Spatial and Quantitative Analysis of Waste from Rock Raw Minerals Mining: A Case Study of Lower Silesia Region in Poland
Abstract
:1. Introduction
2. Statistical and Spatial Analysis of Mining Waste
2.1. Description of the Research Area
2.2. Analysis of Source Data
2.3. Density of Waste Production
- K0 is the chosen Kernel function, and
- λ is the bandwidth (smoothing parameter), which determines the width of neighborhood and degree of smoothness.
3. Results
3.1. Results of Statistical Analysis
3.2. Spatial Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Id_MIDAS | Name | Mineral | Entity Name | County | Waste | Mass 1 (thousand Mg) | Management State 2 | Extraction 3 (thousand Mg) |
---|---|---|---|---|---|---|---|---|
983 | Słupiec-Dębówka | dimension and crushed stones | Kopalnie Surowców Skalnych w Bartnicy | kłodzki | 010102 | 100,507.8 | E | 1335 |
10084 | Janina I | whiteware ceramic clays | EKOCERAMIKA Sp. z o.o. | bolesławiecki | 010102 | 25,700.0 | E | 160 |
10084 | Janina I | whiteware ceramic clays | EKOCERAMIKA Sp. z o.o. | bolesławiecki | 0104 | 10,491.0 | E | 160 |
941 | Jawor-Męcinka | dimension and crushed stones | Kopalnie Surowców Skalnych | jaworski | 010102 | 11,850.0 | E | 589 |
941 | Jawor-Męcinka | dimension and crushed stones | Kopalnie Surowców Skalnych | jaworski | 0104 | 0 | E | 589 |
1755 | Topola Zbiornik | natural aggregates | EUROVIA Kruszywa S.A. | ząbkowicki | 0104 | 148,398 | E | 676 |
Appendix B
References
- Generation of Waste by Economic Activity. Mining and Quarrying. EUROSTAT. Available online: https://ec.europa.eu/eurostat/tgm/table.do?tab=table&plugin=1&language=en&pcode=ten00106 (accessed on 11 October 2018).
- Fourie, A.; Brent, A.C. A project-based Mine Closure Model (MCM) for sustainable asset Life Cycle Management. J. Clean. Prod. 2006, 14, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Hustrulid, W.; Kuchta, M. Open Pit Mine Planning & Design. Volume 1. Fundamentals; Taylor&Francis: London, UK; Leiden, The Netherlands; New York, NY, USA; Philadelphia, PA, USA; Singapore, 2006; pp. 1–735. [Google Scholar]
- Lapcik, V.; Lapcikova, M. Environmental Impact Assessment of Surface Mining. Inż. Miner. J. Pol. Miner. Eng. Soc. 2011, 12, 1–10. [Google Scholar]
- Mkpuma, R.O.; Okeke, O.C.; Abraham, E.M. Environmental Problems of Surface and Underground Mining: A review. Int. J. Eng. Sci. (IJES) 2015, 4, 12–20. [Google Scholar]
- Dalmora, A.C.; Ramos, C.G.; Querol, X.; Kautzmann, R.M.; Oliveira, M.L.S.; Taffarel, S.R.; Moreno, T.; Silva, L.F.O. Nanoparticulate Mineral Matter from Basalt Dust Wastes. Chemosphere 2016, 144, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Dalmora, A.C.; Ramos, C.G.; Oliveira, M.L.S.; Teixeira, E.C.; Kautzmann, R.M.; Taffarel, S.R.; de Brum, I.A.S.; Silva, L.F.O. Chemical Characterization, Nano-Particle Mineralogy and Particle Size Distribution of Basalt Dust Wastes. Sci. Total Environ. 2016, 359, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Kalda, G.; Wilk, M. Analyssis of industril waste managements in Podcarpacie. J. Civ. Eng. Environ. Archit. (JCEFA) 2014, 61, 109–123. [Google Scholar]
- Lebre, E.; Corder, G.; Golev, A. The Role of the Mining Industry in a Circular Economy A Framework for Resource Management at the Mine Site Level. J. Ind. Ecol. 2017, 21, 662–672. [Google Scholar] [CrossRef]
- Neugebauer, S.; Traverso, M.; Blengini, G.A.; Mathieux, F.; Peiter, C.C. Social Life Cycle Assessment of Niobium Mining in Brazil in a Circular Economy context. In Proceedings of the 6th Social LCA Conference, Pescara, Italy, 10–12 September 2018; pp. 194–196. [Google Scholar]
- Pactwa, K.; Woźniak, J. Overview of Polish Mining Wastes with Circular Economy Model and Its Comparison with Other Wastes. Sustainability 2018, 10, 3994. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Jamieson, H.E.; Lottermoser, B.G. Mine wastes: Past, present, future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Gorakhki, M.H.; Barether, C.A. Sustainable reuse of mine tailing and waste rock as water-balance cover. Minerals 2017, 7, 128. [Google Scholar] [CrossRef]
- Lottemorser, B.G. Recycling, reuse and rehabilitation of mine wastes. Elements 2011, 7, 405–410. [Google Scholar] [CrossRef]
- Jamieson, H.E.; Walker, S.R.; Parsons, M.B. Mineralogical characterization of mine waste. Appl. Geochem. 2015, 57, 85–105. [Google Scholar] [CrossRef]
- Santibañez, C.; Fuente, M.; Bustamente, E.; Silva, S.; León-Libos, R.; Ginocchio, R. Potential use of organic-and hard-rock mine wastes on aided phytostabilization of large-scale mine tailings under semiarid mediterranean climatic conditions: Short-term field study. Appl. Environ. Soil Sci. 2012, 2012, 895817. [Google Scholar] [CrossRef]
- Blachowski, J.; Górniak-Zimroz, J.; Kaźmierczak, U.; Wirth, H. Inventory of the Amount of Deposited Mining Waste Generated during Mining and Processing of Rock Raw Materials in the Province Lower Silesia in 2010–2016 in Active Mining Plants; Unpublished Report; The Faculty of Geoengineering, Mining and Geology of the Wroclaw University of Science and Technology: Wroclaw, Poland, 2018; p. 21. [Google Scholar]
- Website of the Project CircE European Regions towards Circular Economy. Available online: https://www.interregeurope.eu/circe/ (accessed on 13 November 2018).
- Project Partner Website CircE European Regions towards Circular Economy. The Marshal Office of the Lower Silesia Voivodship. Available online: http://www.umwd.dolnyslask.pl/gospodarka/projekt-circe-european-regions-toward-circular-economy/ (accessed on 13 November 2018).
- Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the Management of Waste from Extractive Industries. Official Journal of the EU L 102 of 11.04.2006, as Amended. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A32006L0021 (accessed on 11 October 2018).
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste. Official Journal of the EU L 312 of 22. 11. 2008. Available online: https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=CELEX:32008L0098 (accessed on 11 October 2018).
- Dz.U.2008.138.865 the Act of 10 July 2008 of on Mining Waste. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20081380865 (accessed on 11 October 2018).
- Dz.U.2013.21 the Act of 14 December 2012 on Waste. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20130000021 (accessed on 11 October 2018).
- Dz.U.2014.1923 Regulation of the Minister of the Environment of December 9 2014 on the Waste Catalogue. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20140001923 (accessed on 11 October 2018).
- Suh, J.; Kim, S.; Yi, H.; Choi, Y. An Overview of GIS-Based Modeling and Assessment of Mining-Induced Hazards: Soil, Water, and Forest. Int. J. Environ. Res. Public Health 2017, 14, 1463. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Yu, M.; Bian, Z.; Wang, Y.; Di, C. Geostatistical analyses of heavy metal distribution in reclaimed mine land in Xuzhou, China. Environ. Earth Sci. 2011, 62, 127–137. [Google Scholar] [CrossRef]
- Wasilewski, S.; Skotniczny, P. Mining waste dumps—Modern monitoring of thermal and gas activities. Miner. Resour. Manag. 2015, 31, 155–182. [Google Scholar] [CrossRef]
- Tang, S. Using remote sensing and GIS techniques in spatial information monitoring of coal refuse disposal piles. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 177–182. [Google Scholar]
- Abdelaal, A. Preliminary contamination risk assessment of mining waste Using spatial analysis and geochemical characterization of rock formations. Case study in Hungary. J. Environ. Geogr. 2014, 7, 1–12. [Google Scholar] [CrossRef]
- Stiels, C.; Brömme, K.; Stolpe, H. GIS-Applications for Environmental Reporting in the Mining Sector. Institute of Environmental Engineering and Ecology, Ruhr University of Bochum. Available online: http://www.ruhr-uni-bochum.de/ecology/mam/content/rame/paper_cstiels_final.pdf start (accessed on 12 November 2018).
- Maryati, S.; Shimada, H.; Sasaoka, T.; Hamanaka, A.; Matsui, K.; Nagawa, H. GIS Database Template for Environmental Management of Mining in Indonesia. J. Geogr. Inf. Syst. 2012, 4, 62–70. [Google Scholar] [CrossRef]
- Cwojdziński, S.; Badura, J.; Przybylski, B. Characteristics of the Geological Structure of Lower Silesia. Available online: https://www.pgi.gov.pl/wroclaw/oddzial-dolnoslaski/opracowania/geologia-dolnego-slaska/charakterystyka-budowy-geologicznej-dolnego-slaska.html (accessed on 14 November 2018).
- The System of Management and Protection of Mineral Resources in Poland MIDAS. Polish Geological Institute. Available online: http://geoportal.pgi.gov.pl/portal/page/portal/midas (accessed on June 2018).
- Statistics Poland. Local Data Bank. Available online: https://bdl.stat.gov.pl/BDL/start (accessed on September 2018).
- Apanowicz, J. General Methodology. In Gdynia “Bernardinum”; Publishing House: Pelplin, Poland, 2002. (In Polish) [Google Scholar]
- Walliman, N. Research Methods the Basics; Routlege Taylor & Francis Group: London, UK; New York, NY, USA, 2011; pp. 1–190. [Google Scholar]
- McCoy, J.; Johnston, K.; Knopp, S.; Borup, B.; Willison, J. ArcGIS Spatial Analyst; ESRI: Redlands, CA, USA, 2004. [Google Scholar]
- ESRI. ArcGIS Desktop. Available online: http://desktop.arcgis.com/en/arcmap/ (accessed on 10 November 2018).
- Epanechnikov, V.A. Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 1969, 14, 153–158. [Google Scholar] [CrossRef]
- Blachowski, J. Spatial analysis of the mining and transport of rock minerals (aggregates) in the context of regional development. Environ. Earth Sci. 2014, 71, 1327–1338. [Google Scholar] [CrossRef]
- Deng, Y.; Wallace, B.; Maassen, D.; Werner, J.A. Few GIS Clarifications on Tornado Density Mapping. J. Appl. Meteorol. Climatol. 2016, 55, 283–296. [Google Scholar] [CrossRef]
- Anderson, K. Kernel density estimation and K-means clustering to profile road accident hotspots. Acc. Anal. Prev. 2009, 41, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Hart, T.; Zandbergen, P. Kernel density estimation and hotspot mapping: Examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting. Polic. Int. J. Police Strategies Manag. 2014, 37, 305–323. [Google Scholar] [CrossRef]
- Vienneau, D.; de Hoogh, K.; Briggs, D. A GIS-based method for modelling air pollution exposures across Europe. Sci. Total Environ. 2009, 408, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Pieniążek, M.; Szejgiec, B.; Zych, M.; Ajdyn, A.; Nowakowska, G. Graphical Presentation of Statistical Data; Graphs, Maps, GIS; Central Statistical Office: Warsaw, Poland, 2014. [Google Scholar]
- Stankiewicz, J. Technology of wastes development from rock mining in hydraulically bound mixtures. Min. Sci. 2013, 136, 205–211. (In Polish) [Google Scholar]
- Kaźmierczak, U.; Blachowski, J.; Górniak-Zimroz, J.; Wirth, H. Quantitative and qualitative research on the waste from the mining of rock raw materials in Lower Silesia. Minerals 2018, 8, 375. [Google Scholar] [CrossRef]
- Bolewski, A.; Skawina, T. An Attempt to Use Montmorillonite Rocks for the Reclamation of Sands; Polish Academy of Sciences Branch in Krakow, Commission of Mineralogical Sciences, Geological Publishers: Warszawa, Poland, 1972; pp. 1–68. (In Polish) [Google Scholar]
- Savic, I.; Stojiljkovic, S.; Savic, S.; Gajic, D. Industrial application of clays and clay minerals. In Clays and Clay Minerals: Geological Origin, Mechanical Properties and Industrial Applications; Wesley, L.R., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 379–402. [Google Scholar]
- Al-Arfaj, A.A.; Murugan, A.M.; Chinnathambi, A.; Al-Hazmi, M.I. Cost-effective bentonite clayed pyramid technologies for household fruits and vegetables siorage. J. Food Agric. Environ. 2013, 11, 175–180. [Google Scholar]
- Dobrzański, Z.; Górecki, H.; Kołacz, R.; Górecka, H.; Rudzik, R. Application of Certain Aluminosilicates in the Feed and Bedding in the Scope of Poultry Farming; Scientific Works; The Institute of Inorganic Technologies and Mineral Fertilizers, Wrocław University of Technology: Wrocław, Poland, 1994; Volume 10/149, pp. 143–148. (In Polish) [Google Scholar]
- Górecki, H. Small-volume production of a new type of agrochemicals. Przemysł Chemiczny 1995, 74, 243–246. (In Polish) [Google Scholar]
- Abd El-Aziz, S.E. Evaluation of particle films as a physical control method for controlling melon ladybird, Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae) on cantaloupe plants. Bull. Ent. Soc. Egypt. 2003, 29, 21–34. [Google Scholar]
- Abd El-Aziz, S.E. Kaolin&Bentonite clays particle films as a new trend for suppression of chewing and sucking insects of cotton plants. Arab. Univ. J. Agric. Sci. 2003, 11, 373–385. [Google Scholar]
- Abd El-Aziz, S.E. Laboratory and field Evaluation of Kaolin and Bentonite particle films against onion thrips, Thrips tabaci (Lind.) (Thysanoptera: Thripidae) on onion plants. J. Appl. Sci. Res. 2013, 9, 3141–3145. [Google Scholar]
- Kłapyta, Z. Montmorillonite rocks of the upper silesian coal basin. In Mineral Polish Sorbents; Kłapyła, Z., Żabiński, W., Eds.; Uczelnianie Wydawnictwa Naukowo-Dydaktyczne: Kraków, Poland, 2008; pp. 20–30, (In Polish). ISBN 9788374641074. [Google Scholar]
- Donia, A.M.; Atia, A.A.; Hussien, R.A.; Rashad, R.T. Comparative study on the adsorption of malathion pesticide by different adsorbents from aqueous solution. Desalin. Water Treat. 2012, 47, 300–309. [Google Scholar] [CrossRef]
- Chevillard, A.; Angellier-Coussy, H.; Peyron, S.; Gontard, N.; Gastaldi, E. Investigating ethofumesate—Clay interactions for pesticide controlled release. Soil Sci. Soc. Am. J. 2012, 76, 420–431. [Google Scholar] [CrossRef]
- Zagożdżon, P.P. Basalt powder in agricultural use. Min. Sci. 2008, 123, 133–142. (In Polish) [Google Scholar]
- Mierzejewski, M.P. Basalt fertilizing meals in agricultural application, Polish Ecological Club. Lower Silesia District. 2008. Available online: http://www.ekoklub.wroclaw.pl (accessed on 10 November 2018). (In Polish).
- Tryburski, J. Fertilization and Fertility of Soil in an Organic Farm—Materials for Farmers; National Center for Organic Agriculture—Regional Center for Advisory Services for Agriculture and Rural Development in Radom: Radom, Poland, 2004; pp. 4–5. (In Polish) [Google Scholar]
- Heflik, W. On the possibilities of using serpentinites. Pol. Stone Mag. 2015, 4, 66–67. (In Polish) [Google Scholar]
- Kukielska, D.; Cebra, P. Development of granite waste. Miner. Aggreg. 2018, 2, 93–97. (In Polish) [Google Scholar]
Institution | Data Description | Data Format | Number of Data |
---|---|---|---|
Marshal Office of the Lower Silesia Voivodship, Department of the Environment | Decisions approving MWMP 1 | Scans of documents | 157 documents |
MWMP 1 | Scans of documents | 51 documents | |
Reports on MWMP 1 | MS Excel spreadsheet | 341 entries | |
Marshal Office of the Lower Silesia Voivodship, Department of the Geology | List of active mining plants | MS Excel spreadsheet | 293 records |
District Mining Office in Wroclaw | List of active mining plants | MS Excel spreadsheet | 412 records |
Polish Geological Institute | Boundaries of deposits | File in shp format 2 | 427 features |
Provincial Centre for Geodesic and Cartographic Documentation | Administrative boundaries | File in shp format 3 | 31 features |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachowski, J.; Kaźmierczak, U.; Górniak-Zimroz, J. Spatial and Quantitative Analysis of Waste from Rock Raw Minerals Mining: A Case Study of Lower Silesia Region in Poland. Sustainability 2018, 10, 4493. https://doi.org/10.3390/su10124493
Blachowski J, Kaźmierczak U, Górniak-Zimroz J. Spatial and Quantitative Analysis of Waste from Rock Raw Minerals Mining: A Case Study of Lower Silesia Region in Poland. Sustainability. 2018; 10(12):4493. https://doi.org/10.3390/su10124493
Chicago/Turabian StyleBlachowski, Jan, Urszula Kaźmierczak, and Justyna Górniak-Zimroz. 2018. "Spatial and Quantitative Analysis of Waste from Rock Raw Minerals Mining: A Case Study of Lower Silesia Region in Poland" Sustainability 10, no. 12: 4493. https://doi.org/10.3390/su10124493
APA StyleBlachowski, J., Kaźmierczak, U., & Górniak-Zimroz, J. (2018). Spatial and Quantitative Analysis of Waste from Rock Raw Minerals Mining: A Case Study of Lower Silesia Region in Poland. Sustainability, 10(12), 4493. https://doi.org/10.3390/su10124493