedings of the Building Resilience of Mongolian Rangelands: A Trans-Disciplinary Research Conference, Ulaanbaatar, Mongolia, 9–10 June 2015. [Google Scholar]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.; Levinson, D.; El-Geneidy, A.; Wasfi, R. A Markov Chain Model of Land Use Change. Tema J. Land Use Mobil. Environ. 2015, 8, 263–276. [Google Scholar]
- Muller, M.R.; Middleton, J. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc. Ecol. 1994, 9, 151–157. [Google Scholar] [CrossRef]
- Bell, E.J. Markov analysis of land use change—An application of stochastic processes to remotely sensed data. Socio-Econ. Plan. Sci. 1974, 8, 311–316. [Google Scholar] [CrossRef]
- Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat. Hazards Risk 2014, 5, 145–156. [Google Scholar] [CrossRef]
- Yuan, T.; Yiping, X.; Lei, Z.; Danqing, L. Land Use and Cover Change Simulation and Prediction in Hangzhou City Based on CA-Markov Model. Int. Proc. Chem. Biol. Environ. Eng. 2015, 90, 108–113. [Google Scholar]
- Zhao, Y.; Li, X. Spatial Correlation between Type of Mountain Area and Land Use Degree in Guizhou Province, China. Sustainability 2016, 8, 849. [Google Scholar] [CrossRef]
- Niu, L.; Luo, W.; Jiang, M.; Lu, N. Land-Use Degree and Spatial Autocorrelation Analysis in Kunming City Based on Big Dat. In Proceedings of the 2018 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Xiamen, China, 25–26 January 2018; pp. 97–100. [Google Scholar]
- Overmars, K.P.; de Koning, G.H.J.; Veldkamp, A. Spatial autocorrelation in multi-scale land use models. Ecol. Model. 2003, 164, 257–270. [Google Scholar] [CrossRef] [Green Version]
- GeoDa Software—Data Exploration at Its Finest. Available online: https://gisgeography.com/geoda-software/ (accessed on 31 October 2018).
- Li, Z.; Wu, W.; Liu, X.; Fath, B.D.; Sun, H.; Liu, X.; Xiao, X.; Cao, J. Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China. Ecol. Model. 2017, 353, 86–94. [Google Scholar] [CrossRef]
- Grassland Degradation. Available online: https://en.wikipedia.org/w/index.php?title=Grassland_degradation&oldid=842071682 (accessed on 31 October 2018).
- Li, Y.; Li, W. Chinas Rangeland management policy debates—What have we learned. Rangel. Ecol. Manag. 2015, 68, 305–314. [Google Scholar] [CrossRef]
- Chen, G.; Wang, M.; Liu, Z.; Chi, W. The Biogeophysical Effects of Revegetation around Mining Areas: A Case Study of Dongsheng Mining Areas in Inner Mongolia. Sustainability 2017, 9, 628. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allington, G.R.H.; Li, W.; Brown, D.G. Urbanization and environmental policy effects on the future availability of grazing resources on the Mongolian Plateau: Modeling socio-environmental system dynamics. Environ. Sci. Policy 2017, 68, 35–46. [Google Scholar] [CrossRef]
- Klotzbücher, S. Sustainable Development in Western China: Managing People, Livestock and Grasslands in Pastoral Areas. J. Dev. Stud. 2009, 45, 828–830. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, Y.; Yang, G.; Luo, Y. Quantitative evaluation of the effect of prohibiting grazing policy on grassland desertification reversal in northern China. Environ. Earth Sci. 2013, 68, 2181–2188. [Google Scholar] [CrossRef]
- Jun Li, W.; Ali, S.H.; Zhang, Q. Property rights and grassland degradation: A study of the Xilingol Pasture, Inner Mongolia, China. J. Environ. Manag. 2007, 85, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q. Pastoralists and the Environmental State: A Study of Ecological Resettlement in Inner Mongolia, China; Department of Human Geography, Stockholm University: Stockholm, Sweden, 2015. [Google Scholar]
- Cao, S.; Chen, L.; Yu, X. Impact of China’s Grain for Green Project on the landscape of vulnerable arid and semi-arid agricultural regions: A case study in northern Shaanxi Province. J. Appl. Ecol. 2009, 46, 536–543. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, W.; Liu, X.; Cao, J.; Shen, H.; Zhao, X.; Zhang, N.; Bai, Y.; Yi, M. Change of soil organic carbon after cropland afforestation in ‘Beijing-Tianjin Sandstorm Source Control’ program area in China. Chin. Geogr. Sci. 2014, 24, 461–470. [Google Scholar] [CrossRef]
- Démurger, S.; Pelletier, A. Volunteer and satisfied? Rural households’ participation in a payments for environmental services programme in Inner Mongolia. Ecol. Econ. 2015, 116, 25–33. [Google Scholar] [CrossRef]
- Pan, X.; Xu, L.; Yang, Z.; Yu, B. Payments for ecosystem services in China: Policy, practice, and progress. J. Clean. Prod. 2017, 158, 200–208. [Google Scholar] [CrossRef]
- Song, X.; Peng, C.; Zhou, G.; Jiang, H.; Wang, W. Chinese Grain for Green Program led to highly increased soil organic carbon levels: A meta-analysis. Sci. Rep. 2014, 4, 4460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, G.Y.; Yin, J.; Tian, F.; Geng, S. Effects of the “Conversion of Cropland to Forest and Grassland Program” on the Water Budget of the Jinghe River Catchment in China. J. Environ. Qual. 2011, 40, 1745. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Q.; Chen, N.X. Ecological Benefit Evaluation of the Beijing-Tianjin Sandstom Source Control Project in Beijing. Adv. Mater. Res. 2011, 356–360, 2479–2483. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, J.; He, B.; Liu, J.; Wang, Q.; Zhang, H.; Liu, Y. Drought Offset Ecological Restoration Program-Induced Increase in Vegetation Activity in the Beijing-Tianjin Sand Source Region, China. Environ. Sci. Technol. 2014, 48, 12108–12117. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Wu, J.; Yong, S.; Yang, J.; Yong, W. A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. J. Arid. Environ. 2004, 59, 133–149. [Google Scholar] [CrossRef]
- Yeh, E.T. From “Retire Livestock, Restore Rangeland” to the Compensation for Ecological Services: State Interventions into Rangeland Ecosystems and Pastoralism in Tibet. Ph.D. Thesis, University of Colorado Boulder, Boulder, CO, USA, 2012. [Google Scholar]
- Li, Y.; Fan, M.; Li, W. Application of payment for ecosystem services in China’s rangeland conservation initiatives: A social-ecological system perspective. Rangel. J. 2015, 37, 285–296. [Google Scholar] [CrossRef]
Land-Use Type | Code | Description |
---|---|---|
Cropland | 1 | Cultivated land for crops |
Woodland | 2 | Land for growing trees, including arbors, shrub arbors, shrubs, bamboo, and forests |
Water body | 4 | Natural surface water bodies or constructed reservoirs for irrigation and water reserves |
Built-up land | 5 | Land used for urban and rural settlements, factories, and transportation facilities |
Unused land | 6 | Land that has not been put into practical use or is difficult to use |
Dense grass | 31 | Grassland with canopy coverage greater than 50% |
Moderately dense grass | 32 | Grassland with canopy coverage between 20% and 50% |
Sparse grass | 33 | Grassland with canopy cover between 5% and 20% |
2000 | ||||||||||
1990 | Cropland | Woodland | Water Body | Built-Up Land | Unused Land | Dense Grassland | Moderately Dense Grassland | Sparse Grassland | Losses | |
Cropland | 95,496.32 | 741.58 | 198.22 | 410.20 | 564.48 | 1665.22 | 3426.22 | 712.85 | 7718.77 | |
Woodland | 2907.97 | 159,705.27 | 39.54 | 31.59 | 191.31 | 1910.63 | 2562.58 | 169.34 | 7812.97 | |
Water body | 287.65 | 51.64 | 13,158.00 | 18.78 | 422.93 | 128.42 | 142.78 | 68.93 | 1121.14 | |
Built-up land | 11,006.44 | 0.00 | ||||||||
Unused land | 981.96 | 218.55 | 773.86 | 46.82 | 304,590.35 | 1020.93 | 1765.78 | 1688.78 | 6496.68 | |
Dense grassland | 8419.44 | 2081.35 | 229.88 | 128.74 | 1166.42 | 229,546.53 | 3946.00 | 2069.50 | 18,041.34 | |
Moderately dense grassland | 4303.50 | 705.31 | 146.97 | 121.48 | 1647.44 | 2190.88 | 173,222.75 | 2357.13 | 11472.71 | |
Sparse grassland | 808.55 | 173.68 | 89.52 | 60.18 | 3374.67 | 770.78 | 1129.47 | 99,560.79 | 6406.86 | |
Gains | 17,709.06 | 3972.11 | 1477.99 | 817.80 | 7367.26 | 7686.87 | 12,972.84 | 7066.54 | 59,070.47 | |
2015 | ||||||||||
2000 | Cropland | Woodland | Water Body | Built-Up Land | Unused Land | Dense Grassland | Moderately Dense Grassland | Sparse Grassland | Losses | |
Cropland | 90,544.80 | 4796.28 | 866.43 | 2021.68 | 2970.22 | 6090.65 | 4711.29 | 1204.06 | 22,660.61 | |
Woodland | 4333.03 | 144,673.39 | 395.75 | 257.45 | 2188.45 | 8949.26 | 2274.99 | 605.08 | 19,004.00 | |
Water body | 816.60 | 238.52 | 10,179.30 | 92.80 | 2386.71 | 276.39 | 296.90 | 348.76 | 4456.69 | |
Built-up land | 11,824.24 | 0.00 | ||||||||
Unused land | 3012.76 | 1626.55 | 1212.83 | 1017.73 | 287,103.48 | 3103.94 | 7395.08 | 7485.23 | 24,854.12 | |
Dense grassland | 3489.41 | 24,853.22 | 692.81 | 1255.66 | 1673.05 | 190,147.87 | 6790.74 | 8330.65 | 47,085.53 | |
Moderately dense grassland | 3066.20 | 5836.07 | 441.81 | 1347.74 | 4963.25 | 40,804.36 | 121,292.73 | 8443.42 | 64,902.85 | |
Sparse grassland | 698.79 | 1058.41 | 273.77 | 872.09 | 9994.02 | 5553.89 | 10,810.35 | 77,365.99 | 29,261.33 | |
Gains | 15,416.79 | 38,409.06 | 3883.41 | 6865.14 | 24,175.70 | 64,778.48 | 32,279.35 | 26,417.20 | 212,225.13 |
Cropland | Wood Land | Water Body | Built-Up Land | Unused Land | Dense Grassland | Moderately Dense Grassland | Sparse Grassland | |
---|---|---|---|---|---|---|---|---|
Cropland | 92.52 | 0.72 | 0.19 | 0.40 | 0.55 | 1.61 | 3.32 | 0.69 |
Woodland | 1.74 | 95.34 | 0.02 | 0.02 | 0.11 | 1.14 | 1.53 | 0.10 |
Water body | 2.01 | 0.36 | 92.15 | 0.13 | 2.96 | 0.90 | 1.00 | 0.48 |
Built-up land | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Unused land | 0.32 | 0.07 | 0.25 | 0.02 | 97.91 | 0.33 | 0.57 | 0.54 |
Dense grassland | 3.40 | 0.84 | 0.09 | 0.05 | 0.47 | 92.71 | 1.59 | 0.84 |
Moderately dense grassland | 2.33 | 0.38 | 0.08 | 0.07 | 0.89 | 1.19 | 93.79 | 1.28 |
Sparse grassland | 0.76 | 0.16 | 0.08 | 0.06 | 3.18 | 0.73 | 1.07 | 93.95 |
Cropland | Woodland | Water Body | Built-Up Land | Unused Land | Dense Grassland | Moderately Dense Grassland | Sparse Grassland | |
---|---|---|---|---|---|---|---|---|
Cropland | 79.98 | 4.24 | 0.77 | 1.79 | 2.62 | 5.38 | 4.16 | 1.06 |
Woodland | 2.65 | 88.39 | 0.24 | 0.16 | 1.34 | 5.47 | 1.39 | 0.37 |
Water body | 5.58 | 1.63 | 69.55 | 0.63 | 16.31 | 1.89 | 2.03 | 2.38 |
Built-up land | 0.00 | 0.00 | 0.00 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Unused land | 0.97 | 0.52 | 0.39 | 0.33 | 92.03 | 0.99 | 2.37 | 2.40 |
Dense grassland | 1.47 | 10.48 | 0.29 | 0.53 | 0.71 | 80.15 | 2.86 | 3.51 |
Moderately dense grassland | 1.65 | 3.13 | 0.24 | 0.72 | 2.67 | 21.91 | 65.14 | 4.53 |
Sparse grassland | 0.66 | 0.99 | 0.26 | 0.82 | 9.37 | 5.21 | 10.14 | 72.56 |
Years | Policies and Programs |
---|---|
1985 | Rangeland Law (RL) [28] |
1999–2010 | Grain to Green Program (GGP) [84] |
2003 | Rangeland Law (amended) [28] |
2002–2010 | Return Grazing to Grassland Program (RGGP) [20] |
2001–2010 | Beijing–Tianjin Sand Source Control Engineering Project (BTSSC) [85] |
2001–2008 | Fencing Grassland and Moving Users (FGMU) [38] |
2001–2020 | Payments for Environmental Services (PES) [86,87] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Nacun, B. An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015. Sustainability 2018, 10, 4048. https://doi.org/10.3390/su10114048
Hu Y, Nacun B. An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015. Sustainability. 2018; 10(11):4048. https://doi.org/10.3390/su10114048
Chicago/Turabian StyleHu, Yunfeng, and Batu Nacun. 2018. "An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015" Sustainability 10, no. 11: 4048. https://doi.org/10.3390/su10114048
APA StyleHu, Y., & Nacun, B. (2018). An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia, China, 1990–2015. Sustainability, 10(11), 4048. https://doi.org/10.3390/su10114048