Urban Spatial Interaction Analysis Using Inter-City Transport Big Data: A Case Study of the Yangtze River Delta Urban Agglomeration of China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Materials
3.2. Methods for Urban Spatial Interaction Analysis
3.2.1. Interaction Intensity Index
3.2.2. Degree Centrality and Betweenness Centrality Index
3.2.3. CONCOR Index
3.3. Comparison with Gravity Model
4. Results
4.1. Interaction Intensity between Cities
4.2. Degree and betweeness Centrality Of Cities in YRD UA
4.3. Cohesive Subgroups of YRD UA
5. Discussions
5.1. Comparison with the Traditional Gravity Model
5.2. Policy Implications
5.3. Limitations and Future Works
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Angel, S.; Hyman, G.M. Urban spatial interaction. Environ. Plan. 1972, 4, 99–118. [Google Scholar] [CrossRef]
- Castells, M. The Rise of the Network Society; Wiley-Blackwell: Hoboken, NJ, USA, 1996; pp. 1–594. [Google Scholar]
- Wheeler, C.H. Search, sorting, and urban agglomeration. J. Lab. Econ. 2001, 19, 879–899. [Google Scholar] [CrossRef]
- Garcia-López, M.À.; Muñiz, I. Urban spatial structure, agglomeration economies, and economic growth in Barcelona: An intra-metropolitan perspective. Pap. Reg. Sci. 2013, 92, 515–534. [Google Scholar] [CrossRef]
- Tan, R.; Liu, Y.; Liu, Y.; He, Q.; Ming, L.; Tang, S. Urban growth and its determinants across the Wuhan urban agglomeration, central China. Habitat Int. 2014, 44, 268–281. [Google Scholar] [CrossRef]
- Krätke, S. Metropolisation of the European economic territory as a consequence of increasing specialisation of urban agglomerations in the knowledge economy. Eur. Plan. Stud. 2007, 15, 1–27. [Google Scholar] [CrossRef]
- Tan, R.; Zhou, K.; He, Q.; Huang, J. Analyzing the Effects of Spatial Interaction among City Clusters on Urban Growth—Case of Wuhan Urban Agglomeration. Sustainability 2018, 8, 759. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z. Spatial economic interaction of urban agglomeration: Gravity and intercity flow modeling & empirical study. In Proceedings of the IEEE 2008 International Conference on Management Science & Engineering, Long Beach, USA, 10–12 September 2008; pp. 1811–1816. [Google Scholar]
- Kitchin, R.; Lauriault, T.P.; Mcardle, G. Knowing and governing cities through urban indicators, city benchmarking and real-time dashboards. Reg. Stud. Reg. Sci. 2015, 2, 6–28. [Google Scholar] [CrossRef]
- Godin, B. The emergence of S&T indicators: Why did governments supplement statistics with indicators? Res. Policy 2003, 32, 679–691. [Google Scholar]
- Zipf, G.K. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology; Addison-Wesley: Boston, MA, USA, 1949. [Google Scholar]
- Converse, P.D. New laws of retail gravitation. J. Mark. 1949, 14, 379–384. [Google Scholar] [CrossRef]
- Taylor, P.J. World City Network: A Global Urban Analysis; Routledge: London, UK, 2004. [Google Scholar]
- Pan, H.; Deal, B.; Chen, Y.; Hewings, G. A Reassessment of urban structure and land-use patterns: Distance to CBD or network-based?—Evidence from Chicago. Reg. Sci. Urban Econ. 2018, 70, 215–228. [Google Scholar] [CrossRef]
- Comunian, R. Rethinking the Creative City: The Role of Complexity, Networks and Interactions in the Urban Creative Economy. Urban Stud. 2010, 48, 1157–1169. [Google Scholar] [CrossRef]
- Pan, H.; Deal, B.; Destouni, G.; Zhang, Y.; Kalantari, Z. Sociohydrology modeling for complex urban environments in support of integrated land and water resource management practices. Land Degrad. Dev. 2018, 29, 3639–3652. [Google Scholar] [CrossRef]
- Gordon, R.; Mccann, P. Industrial Clusters: Complexes, Agglomeration And/Or Social Networks. Urban Stud. 2014, 37, 513–532. [Google Scholar] [CrossRef]
- Asheim, T.; Boschma, R.; Cooke, P. Constructing regional advantage: Platform policies based on related variety and differentiated knowledge bases. Reg. Stud. 2011, 45, 893–904. [Google Scholar] [CrossRef]
- Anas, A.; Xiong, K. Intercity trade and the industrial diversification of cities. J. Urban Econ. 2003, 54, 258–276. [Google Scholar] [CrossRef]
- Martín, J.C.; Reggiani, A. Recent methodological developments to measure spatial interaction: Synthetic accessibility indices applied to high-speed train investments. Transp. Rev. 2007, 27, 551–571. [Google Scholar] [CrossRef]
- Rae, A. From spatial interaction data to spatial interaction information? Geovisualisation and spatial structures of migration from the 2001 UK census. Comput. Environ. Urban Syst. 2009, 33, 161–178. [Google Scholar] [CrossRef]
- Patuelli, R.; Mussoni, M.; Candela, G. The effects of world heritage sites on domestic tourism: A spatial interaction model for Italy. J. Geogr. Syst. 2013, 15, 369–402. [Google Scholar] [CrossRef]
- Gonzalez-Feliu, J.; Semet, F.; Routhier, J.L. Sustainable Urban Logistics: Concepts, Methods and Information Systems; Springer-Verlag: Berlin, Germany, 2014. [Google Scholar]
- Caprotti, F. Spaces of visibility in the smart city: Flagship urban spaces and the smart urban imaginary. Urban Stud. 2018. [Google Scholar] [CrossRef]
- Azzari, M.; Garau, C.; Nesi, P.; Paolucci, M.; Zamperlin, P. Smart City Governance Strategies to Better Move Towards a Smart Urbanism. In Proceedings of the International Conference on Computational Science and Its Applications, Melbourne, Australia, 2–5 July 2018; Springer: Cham, Switzerland, 2018; pp. 639–653. [Google Scholar]
- Garau, C. Citizen participation in public planning: A literature review. Int. J. Sci. 2012, 1, 21–44. [Google Scholar]
- Mannaro, K.; Baralla, G.; Garau, C. A Goal-Oriented Framework for Analyzing and Modeling City Dashboards in Smart Cities. In Proceedings of the International Conference on Smart & Sustainable Planning for Cities & Regions (SSPCR), Bolzano, Italy, 22–24 March 2017; Springer: Cham, Switzerland, 2017; pp. 179–195. [Google Scholar]
- Badii, C.; Bellini, P.; Cenni, D.; Difino, A.; Paolucci, M.; Nesi, P. User Engagement Engine for Smart City Strategies. In Proceedings of the IEEE International Conference on Smart Computing (SMARTCAMP), Hongkong, China, 29–31 May 2017; pp. 1–7. [Google Scholar]
- Beaverstock, J.V.; Taylor, P.J.; Smith, R.G. A roster of world cities. Cities 1999, 16, 445–458. [Google Scholar] [CrossRef]
- O’Kelly, M.E.; Song, W.; Shen, G. New estimates of gravitational attraction by linear programming. Geogr. Anal. 1995, 27, 271–285. [Google Scholar] [CrossRef]
- Shen, G. Reverse-fitting the gravity model to inter-city airline passenger flows by an algebraic simplification. J. Transp. Geogr. 2004, 12, 219–234. [Google Scholar] [CrossRef]
- Guo, D. Flow mapping and multivariate visualization of large spatial interaction data. IEEE Trans. Vis. Comput. Graph. 2009, 15, 1041–1048. [Google Scholar] [PubMed]
- Yan, J.; Thill, J.C. Visual data mining in spatial interaction analysis with self-organizing maps. Environ. Plan. B-Plan. Des. 2009, 36, 466–486. [Google Scholar] [CrossRef]
- Wang, F.; Guldmann, J.M. Simulating urban population density with a gravity-based model. Socio-Econ. Plan. Sci. 2005, 30, 245–256. [Google Scholar] [CrossRef]
- Karemera, D.; Oguledo, V.; Davis, B. A gravity model analysis of international migration to North America. Appl. Econ. 2000, 32, 1745–1755. [Google Scholar] [CrossRef]
- He, J.; Li, C.; Yu, Y.; Liu, Y.; Huang, J. Measuring urban spatial interaction in Wuhan urban agglomeration, central China: A spatially explicit approach. Sustain. Cities Soc. 2017, 32, 569–583. [Google Scholar] [CrossRef]
- Liu, Y.; Sui, Z.; Kang, C.; Gao, Y. Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data. PLoS ONE 2014, 9, e86026. [Google Scholar] [CrossRef] [PubMed]
- Guimera, R.; Mossa, S.; Turtschi, A.; Amaral, L.A.N. The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. USA 2005, 102, 7794–7799. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, Y.; Wang, Y.; Ma, X. Discovering spatial interaction communities from mobile phone data. Trans. GIS 2013, 17, 463–481. [Google Scholar] [CrossRef]
- Kang, C.; Sobolevsky, S.; Liu, Y.; Ratti, C. Exploring human movements in Singapore: A comparative analysis based on mobile phone and taxicab usages. In Proceedings of the 2nd International Workshop on Urban Computing, Chicago, IL, USA, 11 August 2013. [Google Scholar]
- Bus Steward. Available online: http://www.chebada.com (accessed on 25 October 2018).
- Analytic Technologies. Available online: http://www.analytictech.com (accessed on 25 October 2018).
- Breiger, R.; Boorman, S.; Arabie, P. An algorithm for clustering relational data, with applications to social network analysis and comparison with multi-dimensional scaling. J. Math. Psychol. 1975, 12, 328–383. [Google Scholar] [CrossRef]
- Brewer, C.A.; Pickle, L. Evaluation of methods for classifying epidemiological data on choropleth maps in series. Ann. Assoc. Am. Geogr. 2002, 92, 662–681. [Google Scholar] [CrossRef]
- Chen, H.; Sun, D.; Zhu, Z.; Zeng, J. The impact of high-speed rail on residents’ travel behavior and household mobility: A case study of the Beijing-Shanghai line, China. Sustainability 2016, 8, 1187. [Google Scholar] [CrossRef]
- Nanjing Municipal Bureau Statistics. Nanjing Statistical Yearbook 2017; Nanjing Municipal Bureau Statistics: Nanjing, China, 2017. Available online: http://221.226.86.104/file/nj2004/2017/index.htm (accessed on 16 November 2018).
- Yangzhou Municipal Government. The Detailed Rules for Implementing “lvYangJinFeng” Planning on Talent Support. Available online: http://www.lyjf.gov.cn/kindeditor/attached/file/20180913/20180913174332323232.pdf (accessed on 25 October 2018).
- Ningbo Municipal Human Resources and Social Security Bureau. The National Job Fair in Xian and Nanchang. Available online: http://www.nbhrss.gov.cn/art/2018/9/30/art_7038_2915324.html (accessed on 25 October 2018).
- Hangzhou Municipal Government. The General Plan for Urban Development of Hangzhou (2001–2020). Available online: http://www.hzghy.com.cn/index.php/project/info/45/51 (accessed on 25 October 2018).
- Yancheng Municipal Government. The General Plan for Urban Development of Yancheng (2013–2030). Available online: http://ghj.yancheng.gov.cn/ghcg/ghcg/201708/W020150205577700055262.pdf (accessed on 25 October 2018).
- NDRC (National Development and Reform Commission, PRC). Regional Planning of Yangtze River Delta. Available online: http://www.ndrc.gov.cn/zcfb/zcfbghwb/201606/t20160603_806390.html (accessed on 25 October 2018).
- Xie, F.; Zhang, L.; Min, J. Research on Inter-City Transportation to Promote Changsha-Zhuzhou-Xiangtan Urban Agglomeration Economy Integration. In Informatics and Management Science IV, Lecture Notes in Electrical Engineering; Springer: London, UK, 2013; Volume 207, pp. 595–602. [Google Scholar]
- Chen, Y.; Salike, N.; Luan, F.; He, M. Heterogeneous effects of inter- and intra-city transportation infrastructure on economic growth: Evidence from Chinese cities. Camb. J. Reg. Econ. Soc. 2015, 9, 571–587. [Google Scholar] [CrossRef]
- Xinhua News. Nantong is Writing a Tale of Two Cities by Approaching Shanghai. Available online: http://news.xhby.net/system/2018/03/06/030798360.shtml (accessed on 16 November 2018).
- Daliy Yangzhou. Yangzhou Constructed Two New Provincial High-Tech Zone. Available online: http://www.yznews.com.cn/yzrb/html/2016-05/26/content_785362.htm (accessed on 16 November 2018).
- YDRC 2018 (Yangzhou Development and Reform Commission). Yangzhou’s 13th Five-Year Planning on Wind Power. Available online: http://fgw.yangzhou.gov.cn/yzfgw/fgyw/201807/04eb1269811e4bef832b3085339c154c.shtml (accessed on 16 November 2018).
Origin | Destination | Coach Type | Departure Time | Remaining Tickets |
---|---|---|---|---|
Shanghai | Wuxi | Large | 10:00 | 10 |
Suqian | Hangzhou | Large | 15:20 | 18 |
Yancheng | Ningbo | Medium | 21:15 | 5 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Liu, J. Urban Spatial Interaction Analysis Using Inter-City Transport Big Data: A Case Study of the Yangtze River Delta Urban Agglomeration of China. Sustainability 2018, 10, 4459. https://doi.org/10.3390/su10124459
Han J, Liu J. Urban Spatial Interaction Analysis Using Inter-City Transport Big Data: A Case Study of the Yangtze River Delta Urban Agglomeration of China. Sustainability. 2018; 10(12):4459. https://doi.org/10.3390/su10124459
Chicago/Turabian StyleHan, Ji, and Jiabin Liu. 2018. "Urban Spatial Interaction Analysis Using Inter-City Transport Big Data: A Case Study of the Yangtze River Delta Urban Agglomeration of China" Sustainability 10, no. 12: 4459. https://doi.org/10.3390/su10124459
APA StyleHan, J., & Liu, J. (2018). Urban Spatial Interaction Analysis Using Inter-City Transport Big Data: A Case Study of the Yangtze River Delta Urban Agglomeration of China. Sustainability, 10(12), 4459. https://doi.org/10.3390/su10124459