An Integrated Environment–Cost–Time Optimisation Method for Construction Contractors Considering Global Warming
Abstract
:1. Introduction
2. Literature Review
2.1. Construction Multi-Objective Performances and Optimisation
2.2. Discrete Event Simulation for the Construction Phase
3. Integrated Optimisation Method
3.1. PSO Initialisation
3.2. DES Simulation
3.3. Performance Assessment
3.4. PSO Local and Global Best Updating
3.5. Pareto Optimisation Stop Criteria
3.6. PSO Solution Searching
4. Prototype and Application
4.1. Prototype Overview
Algorithm 1. Prototype overview for the integration method (pseudocode). |
procedure DES-PSO in MATLAB initialization particles velocity V, position P, iteration t = 1 global best position gbestP and particle best position pbestP while stop criteria: iteration t < maximum iteration T || below improvement threshold, do particle solution searching: V(t) = w(t) × V(t − 1) + c1 × r1 × (pbestP(t − 1) − P(t − 1)) + c2 × r2 × (gbestP(t − 1) − P(t − 1)) && P(t) = P(t − 1) + V(t) while k-th particle < total particles K, do run DES-based simulation for position of k-th particle in SIMIO with API evaluate cost, time, and environmental impact using Equations (2)–(6) and LCA database k<--k + 1 end update swarm gbestP and particle pbestP t<--t + 1 end |
4.2. Case Application
5. Results Summary and Discussion
5.1. Model Validation and Optimisation Parameters Selection
5.2. Application Results
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hong, T.; Ji, C.; Jang, M.; Park, H. Assessment model for energy consumption and greenhouse gas emissions during building construction. J. Manag. Eng. 2013, 30, 226–235. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Zhang, Z. An LCA-based environmental impact assessment model for construction processes. Build. Environ. 2010, 45, 766–775. [Google Scholar] [CrossRef]
- Bilec, M.; Ries, R.; Matthews, H.S.; Sharrard, A.L. Example of a Hybrid Life-Cycle Assessment of Construction Processes. J. Infrastruct. Syst. 2006, 12, 207–215. [Google Scholar] [CrossRef]
- Devi, L.P.; Palaniappan, S. A study on energy use for excavation and transport of soil during building construction. J. Clean. Prod. 2017, 164, 543–556. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, K.; Lu, W. An environmental assessment and optimization method for contractors. J. Clean. Prod. 2017, 142, 1877–1891. [Google Scholar] [CrossRef]
- Ding, G.K. Sustainable construction—The role of environmental assessment tools. J. Environ.Manag. 2008, 86, 451–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandanayake, M.; Zhang, G.; Setunge, S. A comparative method of air emission impact assessment for building construction activities. Environ. Impact Assess. Rev. 2018, 68, 1–9. [Google Scholar] [CrossRef]
- Davies, P.J.; Emmitt, S.; Firth, S.K. Challenges for capturing and assessing initial embodied energy: A contractor’s perspective. Constr. Manag. Econ. 2014, 32, 290–308. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Zuo, J.; Huang, R.; Huang, J.; Pullen, S. Identifying the critical factors for green construction—An empirical study in China. Habitat Int. 2013, 40, 1–8. [Google Scholar] [CrossRef]
- Ozcan-Deniz, G.; Zhu, Y.; Ceron, V. Time, cost, and environmental impact analysis on construction operation optimization using genetic algorithms. J. Manag. Eng. 2011, 28, 265–272. [Google Scholar] [CrossRef]
- Ozcan-Deniz, G.; Zhu, Y. Multi-objective optimization of greenhouse gas emissions in highway construction projects. Sustain. Cities Soc. 2017, 28, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.-Y.; Tran, D.-H. Opposition-based multiple-objective differential evolution to solve the time–cost–environment impact trade-off problem in construction projects. J. Comput. Civ. Eng. 2014, 29, 04014074. [Google Scholar] [CrossRef]
- Lu, W.; Olofsson, T. Building information modeling and discrete event simulation: Towards an integrated framework. Autom. Constr. 2014, 44, 73–83. [Google Scholar] [CrossRef]
- Budgaga, W.; Malensek, M.; Pallickara, S.; Harvey, N.; Breidt, F.J.; Pallickara, S. Predictive analytics using statistical, learning, and ensemble methods to support real-time exploration of discrete event simulations. Future Gener. Comput. Syst. 2016, 56, 360–374. [Google Scholar] [CrossRef]
- Krantz, J.; Feng, K.; Larsson, J.; Olofsson, T. ‘Eco-Hauling’Principles to Reduce Carbon Emissions and the Costs of Earthmoving—A Case Study. J. Clean. Prod. 2018. [Google Scholar] [CrossRef]
- Lee, S.; Han, S.; Peña-Mora, F. Integrating construction operation and context in large-scale construction using hybrid computer simulation. J. Comput. Civ. Eng. 2009, 23, 75–83. [Google Scholar] [CrossRef]
- Li, C.Z.; Xu, X.; Shen, G.Q.; Fan, C.; Li, X.; Hong, J. A model for simulating schedule risks in prefabrication housing production: A case study of six-day cycle assembly activities in Hong Kong. J. Clean. Prod. 2018, 185, 366–381. [Google Scholar] [CrossRef]
- Alvanchi, A.; Lee, S.; AbouRizk, S.M. Dynamics of workforce skill evolution in construction projects. Can. J. Civ. Eng. 2012, 39, 1005–1017. [Google Scholar] [CrossRef]
- Larsson, J.; Lu, W.; Krantz, J.; Olofsson, T. Discrete event simulation analysis of product and process platforms: A bridge construction case study. J. Constr. Eng. Manag. 2015, 142, 04015097. [Google Scholar] [CrossRef]
- Eshtehardian, E.; Afshar, A.; Abbasnia, R. Fuzzy-based MOGA approach to stochastic time–cost trade-off problem. Autom. Constr. 2009, 18, 692–701. [Google Scholar] [CrossRef]
- Zhang, Y.; Thomas Ng, S. An ant colony system based decision support system for construction time-cost optimization. J. Civ. Eng. Manag. 2012, 18, 580–589. [Google Scholar] [CrossRef]
- El-Rayes, K.; Kandil, A. Time-cost-quality trade-off analysis for highway construction. J. Constr. Eng. Manag. 2005, 131, 477–486. [Google Scholar] [CrossRef]
- San Cristóbal, J.R. Time, cost, and quality in a road building project. J. Constr. Eng. Manag. 2009, 135, 1271–1274. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science (MHS’95), Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [Google Scholar] [CrossRef] [Green Version]
- Elbeltagi, E.; Hegazy, T.; Grierson, D. Comparison among five evolutionary-based optimization algorithms. Adv. Eng. Inform. 2005, 19, 43–53. [Google Scholar] [CrossRef]
- Barraza, M.; Bojórquez, E.; Fernández-González, E.; Reyes-Salazar, A. Multi-objective optimization of structural steel buildings under earthquake loads using NSGA-II and PSO. KSCE J. Civ. Eng. 2017, 21, 488–500. [Google Scholar] [CrossRef]
- Kennedy, J.F.; Kennedy, J.; Eberhart, R.C.; Shi, Y. Swarm Intelligence; Morgan Kaufmann: Burlington, MA, USA, 2001. [Google Scholar]
- Pulido, G.; Coello Coello, C. Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. In Proceedings of the Genetic and Evolutionary Computation—GECCO 2004, Seattle, WA, USA, 26–30 June 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 225–237. [Google Scholar]
- Zhang, G.; Shao, X.; Li, P.; Gao, L. An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Comput. Ind. Eng. 2009, 56, 1309–1318. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N. Particle swarm optimization for feature selection in classification: A multi-objective approach. IEEE Trans. Cybern. 2013, 43, 1656–1671. [Google Scholar] [CrossRef] [PubMed]
- Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Xu, J.; Feng, C. Two-stage based dynamic earth-rock transportation assignment problem under fuzzy random environment to earth-rock dam construction. J. Civ. Eng. Manag. 2015, 21, 775–797. [Google Scholar] [CrossRef]
- Li, N.; Cheung, S.C.; Li, X.; Tu, J. Multi-objective optimization of HVAC system using NSPSO and Kriging algorithms—A case study. Build. Simul. 2017, 10, 769–781. [Google Scholar] [CrossRef]
- Zhang, H.; Tam, C.; Li, H. Multimode project scheduling based on particle swarm optimization. Comput.-Aided Civ. Infrastruct. Eng. 2006, 21, 93–103. [Google Scholar] [CrossRef]
- Lu, M.; Lam, H.-C.; Dai, F. Resource-constrained critical path analysis based on discrete event simulation and particle swarm optimization. Autom. Constr. 2008, 17, 670–681. [Google Scholar] [CrossRef]
- Ashuri, B.; Tavakolan, M. Fuzzy enabled hybrid genetic algorithm–particle swarm optimization approach to solve TCRO problems in construction project planning. J. Constr. Eng. Manag. 2011, 138, 1065–1074. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Huang, K.-Y.; Hutomo, M. Multiobjective Dynamic-Guiding PSO for Optimizing Work Shift Schedules. J. Constr. Eng. Manag. 2018, 144, 04018089. [Google Scholar] [CrossRef]
- Feng, K.; Lu, W.; Olofsson, T.; Chen, S.; Yan, H.; Wang, Y. A Predictive Environmental Assessment Method for Construction Operations: Application to a Northeast China Case Study. Sustainability 2018, 10, 3868. [Google Scholar] [CrossRef]
- Fujimoto, R.M. Parallel discrete event simulation. Commun. ACM 1990, 33, 30–53. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.M.; Yan, R.Z. Integrating messy genetic algorithms and simulation to optimize resource utilization. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 401–415. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H. Simulation-based optimization for dynamic resource allocation. Autom. Constr. 2004, 13, 409–420. [Google Scholar] [CrossRef]
- Fischer, M.; Aalami, F.; Kuhne, C.; Ripberger, A. Cost-loaded production model for planning and control. In Durability of Building Materials and Components 8; Institute for Research in Construction: Ottawa, ON, Canada, 1999. [Google Scholar]
- Cheng, M.-Y.; Tran, D.-H. Integrating chaotic initialized opposition multiple-objective differential evolution and stochastic simulation to optimize ready-mixed concrete truck dispatch schedule. J. Manag. Eng. 2015, 32, 04015034. [Google Scholar] [CrossRef]
- European Committee for Standardization Brussels. EN 15804:2012+A1:2013. Sustainability of Construction Works–Environmental Product Declarations–Core rules for the Product Category of Construction Products; European Committee for Standardization Brussels: Brussels, Belgium, 2013. [Google Scholar]
- Gámez-García, D.; Gómez-Soberón, J.; Corral-Higuera, R.; Saldaña-Márquez, H.; Gómez-Soberón, M.; Arredondo-Rea, S. A cradle to handover life cycle assessment of external walls: Choice of materials and prognosis of elements. Sustainability 2018, 10, 2748. [Google Scholar] [CrossRef]
- Rocco, M.V.; Colombo, E. Internalization of human labor in embodied energy analysis: Definition and application of a novel approach based on Environmentally extended Input-Output analysis. Appl. Energy 2016, 182, 590–601. [Google Scholar] [CrossRef]
- Cole, R.J. Energy and greenhouse gas emissions associated with the construction of alternative structural systems. Build. Environ. 1998, 34, 335–348. [Google Scholar] [CrossRef]
- Pechan, E. Evaluation of Power Systems Research (PSR) Nonroad Population Data Base. Prepared for Office of Mobile Sources, US Environmental Protection Agency. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.360.4253&rep=rep1&type=pdf (accessed on 14 November 2018).
- EPA. Median Life, Annual Activity and Load Factor Values for Non-Road Engine Emissions Modeling; Report No. NR-005d; US Environmental Protection Agency: Washington, DC, USA, 2010. [Google Scholar]
- Department of Housing and Urban Rural Construction Heilongjiang. Explanation of Construction Cost, Supplement Quota and Related Questions of Construction Project of Heilongjiang Province in 2010; Heilongjiang Science and Technology Press: Harbin, China, 2012. (In Chinese) [Google Scholar]
- Salman, A.; Ahmad, I.; Al-Madani, S. Particle swarm optimization for task assignment problem. Microprocess. Microsyst. 2002, 26, 363–371. [Google Scholar] [CrossRef]
- Bratton, D.; Kennedy, J. Defining a standard for particle swarm optimization. In Proceedings of the Swarm Intelligence Symposium (SIS 2007), Honolulu, HI, USA, 1–5 April 2007; pp. 120–127. [Google Scholar]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Tuppadung, Y.; Kurutach, W. Comparing nonlinear inertia weights and constriction factors in particle swarm optimization. Int. J. Knowl.-Based Intell. Eng. Syst. 2011, 15, 65–70. [Google Scholar] [CrossRef]
- Chatterjee, A.; Siarry, P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 2006, 33, 859–871. [Google Scholar] [CrossRef]
- Sengupta, S.; Basak, S.; Peters, R. Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives. Mach. Learn. Knowl. Extr. 2018, 1, 157–191. [Google Scholar] [CrossRef]
- Dehghanimohammadabadi, M.; Keyser, T.K. Intelligent simulation: Integration of SIMIO and MATLAB to deploy decision support systems to simulation environment. Simul. Modell. Pract. Theory 2017, 71, 45–60. [Google Scholar] [CrossRef]
- Housing and Urban-Rural Development of Heilongjiang. Construction Engineering Quota of Heilongjiang (2010); Harbin Publishing House: Harbin, China, 2010. (In Chinese) [Google Scholar]
- Zhang, H. Discrete-event simulation for estimating emissions from construction processes. J. Manag. Eng. 2013, 31, 04014034. [Google Scholar] [CrossRef]
- MOHURD. Construction Equipment Engineering Quota of China (2012); MOHURD: Beijing, China, 2012. [Google Scholar]
- NDRC. Provincial Greenhouse Gas Inventory Guidelines; NDRC: Beijing, China, 2011. (In Chinese) [Google Scholar]
- EMSD. Guidelines to Account for and Report on Greenhouse Gas Emissions and Removals for Buildings (Commercial, Residential or Institutional Purposes); Electrical and Mechanical Services Department and Environmental Protection Department: Hong Kong, China, 2010. [Google Scholar]
- IPCC. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Yan, P.; Yang, J. Quantitative assessment of the embodied environmental impact of wood products. J. Tsinghua Univ. (Sci. Technol.) 2008, 48, 15–18. (In Chinese) [Google Scholar]
- Gong, Z.; Zhang, Z. Quantitative assessment of the embodied environmental profile of building materials. J. Tsinghua Univ. (Sci. Technol.) 2004, 44, 1209–1213. (In Chinese) [Google Scholar]
- Seppälä, J.; Koskela, S.; Melanen, M.; Palperi, M. The Finnish metals industry and the environment. Resour. Conserv. Recycl. 2002, 35, 61–76. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [Google Scholar] [CrossRef]
- Construction Engineering Cost Management Station Shenzhen. Construction Engineering Quota of Shenzhen; China Building Industry Press: Shenzhen, China, 2016. (In Chinese) [Google Scholar]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2002. [Google Scholar]
Task Name | Resource | Quantity (Set for eq.) |
---|---|---|
C-off-site Transportation | mixer truck (7 m3) diesel (30 km) | 5 |
C-pumping | concrete pump (80 kW) (HBT8018C-5)—electricity | 1 |
C-vibration | vibrating screen (1.1 kW)—electricity | 20 |
concrete crew | 20 | |
S-off-site transportation | trailer (25 t)—electricity (183 km) | 5 |
S-straightening | steel bar straightener (φ14)—electricity | 3 |
S-curving | steel bar bender (φ40)—electricity | 8 |
S-cutting-steel | steel bar cutter (φ40)—electricity | 3 (for HPB) |
6 (for HRB) | ||
S-threading | die head threading machine (φ39)—electricity | 5 |
S-on-site hoist | construction lift (SCD200/200 V)—electricity | 1 * |
crane tower (ST60/15)—electricity | 1 * | |
S-installation | steel crew | 60 |
F-off-site transportation | formwork truck (15 t)—diesel | 1 |
F-cutting | wood circular saw (φ500)—electricity | 4 |
F-hoist | construction lift (SCD200/200 V)—electricity | 1 * |
crane tower (ST60/15)—electricity | 1 * | |
F-installation | formwork crew | 50 persons |
plywood | 64.4 t | |
steel tube | 6758.46 kg | |
joint | 1695.57 kg | |
bolt | 4959.22 kg | |
iron wire φ 0.7 mm | 10,646.57 kg | |
batten | 149.46 m3 |
(n, x) | Construction Task | Alternative Plan | Remarks |
---|---|---|---|
(1,1) | C-off-site transportation | mixer truck (8 m3) | 247 hp |
(1,2) | mixer truck (7 m3) | 180 hp | |
(1,3) | mixer truck (6 m3) | 180 hp | |
(1,4) | mixer truck (5 m3) | 103 hp | |
(2,1) | C-pumping | concrete pumper (80 kW) | 1 × 104/(7.5 + H) m3/h |
(2,2) | concrete pumper (60 kW) | 0.8 × 104/(10 + H) m3/h | |
(2,3) | concrete pumper (45 kW) | 0.8 × 104/(20 + H) m3/h | |
(2,4) | concrete pumper (30 kW) | 0.4 × 104/(20 + H) m3/h [60] | |
(3,1) | C-pumping | number of pumper 1 | |
(3,2) | number of pumper 2 | ||
(3,3) | number of pumper 3 | ||
(4,1~4,80) | S-installation | size of crew 1~80 | restricted by work space |
(5,1) | S-on-site/F-on-site transportation | crane ST60/15 | 41/4/8 kW, 45 m/min, 1.5 t |
(5,2) | crane XGT8039-25 | 90/26.1/15 kW, 37.6 m/min, 8 t | |
(5,3) | crane XGT8040-25 | 110/27/15 kW, 48.4 m/min, 7.6 t | |
(6,1) | S-on-site/F-on-site transportation | construction lift SCD200-200V | 56 kW, 60 m/min, 4 t or 25 persons |
(6,2) | construction lift SCD200-200E | 66 kW, 36 m/min, 4 t or 20 persons | |
(6,3) | construction lift SCD200-200P | 60 kW, 23 m/min, 4 t or 20 persons | |
(7,1~7,60) | F-installation | size of crew 1~60 | restricted by work space |
(8,1) | F-installation | timber formwork system (TFS) | see Table 1 |
(8,2) | steel formwork system (SFS) | steel plate and tube 11.739 t | |
joint 2295.40 kg | |||
bolt 8327.62 kg | |||
iron wire 6047.71 kg | |||
batten 121.46 m3 | |||
(9,1) | F-installation | iron wire φ 0.7 mm | 10,646.57 kg |
(9,2) | annealed iron wire φ 1.2 mm | 31,305.15 kg | |
(10,x) | working schedule | working hours (8~10 h) | 1.5-fold overtime fees for labour working over 8 hr; additional light (6×3.5 kW) when time over 6mp. |
Sources | Unit | Unit Price | Sources | Unit | Unit Price |
---|---|---|---|---|---|
labour | CNY/h | 53 (North China); 100 (South China) | crane XGT8039-25 | CNY/d | 4335.66 |
formwork cutter | CNY/d | 110.37 | crane XGT8040-25 | CNY/d | 4335.66 |
steel straighter | CNY/d | 132.54 | lift SCD200-200V | CNY/d | 1094.64 |
steel cutter | CNY/d | 161.4 | lift SCD200-200E | CNY/d | 1094.64 |
steel bender | CNY/d | 89.07 | lift SCD200-200P | CNY/d | 1094.64 |
steel threading | CNY/d | 128.79 | plywood | CNY/t | 2050 |
vibrator | CNY/d | 131.4 | steel tube | CNY/kg | 5 |
concrete pumper (80 kW) | CNY/h | 2060.13 | joint | CNY/kg | 5 |
concrete pumper (60 kW) | CNY/h | 1573.66 | bolt | CNY/kg | 5 |
concrete pumper (45 kW) | CNY/h | 1043.65 | iron wire | CNY/kg | 5 |
concrete pumper (30 kW) | CNY/h | 716.03 | batten | CNY/m3 | 6.61 |
crane ST60/15 | CNY/d | 480 | annealed iron wire | CNY/kg | 6.362 |
Impact Sources | Unit | CO2 Equivalents * | Reference |
---|---|---|---|
electricity | kWh | 1.096 (North China); 0.714 (South China); | [63] |
diesel | kg | 2.617 | [64,65] |
plywood | kg | 1.049 | [66] |
steel tube | kg | 3.589 | [67] |
joint | kg | 3.589 | [67] |
bolt | kg | 3.589 | [67] |
iron wire | kg | 7.442 | [67] |
batten | kg | 1.049 | [66] |
annealed iron wire | kg | 6.362 | [68] |
Location | Environment | Cost | Time | |
---|---|---|---|---|
Heilongjiang | Environment | 1 | ||
Cost | 0.00 | 1 | ||
Time | 0.22 | 0.66 | 1 | |
Shenzhen | Environment | 1 | ||
Cost | 0.10 | 1 | ||
Time | 0.05 | 0.91 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, K.; Lu, W.; Chen, S.; Wang, Y. An Integrated Environment–Cost–Time Optimisation Method for Construction Contractors Considering Global Warming. Sustainability 2018, 10, 4207. https://doi.org/10.3390/su10114207
Feng K, Lu W, Chen S, Wang Y. An Integrated Environment–Cost–Time Optimisation Method for Construction Contractors Considering Global Warming. Sustainability. 2018; 10(11):4207. https://doi.org/10.3390/su10114207
Chicago/Turabian StyleFeng, Kailun, Weizhuo Lu, Shiwei Chen, and Yaowu Wang. 2018. "An Integrated Environment–Cost–Time Optimisation Method for Construction Contractors Considering Global Warming" Sustainability 10, no. 11: 4207. https://doi.org/10.3390/su10114207
APA StyleFeng, K., Lu, W., Chen, S., & Wang, Y. (2018). An Integrated Environment–Cost–Time Optimisation Method for Construction Contractors Considering Global Warming. Sustainability, 10(11), 4207. https://doi.org/10.3390/su10114207