The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Functional Unit Description
2.3. Description of the System and System Boundaries
2.4. Scenario Equivalency
2.5. Inventory Analysis
2.6. Scenario Assessment
3. Results
3.1. Nutritional Equivalencies between Pasture and Concentrate
3.2. Life Cycle Impact Assessment
3.3. Scenario Assessment Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CC | Climate carbon |
CF | Crude Fiber |
CLCA | Comparative life cycle assessment |
CH4 | Methane |
CO2 | Carbon dioxide |
CO2e | Carbon dioxide equivalent |
CP | Crude Protein |
DM | Dry matter |
DPM | Easily decomposable plant material |
FU | Fucntional unit |
GE | Gross energy |
GHG | Greenhouse gas |
GWP | Global warming potential |
HF | High forage |
IPCC | Intergovernmental Panel on Climate Change |
LCA | Life Cycle Assessment |
LCC | Life cycle costing |
LF | Low forage |
LU | Livestcok unit |
NDF | Neutral detergent fiber |
NFU | Nutritional forage units |
NIR | National Inventory Report |
N2O | Nitrous oxide |
PCF | Portuguese Carbon Fund |
RothC | Rothamsted Carbon Model |
RPM | Resistant plant material |
SBP | Sown biodiverse permanent pastures rich in legumes |
SNP | Semi-natural pastures |
SOM | Soil organic matter |
Sown biodiverse permanent pastures rich in legumes fraction |
Appendix A
References
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leip, A.; Weiss, F.; Wassenaar, T.; Perez, I.; Fellmann, T.; Loudjani, P.; Tubiello, F.; Grandgirard, D.; Monni, S.; Biala, K. Evaluation of the Livestock Sector’s Contribution to the EU Greenhouse Gas Emissions (GGELS)—Final Report; European Commission, Joint Research Centre: Ispra, Italy, 2010. [Google Scholar]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006. [Google Scholar]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle assessment (LCA) on some food products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Brentrup, F.; Pallière, C. GHG Emissions and Energy Efficiency in European Nitrogen Fertiliser Production and Use. In International Fertiliser Society—Proceeding 639; International Fertiliser Society: York, UK, 2008; pp. 1–15. [Google Scholar]
- Scharai-Rad, M.; Welling, J. Environmental and Energy Balances of Wood Products and Substitutes; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2002. [Google Scholar]
- Henle, K.; Alard, D.; Clitherow, J.; Cobb, P.; Firbank, L.; Kull, T.; McCracken, D.; Moritz, R.F.A.; Niemelä, J.; Rebane, M.; et al. Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—A review. Agric. Ecosyst. Environ. 2008, 124, 60–71. [Google Scholar] [CrossRef]
- Teixeira, R.F.M. Sustainable Land Uses and Carbon Sequestration: The Case of Sown Biodiverse Permanent Pastures Rich in Legumes. Ph.D. Thesis, Instituto Superior Técnico, Lisboa, Portugal, 2010. [Google Scholar]
- Teixeira, R.F.M.; Proença, V.; Crespo, D.; Valada, T.; Domingos, T. A conceptual framework for the analysis of engineered biodiverse pastures. Ecol. Eng. 2015, 77, 85–97. [Google Scholar] [CrossRef]
- Teixeira, R.F.M.; Domingos, T.; Costa, A.P.S.V.; Oliveira, R.; Farropas, L.; Calouro, F.; Barradas, A.M.; Carneiro, J.P.B.G. Soil organic matter dynamics in Portuguese natural and sown rainfed grasslands. Ecol. Modell. 2011, 222, 993–1001. [Google Scholar] [CrossRef]
- Teixeira, R.F.M.; Proença, V.; Valada, T.; Crespo, D.; Domingos, T.; Hopkins, A.; Collins, R.P.; Fraser, M.D.; King, V.R.; Lloyd, D.C.; et al. Sown biodiverse pastures as a win-win approach to reverse the degradation of Mediterranean ecosystems. In EGF at 50: The Future of European Grasslands. Proceedings of the 25th General Meeting of the European Grassland Federation, Aberystwyth, Wales, 7–11 September 2014; IBERS, Aberystwyth University: Aberystwyth, UK, 2014; pp. 258–260. [Google Scholar]
- Teixeira, R.F.M.; Domingos, T.; Costa, A.P.S.V.; Oliveira, R.; Farropas, L.; Calouro, F.; Barradas, A.M.; Carneiro, J.P.B.G. The dynamics of soil organic matter accumulation in Portuguese grasslands soils. In Sustainable Mediterranean Grasslands and Their Multi-Functions; CIHEAM/FAO/ENMP/SPPF: Zaragoza, Spain, 2008; pp. 41–44. [Google Scholar]
- Teixeira, R.F.M.; Domingos, T.; Canaveira, P.; Avelar, T.; Basch, G.; Belo, C.C.; Calouro, F.; Crespo, D.; Ferreira, V.G.; Martins, C. Carbon Sequestration in Biodiverse Sown Grasslands. 2008. Available online: http://om.ciheam.org/om/pdf/a79/00800630.pdf (accessed on 20 September 2018).
- Pereira, H.M.; Domingos, T.; Marta-Pedroso, C.; Proença, V.; Rodrigues, P.; Ferreira, M.; Teixeira, R.; Mota, R.; Nogal, A. Uma avaliação dos serviços dos ecossistemas em Portugal. In Ecossistemas e Bem-Estar Humano Avaliação para Portugal do Millennium Ecosystem Assessment; Escolar Editora: Lisboa, Portugal, 2009; pp. 687–716. [Google Scholar]
- Teixeira, R.F.M.; Barão, L.; Morais, T.G.; Domingos, T. Determining Estimating the greenhouse gas balance of natural and sown pastures using a carbon and nitrogen mass balance approach. Sustainability 2018. under revision. [Google Scholar]
- ISO. ISO 14067:2013 Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification and Communication; International Organization for Standardization: Geneva, Switzerland, 2013. [Google Scholar]
- ISO. 14040 Environmental Managemente Life Cycle Assessmente Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Guinée, J.B. Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess. 2002, 7, 311–313. [Google Scholar] [CrossRef]
- Finnveden, G.; Moberg, Å. Environmental systems analysis tools—An overview. J. Clean. Prod. 2005, 13, 1165–1173. [Google Scholar] [CrossRef]
- Hellweg, S.; i Canals, L.M. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Green, K.; Bleda, M.; Dewik, P. Environmental Impacts of Food Production and Consumption: Final Report to the Department for Environment Food and Rural Affairs; Department for the Environment, Food and Rural Affairs: London, UK, 2007.
- Notarnicola, B.; Hayashi, K.; Curran, M.A.; Huisingh, D. Progress in working towards a more sustainable agri-food industry. J. Clean. Prod. 2012, 28, 1–8. [Google Scholar] [CrossRef]
- Teixeira, R.F.M. Critical Appraisal of Life Cycle Impact Assessment Databases for Agri-food Materials. J. Ind. Ecol. 2015, 19, 38–50. [Google Scholar] [CrossRef]
- De Vries, M.; de Boer, I.J. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Chatterton, J.; Graves, A.; Audsley, E.; Morris, J.; Williams, A. Using systems-based life cycle assessment to investigate the environmental and economic impacts and benefits of the livestock sector in the UK. J. Clean. Prod. 2015, 86, 1–8. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Hermansen, J.E.; Mogensen, L. Environmental consequences of different beef production systems in the EU. J. Clean. Prod. 2010, 18, 756–766. [Google Scholar] [CrossRef]
- Carneiro, J.P.; Freixial, R.C.; Pereira, J.S.; Campos, A.C.; Crespo, J.P.; Carneiro, R. Relatório Final do Projecto AGRO 87; Final Report of the Agro 87 Project; Lisbon, Portugal, 2005. (In Portuguese) [Google Scholar]
- INRA; CIRAD; AFZ. FAO Feedipedia—Animal Feed Resources Information System. Available online: http://www.feedipedia.org/content/feeds?category=13594 (accessed on 20 September 2018).
- Morais, T.G.; Teixeira, R.F.M.; Domingos, T. Regionalization of agri-food life cycle assessment: A review of studies in Portugal and recommendations for the future. Int. J. Life Cycle Assess. 2016, 21, 875–884. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.; Domingos, T. A step toward regionalized scale-consistent agricultural life cycle assessment inventories. Integr. Environ. Assess. Manag. 2017, 13, 939–951. [Google Scholar] [CrossRef] [PubMed]
- GPP. Contas de Cultura das Actividades Vegetais, Ano 1997—Modelo de Base Microeconómica (“Crop Sheets 1997—Microeconomic Base Model”, in Portuguese); Ministério da Agricultura, do Desenvolvimento Rural e das Pescas—Gabinete de Planeamento e Política Ago-Alimentar: Lisbon, Portugal, 2001. [Google Scholar]
- Weidema, B.P.; Bauer, C.; Hischier, R.; Mutel, C.; Nemecek, T.; Reinhard, J.; Vadenbo, C.O.; Wernet, G. Overview and Methodology. Data Quality Guideline for the Ecoinvent Database Version 3. Ecoinvent Report 1(v3); Swiss Centre for Life Cycle Inventories: St. Gallen, Switzerland, 2013. [Google Scholar]
- Costa, P.; Lemos, J.P.; Lopes, P.A.; Alfaia, C.M.; Costa, A.S.H.; Bessa, R.J.B.; Prates, J.A.M. Effect of low- and high-forage diets on meat quality and fatty acid composition of Alentejana and Barrosã beef breeds. Animal 2012, 6, 1187–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, T.G.; Teixeira, R.F.M.; Rodrigues, N.R.; Domingos, T. Characterizing livestock production in Portuguese sown rainfed grasslands: Applying the inverse approach to a process-based model. Sustainability 2018. under revision. [Google Scholar]
- Morais, T.G.; Silva, C.; Jebari, A.; Álvaro-Fuentes, J.; Domingos, T.; Teixeira, R.F.M. A proposal for using process-based soil models for land use Life cycle impact assessment: Application to Alentejo, Portugal. J. Clean. Prod. 2018, 192, 864–876. [Google Scholar] [CrossRef]
- APA. Portuguese National Inventory Report on Greenhouse Gases, 1990–2018; Portuguese Environmental Agency: Amadora, Portugal, 2018.
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES) for the Intergovernmental Panel on Climate Change; The Intergovernmental Panel on Climate Change (IPCC): Kanagawa, Japan, 2006. [Google Scholar]
- IPCC. Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Climate Change 2013—The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Carolino, R.N.P. Estratégias de Selecção na Raça Bovina Alentejana; Universidade Técnica de Lisboa—Faculdade de Medicina Veterinária: Lisboa, Portugal, 2006. [Google Scholar]
- Eldesouky, A.; Mesias, F.J.; Elghannam, A.; Escribano, M. Can extensification compensate livestock greenhouse gas emissions? A study of the carbon footprint in Spanish agroforestry systems. J. Clean. Prod. 2018, 200, 28–38. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- IPCC. IPCC Fourth Assessment Report. Climate Change 2007. Working Group I: The Physical Science Basis. Available online: http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html (accessed on 20 May 2006).
- Almeida, J.P.F.; Alberto, D.; Maçãs, M. Portuguese annual mediterranean pastures: An eonomic approach to understand sown pastures failure. In Options Méditerraneenns; CIHEAM/FAO/ENMP/SPPF: Zaragoza, Spain, 2014; pp. 299–602. [Google Scholar]
- Norris, G.A. Integrating life cycle cost analysis and LCA. Int. J. Life Cycle Assess. 2001, 6, 118–120. [Google Scholar] [CrossRef]
- Kloepffer, W. Life cycle sustainability assessment of products. Int. J. Life Cycle Assess. 2008, 13, 89–95. [Google Scholar] [CrossRef]
- Guinée, J.B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life cycle assessment: Past, present, and future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.F.M. The cost-effectiveness of optimizing concentrated feed blends to decrease greenhouse gas emissions. Environ. Eng. Manag. J. 2018, 17, 999–1007. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Rodrigues, N.R.; Domingos, T. Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal. Sustainability 2018, 10, 3658. [Google Scholar] [CrossRef]
- Cederberg, C.; Stadig, M. System expansion and allocation in life cycle assessment of milk and beef production. Int. J. Life Cycle Assess. 2003, 8, 350–356. [Google Scholar] [CrossRef]
- Casey, J.W.; Holden, N.M. Quantification of GHG emissions from sucker-beef production in Ireland. Agric. Syst. 2006, 90, 79–98. [Google Scholar] [CrossRef]
- Zucali, M.; Tamburini, A.; Sandrucci, A.; Bava, L. Global warming and mitigation potential of milk and meat production in Lombardy (Italy). J. Clean. Prod. 2017, 153, 474–482. [Google Scholar] [CrossRef]
- Ogino, A.; Kaku, K.; Osada, T.; Shimada, K.; Ogino, A.; Kaku, K.; Osada, T.; Shimada, K. Environmental impacts of the Japanese beef-fattening system with different feeding lengths as evaluated by a life-cycle assessment method. J. Anim. Sci. 2004, 82, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Ogino, A.; Orito, H.; Shidama, K.; Hirooka, H.; Shimada, K.; Hirooka, H. Evaluating environmental impacts of the Japanese beef cow-calf system by the life cycle assessment method. Anim. Sci. J. 2007, 78, 424–432. [Google Scholar] [CrossRef]
- Flombaum, P.; Sala, O.E. A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. J. Arid Environ. 2007, 69, 352–358. [Google Scholar] [CrossRef]
- Shoko, C.; Mutanga, O.; Dube, T. Determining Optimal New Generation Satellite Derived Metrics for Accurate C3 and C4 Grass Species Aboveground Biomass Estimation in South Africa. Remote Sens. 2018, 10, 564. [Google Scholar] [CrossRef]
- Simionesei, L.; Ramos, T.; Oliveira, A.; Jongen, M.; Darouich, H.; Weber, K.; Proença, V.; Domingos, T.; Neves, R. Modeling Soil Water Dynamics and Pasture Growth in the Montado Ecosystem Using MOHID Land. Water 2018, 10, 489. [Google Scholar] [CrossRef]
- Purevdorj, T.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. [Google Scholar] [CrossRef]
- Teixeira, R.F.M.; Morais, T.G.; Domingos, T. A Practical Comparison of Regionalized Land Use and Biodiversity Life Cycle Impact Assessment Models Using Livestock Production as a Case Study. Sustainability 2018, 10, 4089. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Gomes, V.; Dias, L.G.; Pires, J.; Aguiar, C.; Arrobas, M. Evaluation of soil nitrogen availability by growing tufts of nitrophilic species in an intensively grazed biodiverse legume-rich pasture. Span. J. Agric. Res. 2010, 8, 1058. [Google Scholar] [CrossRef] [Green Version]
- Morais, T.G.; Domingos, T.; Teixeira, R.F.M. A spatially explicit life cycle assessment midpoint indicator for soil quality in the European Union using soil organic carbon. Int. J. Life Cycle Assess. 2016, 21, 1076–1091. [Google Scholar] [CrossRef]
- Teixeira, R.F.M.; Morais, T.G.; Domingos, T. Consolidating regionalized global characterization factors for soil organic carbon depletion due to land occupation and transformation. Environ. Sci. Technol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Brooks, T.M. Land Use Intensity-specific Global Characterization Factors to Assess Product Biodiversity Footprints. Environ. Sci. Technol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Verones, F.; de Baan, L.; Hellweg, S. Quantifying Land Use Impacts on Biodiversity: Combining Species-Area Models and Vulnerability Indicators. Environ. Sci. Technol. 2015, 49, 9987–9995. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Quantity (kg/t DM) | CP | CF | NDF | GE | |
---|---|---|---|---|---|---|
Low Forage | High Forage | % DM | MJ/kg DM | |||
Maize silage | 300.0 | 700.0 | 7.2 | 21.5 | 46.2 | 19.0 |
Maize grain | 227.5 | 97.5 | 9.4 | 2.5 | 12.2 | 18.7 |
Wheat grain | 140.7 | 60.3 | 12.6 | 2.6 | 13.9 | 18.2 |
Barley grain | 137.9 | 59.1 | 11.8 | 5.2 | 21.7 | 18.4 |
Soybean meal | 94.5 | 40.5 | 51.8 | 6.7 | 13.7 | 19.7 |
Sunflower meal | 56 | 24 | 32.4 | 27.9 | 45 | 19.4 |
Hydrogenated fat | 9.1 | 3.9 | - | - | - | - |
Calcium carbonate | 14 | 6 | - | - | - | - |
Sodium bicarbonate | 7 | 3 | - | - | - | - |
Calcium phosphate | 6.3 | 2.7 | - | - | - | - |
Salt | 5.6 | 2.4 | - | - | - | - |
Vitamin mineral | 1.4 | 0.6 | - | - | - | - |
Type | Species | CP | CF | NDF | GE |
---|---|---|---|---|---|
% DM | MJ/kg DM | ||||
Legumes | Trifolium subterraneum | 18.7 | 22.1 | 27.2 | 18.4 |
Trifolium balansae | 24.9 | 19.6 | 27.5 | 18.3 | |
Trifolium resupinatum | 21.6 | 18.6 | 28.2 | 17.6 | |
Trifolium vesiculosum | 19.9 | 22.3 | 44.8 | 17.4 | |
Trifolium incarnatus | 15.9 | 19.9 | 37.2 | 18.1 | |
Biserrula pelecinus | 24.4 | 18.7 | 30.2 | 18.4 | |
Grasses | Ornithopus sativus | 24.4 | 18.7 | 30.2 | 18.4 |
Ornithopus compressus | 24.4 | 18.7 | 30.2 | 18.4 | |
Lolium multiflorum | 25.9 | 19.5 | 46.0 | 18.6 | |
Dactylis glomerata | 16.3 | 29.7 | 59.9 | 18.0 |
NFU Ratio | Feed | 1st Year | 2nd Year | 3rd Year | 4th Year | 5th Year and Following |
---|---|---|---|---|---|---|
CP | Low forage | 8.85 | 8.72 | 8.66 | 8.57 | 8.33 |
High forage | 12.34 | 12.18 | 12.07 | 11.97 | 11.63 | |
CF | Low forage | 17.03 | 17.77 | 18.22 | 17.98 | 18.37 |
High forage | 10.54 | 10.99 | 11.26 | 11.12 | 11.36 | |
NDF | Low forage | 15.67 | 16.22 | 16.69 | 17.00 | 17.45 |
High forage | 10.67 | 11.05 | 11.37 | 11.58 | 11.89 | |
GE | Low forage | 7.38 | 7.37 | 7.37 | 7.35 | 7.35 |
High forage | 7.29 | 7.30 | 7.30 | 7.27 | 7.27 |
SBP Fraction () | ||||
---|---|---|---|---|
Low Forage | High Forage | Low and High Forage | Low and High Forage | |
0 | 0.00 | 0.00 | 0 | 14,314 |
0.1 | 0.71 | 0.59 | 1909 | 16,223 |
0.2 | 1.43 | 1.18 | 3817 | 18,131 |
0.3 | 2.14 | 1.77 | 5726 | 20,040 |
0.4 | 2.86 | 2.36 | 7634 | 21,949 |
0.5 | 3.57 | 2.95 | 9543 | 23,857 |
0.6 | 4.28 | 3.54 | 11,451 | 25,766 |
0.7 | 5.00 | 4.13 | 13,360 | 27,674 |
0.8 | 5.71 | 4.72 | 15,269 | 29,583 |
0.9 | 6.43 | 5.31 | 17,177 | 31,491 |
1.0 | 7.14 | 5.90 | 19,086 | 33,400 |
SBP Fraction () | System Impact | Meat Impact | ||
---|---|---|---|---|
kg CO2e/ha eq. | kg CO2e/kg of Fat- and Bone-Free Meat | |||
Low Forage | High Forage | Low Forage | High Forage | |
Optimum () | −591 | −247 | −17 | −7 |
Minimum () | −296 | −123 | −9 | −4 |
Maximum () | −887 | −370 | −26 | −11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, T.G.; Teixeira, R.F.M.; Domingos, T. The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures. Sustainability 2018, 10, 4184. https://doi.org/10.3390/su10114184
Morais TG, Teixeira RFM, Domingos T. The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures. Sustainability. 2018; 10(11):4184. https://doi.org/10.3390/su10114184
Chicago/Turabian StyleMorais, Tiago G., Ricardo F. M. Teixeira, and Tiago Domingos. 2018. "The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures" Sustainability 10, no. 11: 4184. https://doi.org/10.3390/su10114184
APA StyleMorais, T. G., Teixeira, R. F. M., & Domingos, T. (2018). The Effects on Greenhouse Gas Emissions of Ecological Intensification of Meat Production with Rainfed Sown Biodiverse Pastures. Sustainability, 10(11), 4184. https://doi.org/10.3390/su10114184