Carbon Capture and Storage: A Review of Mineral Storage of CO2 in Greece
Abstract
:1. Introduction
2. Literature Review
2.1. CO2 Capture Technology
2.2. CO2 Transportation
2.3. CO2 Storage
Mineral Carbonation
2.4. Minerals for Potential CO2 Storage
3. Results and Discussion
3.1. CCS Technologies in Europe
The Case of CarbFix (Iceland)
3.2. CO2 Storage in Greece
4. Conclusions
Funding
Conflicts of Interest
References
- IPCC. Intergovernmental Panel on Climate Change 2013. The Physical Science Basis. Available online: http://www.ipcc.ch/report/ar5/wg1/ (accessed on 1 June 2018).
- IEA 2017. CO2 Emissions from Fuel Combustion, Highlights. Available online: https://webstore.iea.org/co2-emissions-from-fuel-combustion-highlights-2017 (accessed on 1 July 2018).
- United Nations. Paris Agreement. 2015. Available online: http://ec.europa.eu/clima/policies/international/negotiations/paris_en (accessed on 1 June 2018).
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koukouzas, N.; Gemeni, V.; Ziock, H.J. Sequestration of CO2 in magnesium silicates, in Western Macedonia, Greece. Int. J. Miner. Process. 2009, 93, 179–186. [Google Scholar] [CrossRef]
- Lackner, C.S.; Wendt, C.H.; Butt, D.P.; Joyce, E.L.; Sharp, J.D.H. Carbon dioxide disposal in carbonate minerals. Energy 1995, 20, 1153–1170. [Google Scholar] [CrossRef]
- Wu, J.C.-S.; Sheen, J.-D.; Chen, S.-Y.; Fan, Y.-C. Feasibility of CO2 Fixation via Artificial Rock Weathering. Ind. Eng. Chem. Res. 2001, 40, 3902–3905. [Google Scholar] [CrossRef]
- Cebrucean, D.; Cebrucean, V.; Ionel, I. CO2 Capture and Storage from Fossil Fuel Power Plants. Energy Procedia 2014, 63, 18–26. [Google Scholar] [CrossRef]
- Nittaya, T.; Douglas, P.L.; Croiset, E.; Ricardez-Sandoval, L.A. Dynamic modelling and control of MEA absorption processes for CO2 capture from power plants. Fuel 2014, 116, 672–691. [Google Scholar] [CrossRef]
- Abu-Zahra, M.R.M.; Niederer, J.P.M.; Feron, P.H.M.; Versteeg, G.F. CO2 capture from power plants Part II. A parametric study of the economical performance based on mono-ethanolamine. Int. J. Greenh. Gas Control 2007, 1, 135–142. [Google Scholar] [CrossRef]
- Ramazani, R.; Mazinani, S.; Jahanmiri, A.; Bruggen, B.V.d. Experimental investigation of the effect of addition of differentactivators to aqueous solution of potassium carbonate:Absorption rate and solubility. Int. J. Greenh. Gas Control 2016, 45, 27–33. [Google Scholar] [CrossRef]
- Ramezani, R.; Mazinani, S.; Felice, R.D. Characterization and kinetics of CO2 absorption in potassium carbonate solution promoted by 2-methylpiperazine. J. Environ. Chem. Eng. 2018, 6, 3262–3272. [Google Scholar] [CrossRef]
- Fu, D.; Xie, J. Absorption capacity and viscosity for CO2 capture process using [N1111][Gly] promoted K2CO3 aqueous solution. J. Chem. Thermodyn. 2016, 102, 310–315. [Google Scholar] [CrossRef]
- Yokoyama, T. Japanese R&D on Large-Scale CO2 Capture. In Proceedings of the ECI Conference on Separation Technology VI: New Perspectives on Very Large-Scale Operations, Fraser Island, Australia, 2–8 October 2004. [Google Scholar]
- Suzuki, M.; Suzuki, T.; Sakoda, A.; Izumi, J. Piston-Driven Ultra Rapid Pressure Swing Adsorption. Adsorption 1996, 2, 111–119. [Google Scholar] [CrossRef]
- Shimizu, T.; Hirama, T.; Hosoda, H.; Kitano, K.; Inagaki, M.; Tejima, K. A twin fluid bed reactor for removal of CO2 from combustion processes. Chem. Eng. Res. Des. 1999, 77, 62–68. [Google Scholar] [CrossRef]
- Hanak, D.; Manovic, V. Calcium looping combustion for low-emission power generation. In Proceedings of the 8th International Conference on Clean Coal Technologies, Cagliari, Italy, 8–12 May 2017. [Google Scholar]
- Ströhle, J.; Orth, M.; Epple, B. Chemical looping combustion of hard coal in a 1 MWth pilot plant using ilmenite as oxygen carrier. Appl. Energy 2015, 157, 288–294. [Google Scholar] [CrossRef]
- Authier, O.; Moullec, Y.L. Coal Chemical-Looping Combustion for Electricity Generation: Investigation for a 250 MWe Power Plant. Energy Procedia 2013, 37, 588–597. [Google Scholar] [CrossRef]
- Sit, S.P.; Reed, A.; Hohenwarter, U.; Horn, V.; Marx, K.; Proell, T. Cenovus 10 MW CLC Field Pilot. Energy Procedia 2013, 37, 671–676. [Google Scholar] [CrossRef]
- Brennecke, J.F.; Gurkan, B.E. Ionic Liquids for CO2 Capture and Emission Reduction. J. Phys. Chem. Lett. 2010, 1, 3459–3464. [Google Scholar] [CrossRef]
- Pour, N.; Webley, P.A.; Cook, P.J. Opportunities for application of BECCS in the Australian power sector. Appl. Energy 2018, 224, 615–635. [Google Scholar] [CrossRef]
- Socolow, R.; Desmond, M.; Aines, R.; Blackstock, J.; Bolland, O.; Kaarsberg, T.; Lewis, N.; Mazzotti, M.; Pfeffer, A.; Sawyer, K.; et al. Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs; American Physical Society: College Park, MD, USA, 2011. [Google Scholar]
- The Costs of CO2 Transport. Zero Emission Platform. Available online: http://www.zeroemissionsplatform.eu/ (accessed on 5 June 2018).
- Onyebuchi, V.E.; Kolios, A.; Hanak, D.P.; Biliyok, C.; Manovic, V. A systematic review of key challenges of CO2 transport via pipelines. Renew. Sustain. Energy Rev. 2018, 81, 2563–2583. [Google Scholar] [CrossRef]
- Chandel, M.K.; Pratson, L.F.; Williams, E. Potential economies of scale in CO2 transport through use of a trunk pipeline. Energy Convers. Manag. 2010, 51, 2825–2834. [Google Scholar] [CrossRef]
- Kjärstad, J.; Skagestad, R.; Eldrup, N.H.; Johnsson, F. Ship transport—A low cost and low risk CO2 transport option in the Nordic countries. Int. J. Greenh. Gas Control 2016, 54, 168–184. [Google Scholar] [CrossRef]
- Brownsort, P. Ship transport of CO2 for Enhanced Oil Recovery—Literature Survey, Edinburgh Research Archive. 2015. Available online: https://www.era.lib.ed.ac.uk/ (accessed on 10 June 2018).
- The Intergovernmental Panel on Climate Change. IPCC Special Report on Carbon Dioxide Capture and Storage: Mineral Carbonation and Industrial Uses of Carbon Dioxide; IPCC: Geneva, Switzerland, 2005; pp. 320–335. [Google Scholar]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhao, N.; Wei, W.; Sun, Y. A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences. Fuel 2013, 108, 112–130. [Google Scholar] [CrossRef]
- Bachu, S. Review of CO2 storage efficiency in deep saline aquifers. Int. J. Greenh. Gas Control 2015, 40, 188–202. [Google Scholar] [CrossRef]
- Bai, B.; Li, X.; Wu, H.; Wang, Y.; Liu, M. A methodology for designing maximum allowable wellhead pressure for CO2 injection: Application to the Shenhua CCS demonstration project, China. Greenh. Gases 2017, 7, 158–181. [Google Scholar] [CrossRef]
- Dichicco, M.C.; Laurita, S.; Paternoster, M.; Rizzo, G.; Sinisi, R.; Mongelli, G. Serpentinite carbonation for CO2 sequestration in the southern Apennines: Preliminary study. Energy Procedia 2015, 76, 477–486. [Google Scholar] [CrossRef]
- Olajire, A.A. A review of mineral carbonation technology in sequestration of CO2. J. Pet. Sci. Eng. 2013, 109, 364–392. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Comans, R.N.J. Carbon Dioxide Sequestration by Mineral Carbonation; ECN Publications: Petten, The Netherlands, 2003. [Google Scholar]
- Oelkers, E.H.; Gislason, S.R.; Matter, J. Mineral Carbonation of CO2. Elements 2008, 4, 333–337. [Google Scholar] [CrossRef]
- Little, M.G.; Jackson, R.B. Potential Impacts of Leakage from Deep CO2 Geosequestration on Overlying Freshwater Aquifer. Environ. Sci. Technol. 2010, 44, 9225–9232. [Google Scholar] [CrossRef] [PubMed]
- Celia, M.A.; Nordbotten, J.M.; Bachu, S.; Dobossy, M.; Court, B. Risk of Leakage versus Depth of Injection in Geological Storage. Energy Procedia 2009, 1, 2573–2580. [Google Scholar] [CrossRef] [Green Version]
- Zwaan, B.V.D.; Gerlagh, R. The Economics of Geological CO2 Storage and Leakage. Clim. Chang. Model. Policy 2008. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Steele-MacInnis, M.; Capobianco, R.M.; Rimstidt, J.D. PVTX Properties of H2O-CO2-“salt” at PTX Conditions Applicable to Carbon Sequestration in Saline Formations. Rev. Miner. Geochem. 2013, 77, 123–152. [Google Scholar] [CrossRef]
- Gislason, S.R.; Broecker, W.S.; Gunnlaugsson, E.; Snæbjörnsdóttir, S.; Mesfin, K.G.; Alfredsson, H.A.; Aradottir, E.S.; Sigfusson, B.; Gunnarsson, I.; Stuteb, M.; et al. Rapid solubility and mineral storage of CO2 in basalt. Energy Procedia 2014, 63, 4561–4574. [Google Scholar] [CrossRef]
- Sigfusson, B.; Gislason, S.R.; Matter, J.M.; Stute, M.; Gunnlaugsson, E.; Gunnarsson, I.; Aradottir, E.S.; Sigurdardottir, H.; Mesfin, K.; Alfredsson, H.A.; et al. Solving the carbon-dioxide buoyancy challenge: The design and field testing of a dissolved CO2 injection system. Int. J. Greenh. Gas Control 2015, 37, 213–219. [Google Scholar] [CrossRef]
- O’Connor, W.K.; Rush, G.E.; Dahlin, D.C. Laboratory Studies on the Carbonation Potential of Basalt: Applications to Geological Sequestration of CO2 in the Columbia River Basalt Group. In Proceedings of the AAPG Annual Meeting, Salt Lake City, UT, USA, 11–14 May 2003. [Google Scholar]
- Coleman, R.G. Ophiolites; Springer-Verlag: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Nicolas, A. Structures of Ophiolites and Dynamics of Oceanic Lithosphere; Springer: Dordrecht, The Netherlands, 1989; Volume 4. [Google Scholar]
- Matter, J.M.; Stute, M.; Snæbjörnsdottir, S.Ó.; Oelkers, E.H.; Gislason, S.R.; Aradottir, E.S.; Sigfusson, B.; Gunnarsson, I.; Sigurdardottir, H.; Gunnlaugsson, E.; et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 2016, 352, 1312–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basava-Reddi, L. Geological Storage of CO2 in Basalts; Ieaghg: Cheltenham, UK, 2011. [Google Scholar]
- Snaebjörnsdóttir, S.Ó.; Gislason, S.R. CO2 storage potential of basaltic rocks offshore Iceland. Energy Procedia 2016, 86, 371–380. [Google Scholar] [CrossRef]
- Rani, N.; Pathak, V.; Shrivastava, J.P. CO2 mineral trapping: An experimental study on the carbonation of basalts from the eastern Deccan Volcanic Province, India. Procedia Earth Planet. Sci. 2013, 7, 806–809. [Google Scholar] [CrossRef]
- van Pham, T.H.; Aagaard, P.; Hellevang, H. On the potential for CO2 mineral storage in continental flood basalts—PHREEQC batchand 1D diffusion–reaction simulations. Geochem. Trans. 2012, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matter, J.M.; Kelemen, P.B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci. 2009, 2, 837–841. [Google Scholar] [CrossRef]
- Schaef, H.T.; McGrail, B.P.; Owen, A.T. Basalt-CO2-H2O Interactions and Variability in Carbonate Mineralization Rates. Energy Procedia 2009, 1, 4899–4906. [Google Scholar] [CrossRef]
- Goldberg, D.S.; Kenta, D.V.; Olsena, P.E. Potential on-shore and off-shore reservoirs for CO2 sequestration in Central Atlantic magmatic province basalts. PNAS 2010, 107, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Matter, J.M.; Broecker, W.S.; Gislason, S.R.; Gunnlaugsson, E.; Oelkers, E.H.; Stute, M.; Sigurdardóttir, H.; Stefansson, A.; Alfreðsson, H.A.; Aradóttir, E.S.; et al. The CarbFix Pilot Project–Storing Carbon Dioxide in Basalt. Energy Procedia 2011, 4, 5579–5585. [Google Scholar] [CrossRef]
- Zevenhoven, R.; Fagerlund, J.; Romão, E.N.; Jie, B.; Highfield, J. Carbon storage by mineralisation (CSM): Serpentinite rock carbonation via Mg(OH)2 reaction intermediate without CO2 pre-separation. Energy Procedia 2013, 37, 5945–5954. [Google Scholar] [CrossRef]
- Veetil, S.P.; Mercier, G.; Blais, J.F.; Cecchi, E.; Kentish, S. CO2 Sequestration by Direct Dry Gas-solid Contact of Serpentinite Mining Residues: A Solution for Industrial CO2 Emission. Int. J. Environ. Pollut. Rem. 2014, 2. [Google Scholar] [CrossRef]
- Krevor, S.C.M.; Lackner, K.S. Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. Int. J. Greenh. Gas Control 2011, 5, 1073–1080. [Google Scholar] [CrossRef]
- Turvey, C.C.; Wilson, S.A.; Hamilton, J.L.; Southam, G. Field-based accounting of CO2 sequestration in ultramafic mine wastes using portable X-ray diffraction. Am. Miner. 2017, 102, 1302–1310. [Google Scholar] [CrossRef]
- Klein, F.; Garrido, C.J. Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos 2011, 126, 147–160. [Google Scholar] [CrossRef]
- Kwon, S.; Fan, M.; DaCosta, H.F.M.; Russell, A.G. Factors affecting the direct mineralization of CO2 with olivine. J. Environ. Sci. 2011, 23, 1233–1239. [Google Scholar] [CrossRef]
- Haug, T.A.; Kleiv, R.A.; Munz, I.A. Investigating dissolution of mechanically activated olivine for carbonation purposes. Appl. Geochem. 2010, 25, 1547–1563. [Google Scholar] [CrossRef]
- Eikeland, E.; Blichfeld, A.; Tyrsted, C.; Jensen, A.; Iversen, B. Optimized carbonation of magnesium silicate mineral for CO2 storage. ACS Appl. Mater. Interfaces 2015, 7, 5258–5264. [Google Scholar] [CrossRef] [PubMed]
- Andreani, M.; Luquot, L.; Gouze, P.; Godard, M.; Hoise, E.; Gibert, B. Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich Brine through Peridotites. Environ. Sci. Technol. 2009, 43, 1226–1231. [Google Scholar] [CrossRef] [PubMed]
- Falk, E.S.; Kelemen, P.B. Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement. Geochim. Cosmochim. Acta 2015, 160, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Grozeva, N.G.; Klein, F.; Seewald, J.S.; Sylva, S.P. Experimental study of carbonate formation in oceanic peridotite. Geochim. Cosmochim. Acta 2017, 199, 264–286. [Google Scholar] [CrossRef]
- Min, Y.; Jun, Y.-S. Wollastonite carbonation in water-bearing supercritical CO2: Effects of water saturation conditions, temperature, and pressure. Chem. Geol. 2018, 483, 239–246. [Google Scholar] [CrossRef]
- Xie, H.; Wang, F.; Wang, Y.; Liu, T.; Wu, Y.; Liang, B. CO2 mineralization of natural wollastonite into porous silica and CaCO3 powders promoted via membrane electrolysis. Environ. Earth Sci. 2018. [Google Scholar] [CrossRef]
- Ding, W.; Fu, L.; Ouyang, J.; Yang, H. CO2 mineral sequestration by wollastonite carbonation. Phys. Chem. Miner. 2014, 41, 489–496. [Google Scholar] [CrossRef]
- Vatalis, K.I.; Laaksonen, A.; Charalampides, G.; Benetis, N.P. Intermediate technologies towards low-carbon economy. The Greek zeolite CCS outlook into the EU commitments. Renew. Sustain. Energy Rev. 2012, 16, 3391–3400. [Google Scholar] [CrossRef]
- Koukouzas, N.; Kypritidou, Z.; Purser, G.; Rochelle, C.A.; Vasilatos, C.; Tsoukalas, N. Assessment of the impact of CO2 storage in sandstone formations by experimental studies and geochemical modeling: The case of the Mesohellenic Trough, NW Greece. Int. J. Greenh. Gas Control 2018, 71, 116–132. [Google Scholar] [CrossRef]
- Kwak, J.H.; Hu, J.Z.; Turcu, R.V.F.; Rosso, K.M.; Ilton, E.S.; Wang, C.; Sears, J.A.; Engelhard, M.H.; Felmy, A.R.; Hoyt, D.W. The role of H2O in the carbonation of forsterite in supercritical CO2. Int. J. Greenh. Gas Control 2011, 5, 1081–1092. [Google Scholar] [CrossRef]
- Rodrigues, C.F.A.; Dinis, M.A.P.; Sousa, M.J.O.L.D. Review of European energy policies regarding the recent “carbon capture, utilization and storage” technologies scenario and the role of coal seams. Environ. Earth Sci. 2015. [Google Scholar] [CrossRef]
- Scottish Carbon Capture & Storage (SCCS). Available online: www.sccs.org.uk/map (accessed on 15 May 2018).
- Tasianas, A.; Koukouzas, N. CO2 storage capacity estimate in the lithology of the Mesohellenic Trough, Greece. Energy Procedia 2016, 86, 334–341. [Google Scholar] [CrossRef]
- Koukouzas, N.; Lymperopoulos, P.; Tasianas, A.; Shariatipour, S. Feasibility Study for The Setting Up of a Safety System for Monitoring CO2 Storage at Prinos Field, Greece. IOP Conf. Ser. Earth Environ. Sci. 2016, 44. [Google Scholar] [CrossRef]
- Baziotis, I.; Economou-Eliopoulos, M.; Asimow, P.D. Ultramafic lavas and high-Mg basaltic dykes from the Othris ophiolite complex, Greece. Lithos 2017, 288–289, 231–247. [Google Scholar] [CrossRef]
- Saccani, E.; Beccaluva, L.; Photiades, A.; Zeda, O. Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albanian–Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic–Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos 2011, 124, 227–242. [Google Scholar] [CrossRef]
- Tsikouras, B.; Pe-Piper, G.; Piper, D.J.W.; Hatzipanagiotou, K. Triassic rift-related komatiite, picrite and basalt, Pelagonian continental margin, Greece. Lithos 2008, 104, 199–215. [Google Scholar] [CrossRef]
- Valsamia, E.; Cann, J.R.; Rassios, A. The mineralogy and geochemistry of a hydrothermal alteration pipe in the Othris ophiolite, Greece. Chem. Geol. 1994, 114, 235–266. [Google Scholar] [CrossRef]
- Paraskevopoulos, G.M.; Economou, M.I. Komatiite-type ultramafic lavas from the Agrilia Formation, Othrys ophiolite complex, Greece. Ofioliti 1986, 11, 293–304. [Google Scholar]
- Saccani, E.; Photiades, A. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): Implications for magma genesis in a forearc setting. Lithos 2004, 73, 229–253. [Google Scholar] [CrossRef]
- Bonev, N.; Marchev, P.; Moritz, R.; Collings, D. Jurassic subduction zone tectonics of the Rhodope Massif in the Thrace region (NE Greece) as revealed by new U–Pb and 40Ar/39Ar geochronology of the Evros ophiolite and high-grade basement rocks. Gondwana Res. 2015, 27, 760–775. [Google Scholar] [CrossRef]
- Bonev, N.; Dilec, Y.; Hanchar, J.M.; Bogdanov, K.; Klain, L. Nd–Sr–Pb isotopic composition and mantle sources of Triassic rift units in the Serbo-Macedonian and the western Rhodope massifs (Bulgaria–Greece). Geol. Mag. 2012, 149, 146–152. [Google Scholar] [CrossRef]
- Stouraiti, H.; Pantziris, I.; Vasilatos, C.; Kanellopoulos, C.; Mitropoulos, P.; Pomonis, P.; Moritz, R.; Chiaradia, M. Ophiolitic Remnants from the Upper and Intermediate Structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): Fingerprinting Geochemical Affinities of Magmatic Precursors. Geosciences 2017, 7. [Google Scholar] [CrossRef]
- Mortazavi, M.; Sparks, R.S.J. Origin of rhyolite and rhyodacite lavas and associated mafic inclusions of Cape Akrotiri, Santorini: The role of wet basalt in generating calcalkaline silicic magmas. Contrib. Miner. Petrol. 2004, 146, 397–413. [Google Scholar] [CrossRef]
- Bachmann, O.; Deering, C.D.; Ruprecht, J.S.; Huber, C.; Skopelitis, A.; Schnyder, C. Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: A petrological cycle associated with caldera collapse. Contrib. Miner. Petrol. 2012, 163, 15–166. [Google Scholar] [CrossRef]
- Magganas, A.; Koutsovitis, P. Composition, melting and evolution of the upper mantle beneath the Jurassic Pindos ocean inferred by ophiolitic ultramafc rocks in East Othris, Greece. Int. J. Earth Sci. (Geol. Rundsch.) 2015, 104, 1185–1207. [Google Scholar] [CrossRef]
- Koutsovitis, P. Gabbroic rocks in ophiolitic occurrences from East Othris, Greece: Petrogenetic processes and geotectonic environment implications. Miner. Petrol. 2012, 104, 249–265. [Google Scholar] [CrossRef]
- Gartzos, E.; Dietrich, V.J.; Migiros, G.; Serelis, K.; Lymperopoulou, T. The origin of amphibolites from metamorphic soles beneath the ultramafic ophiolites in Evia and Lesvos (Greece) and their geotectonic implication. Lithos 2009, 108, 224–242. [Google Scholar] [CrossRef]
- Koutsovitis, P. High-pressure subduction-related serpentinites and metarodingites from East Thessaly (Greece): Implications for their metamorphic, geochemical and geodynamic evolution in the Hellenic–Dinaric ophiolite context. Lithos 2017, 276, 122–145. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Vacondios, I. Geochemistry of chromitites and host rocks from the Pindos ophiolite complex, northwestern Greece. Chem. Geol. 1995, 122, 99–108. [Google Scholar] [CrossRef]
- Rassios, A.E.; Dilek, Y. Rotational deformation in the Jurassic Mesohellenic ophiolites, Greece, and its tectonic significance. Lithos 2009, 108, 207–223. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. The impact of petrographic characteristics on the engineering properties of ultrabasic rocks from northern and central Greece. Q. J. Eng. Geol. Hydrogen 2012, 45, 423–433. [Google Scholar] [CrossRef]
- Tzamos, E.; Kapsiotis, A.; Filippidis, A.; Koroneos, A.; Grieco, G.; Rassios, A.E.; Kantiranis, N.; Papadopoulos, A.; Gamaletsos, P.N.; Godelitsas, A. Metallogeny of the Chrome Ores of the Xerolivado-Skoumtsa Mine, Vourinos Ophiolite, Greece: Implications on the genesis of IPGE-bearing high-Cr chromitites within a heterogeneously depleted mantle section. Ore Geol. Rev. 2017, 90, 226–242. [Google Scholar] [CrossRef]
- Ross, J.V.; Mercier, J.-C.C.; Lallemant, H.G.A.; Carter, N.L.; Zimmerman, J. The Vourinos ophilite complex Greece: The tectonite suite. Tectonophysics 1980, 70, 63–83. [Google Scholar] [CrossRef]
- Tzamos, E.; Filippidis, A.; Rassios, A.; Grieco, G.; Michailidis, K.; Koroneos, A.; Stamoulis, K.; Pedrotti, M.; Gamaletsos, P.N. Major and minor element geochemistry of chromite from the Xerolivado–Skoumtsa mine, Southern Vourinos: Implications for chrome ore exploration. J. Geochem. Explor. 2016, 165, 81–93. [Google Scholar] [CrossRef]
- Pomonis, P.; Tsikouras, B.; Hatzipanagiotou, K. Geological evolution of the Koziakas ophiolitic complex (W. Thessaly, Greece). Ofioliti 2005, 30, 77–86. [Google Scholar]
Rock | MgO (wt%) | CaO (wt%) | Rc (kg/kg) Mass Ratio of Rock Needed for CO2 Fixation to Burned Carbon | RCO2 (ton rock/ton CO2) Mass Ratio of Rock to CO2 |
---|---|---|---|---|
Dunite (olivine) | 49.5 | 0.3 | 6.8 | 1.8 |
Serpentine | 40 | 0 | 8.4 | 2.3 |
Wollastonite | − | 35 | 13 | 3.6 |
Talc | 44 | 0 | 7.6 | 2.1 |
Basalt | 6.2 | 9.4 | 26 | 7.1 |
Minerals | References |
---|---|
Basaltic Rocks | Wu et al. [10], Gislason et.al [45], Matter et al. [50], Bassava-Redi et al. [51], Snaebjornsdottir, et al. [52], Rani et al. [53], van Pham et al. [54], Matter et al. [55], Schaef et al. [56], Goldberg et al. [57], Matter et al. [58] |
Serpentine and Harzburgite | Koukouzas et al. [8], Dichicco et al. [37], Zevenhoven et al. [59], Veetil et al. [60], Krevor et al. [61], Turvey et al. [62], Klein et al. [63] |
Olivine | Kwon et al. [64], Haug et al. [65], Eikeland et al. [66] |
Dunite | Koukouzas et al. [8], Andreani et al. [67] |
Peridotite Rocks | Andreani et al. [67], Falk et al. [68], Grozeva et al. [69] |
Wollastonite | Min et al. [70], Xie et al. [71], Ding et al. [72] |
Zeolite | Vatalis et al. [73] |
Sandstone | Koukouzas et al. [74] |
Forsterite | Kwak et al. [75] |
Project | Location | Status/Started | Fuel | Storage |
---|---|---|---|---|
CarbFix | Near Hvergerdi, Iceland | Pilot/2012 | Other | Mineral carbonization |
Snohvit | Melkoya, near Hammerfest, Norway | Operational/2008 | Gas | Saline formation |
Tiller CO2 Laboratory | Tiller, near Trondheim, Norway | Pilot/2010 | Other | No storage |
Industrikraft More CCS Project | Einesvagen, near Molde, Romsdal, Norway | Cancelled/Dormant | Gas | EOR Enhanced Oil Recovery |
Technology Centre Mongstad | Pilot/2012 | Gas | No storage | |
Kollsness CO2 Storage Terminal | Rong, near Bergen, Norway | In design | Other | Saline formation |
Sargas Husnes | Husnes, Hardangerfjord, Norway | Cancelled/Dormant | Coal | Unknown |
Karsto | near Haugesund, Rogaland, Norway | Cancelled/Dormant | Gas | Saline formation |
Klemetsrud | Klemetsrud, near Oslo, Norway | In planning | Other | Saline formation |
Yara Porsgrunn Demonstration Project | Heroya Industrial Park, Porsgrunn, Norway | Cancelled/Dormant | Gas | Saline formation |
Norcem CCS Demonstration Project | Brevik, Norway | In Design | Unknown | Saline formation |
Frevar capture plant | Fredrikstad, Norway | Speculative | Other | Saline formation |
Stepwise Pilot Plant | Lulea, Sweden | Pilot/2017 | Other | No storage |
Karlshamn Field Pilot | Karlshamn, Sweden | Completed | Oil | No storage |
Nordjyllandsvaerket | Nordjylland, Denmark | Cancelled/Dormant | Coal | Saline Formation |
Esbjerg Pilot Plant | Esbjerg, Denmark | Completed | Coal | No storage |
Meri Pori CCS Project | near Pori, Finland | Cancelled/Dormant | Coal | Possibly EOR |
Sleipner | Offshore Norwegian North Sea, Norway | Operational/ 1996 | Gas | Saline formation |
Whitegate and Aghada CCS Project | Whitegate, Co. Cork, Republic of Ireland | Speculative | Gas | Depleted oil and Gas |
Acorn Project | St Fergus, UK | In planning | Gas | Unknown |
Peterhead | Peterhead, Scotland, UK | Cancelled/Dormant | Gas | Depleted oil and gas |
Scottish Carbon Capture and Storage | Edinburgh, Scotland, UK | Pilot | other | No storage |
Caledonia Clean Energy Project | Grangemouth, Scotland, UK | In Planning | Gas | Unknown |
Longannet | Fife, Scotland, UK | Cancelled/Dormant | Coal | Depleted oil and gas |
Oxycoal2 | Renfrew, Scotland, UK | Pilot/2009 | Coal | No storage |
Hunterston | near Largs, North Ayrshire, UK | Cancelled/Dormant | Coal | Depleted oil and gas |
Alcan Lynemouth | Lynemouth, Northumberland, UK | Cancelled/Dormant | Coal | Unknown |
Blyth Power Station | Cambois, Blyth, UK | Cancelled/Dormant | Coal | Unknown |
Teesside Collective | Teesside, UK | In planning | unknown | Saline Formation |
Lotte Chemicals Carbon Capture Utilization and Storage CCUS Project | Wilton Site, Teesside, UK | In Design | Gas | Industrial Use |
Teesside Low Carbon Project | Eston, Teeside, UK | Cancelled/Dormant | Coal | Depleted oil and gas |
Liverpool-Manchester Hydrogen Cluster | Ince Marshes, Merseyside, UK | Speculative | Gas | Depleted oil and gas |
Pilot-scale Advanced Capture Technology | Beighton, near Sheffied, UK | Pilot | Other | No storage |
Ferrybridge | West Yorkshire, UK | Completed | Coal | No storage |
Millenium Generation Project | Stainforth, South Yorkshire, UK | Pilot | Gas | No storage |
Killingholme | Immingham, North Lincolnshire, UK | In planning | Coal | Saline formation |
Aberthaw Pilot Plant | Aberthaw, near Barry, UK | Completed | Coal | No storage |
Imperial College Carbon Capture Pilot Plant | South Kensigton Campus, London, UK | Pilot | Other | No storage |
Tilbury Power Station | East Tilbury, UK | Cancelled/Dormant | Coal | Unknown |
Kingsnorth | Kent, UK | Cancelled/Dormant | Coal | Depleted oil and gas |
InfraStrata | Portland (exact location unknown), UK | Cancelled/Dormant | Unknown | Unknown |
Offshore Netherlands North Sea, Netherlands | GDF Suez | Operational/2004 | Gas | Depleted oil and gas |
Eemshaven | Groningen, The Netherlands | Cancelled/Dormant | Coal | Depleted oil and gas |
Buggenum Pilot Plant | Buggenum, near Roermond, The Netherlands | Completed | Coal | No storage |
Air Products Rotterdam | Botlek, Rotterdam, The Netherlands | Cancelled/Dormant | Oil | No storage |
Pegasus Rotterdam | Port of Rotterdam, The Netherlands | Cancelled/Dormant | Gas | Depleted oil and gas |
Barendrecht Project | Port of Rotterdam, The Netherlands | Cancelled/Dormant | Oil | Depleted oil and gas |
Rotterdam Backbone Project | The Rotterdam, The Netherlands | In planning | Other | Depleted oil and gas |
Rotterdam Climate Initiative | Rotterdam, TheNetherlands | Cancelled | Other | Depleted oil and gas |
CO2 Smart Grid | Rotterdam, The Netherlands | Speculative | Other | Unknown |
C.GEN Rotterdam | Europort, Rotterdam, The Netherlands | Cancelled/Dormant | Coal | Unknown |
Rotterdam Opslag en Afvag Demo ROAD | Maasvlakte, Rotterdam, The Netherlands | Cancelled/Dormant | Coal | Depleted oil and gas |
Antwerp CCS Feasibility Study | Port of Antwerp, Belgium | Speculative | Unknown | Unknown |
Leilac Pilot Plant | Lixhe, near Vise, Belgium | Pilot | Coal | No storage |
Wilhelmshaven Pilot Plant | Wilhelmshaven, Germany | Pilot | Coal | No storage |
Heyden Pilot Plant | near Minden, North Rhine-Westphalia, Germany | Pilot | Coal | No storage |
Ketzin Pilot Injection Site | Ketzin, near Berlin, Germany | Completed | Unknown | Saline formation |
Herne Pilot Plant | Herne, North Rhine-Westphalia, Germany | Pilot | Coal | No storage |
Hurth IGCC | Hurth, near Koln, Germany | Cancelled/Dormant | Coal | Unknown |
Niederaussem, near Koln, Germany | Niederaussem, near Koln, Germany | Pilot | Coal | No storage |
Janschwalde | Brandenburg, Germany | Cancelled/Dormant | Coal | Saline formation |
Staudinger Pilot Plant | Grosskrotzenburg, near Hannau, Germany | Pilot | Coal | No storage |
EnBW Pilot Plant | Heilbronn, Germany | Pilot/2011 | Coal | No storage |
ArcelorMittal Florange | Florange, Moselle, France | In planning | Coal | Saline formation |
C2A2 Field Pilot | Le Havre, Normandy, France | Pilot | Coal | No storage |
Lacq CS Pilot | Lacq, Pyrenees-Atlantiques, France | Pilot | Gas | Depleted oil and gas |
Compostilla Phase I | Cubillos del Sil, Ponferrada, Spain | Pilot | Coal | No storage |
Puertollano | Puertollano, Ciudad Real, Spain | Completed | Coal | No storage |
Belchatow | Lodz, Poland | Cancelled/Dormant | Coal | Saline formation |
Kedzierzyn | Silesia, Poland | Cancelled/Dormant | Coal | Saline formation |
CO2SEPPL | Durnrohr, near Tulln, Austria | Pilot/2010 | Coal | No storage |
Retznei Oxyfuel Demonstration | Retznei, near Graz, Austria | In planning | Other | No storage |
Porto Tolle | Porto Tolle, Veneto, Italy | Cancelled/Dormant | Coal | Saline formation |
Colleferro Oxyfuel Demonstration | Colleferro, near Rome, Italy | In planning | Other | No storage |
Brindisi, Puglia, Italy | Brindisi, Puglia, Italy | Pilot/2011 | Coal | unknown |
Delimara | Delimara, Marsaxlokk, Malta | In design | Coal | Depleted oil and gas |
Getica CCS Demonstration Project | Turceni, near Targu Jui, Gorj County, Romania | Cancelled/Dormant | Coal | Saline formation |
Maritsa | Stara Zagora Province, Bulgaria | Cancelled/Dormant | Coal | Saline formation |
Potential Storage Site | References |
---|---|
Prinos, Kavala in northern Greece, Pentalofos, Eptahori, NW Greece | Tasianas et al. [78] |
Evros, northern Greece | Vatalis et al. [73] |
Pentalofos and Tsotili, NW Greece | Koukouzas et al. [74] |
Vourinos, western Macedonia | Koukouzas et al. [8] |
Geological Form | Sites in Greece | References |
---|---|---|
Ultramafic lavas with basaltic dykes | Othris Mountains, Central Greece | Baziotis et al. [80], Saccani et al. [81], Tsikouras et al. [82], Valsamia et al. [83], Paraskevopoulos et al. [84] |
Basaltic rocks | Pindos, NW Greece | Saccani et al. [85] |
Gabbroic and basaltic rocks | Volvi and Therma bodies in western Macedonia, Northern Greece | Bonev et al. [86], Bonev et al. [87] |
Gabbroic and basaltic rocks | Western Rodopi massifs (northern Greece) | Bonev et al. [86], Bonev et al. [87] |
Basalts | Paros, Western Samos, Naxos, central Samos, Skyros, Tinos and S. Evia, Greek Islands in Central and Southern Aegean | Stourati et al. [88] |
Basalts | Acrotiri Peninsula, Santorini and Kos-Nisyros, Greek Islands in S. Aegean | Mortazavi et al. [89], Bachman et al. [90] |
Ultramafic rocks consist of serpentinized harzburgites | Vrinera ophiolitic unit, East Othris, central Greece | Magganas et al. [91], Koutsovitis et al. [92] |
Ophilithic units consist of Serpentites | Eretria, Aerino, Velestino, central Greece | Magganas et al. [91], Koutsovitis et al. [92] |
Amphibolites and below them underlie ultramafic masses which consist of serpentinized harzburgites, patches of dunites and serpentinized depleted iherzolites and harzburgites | Evia, island in central Greece and Lesvos, island in Northern Aegean | Gartzos et al. [93] |
Metaophiolites consist of serpentinites and metabasites | East part of Thessaly, Central Greece | Koutsovitis et al. [94] |
Ophiolite complex is comprised of harzburgite-dunite masses in the mantle peridotites | Pindos, NW Greece | Economou et al. [95], Rssios et al. [96], Rigopoulos et al. [97] |
Harzburgite mantle which hosts bodies of dunite | Vourinos, NW Greece | Koukouzas et al. [8], Rassios et al. [96], Rigopoulow et al. [97], Tzamos et al. [98], Ross et al. [99], Tzamos et al. [100] |
Ophiolite is comprised of mantle peridoites with harzburgites and secondary plagioscale bearing Iherzolites | Koziakas mountain ophiolite, western Thessali, Central Greece | Koukouzas et al. [8], Rigopoulos et al. [97], Tzamos et al. [98], Ross et al. [99], Tzamos et al. [100], Pomonis et al. [101] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelektsoglou, K. Carbon Capture and Storage: A Review of Mineral Storage of CO2 in Greece. Sustainability 2018, 10, 4400. https://doi.org/10.3390/su10124400
Kelektsoglou K. Carbon Capture and Storage: A Review of Mineral Storage of CO2 in Greece. Sustainability. 2018; 10(12):4400. https://doi.org/10.3390/su10124400
Chicago/Turabian StyleKelektsoglou, Kyriaki. 2018. "Carbon Capture and Storage: A Review of Mineral Storage of CO2 in Greece" Sustainability 10, no. 12: 4400. https://doi.org/10.3390/su10124400
APA StyleKelektsoglou, K. (2018). Carbon Capture and Storage: A Review of Mineral Storage of CO2 in Greece. Sustainability, 10(12), 4400. https://doi.org/10.3390/su10124400