Value Addition and Productivity Differentials in the Nigerian Cassava System
Abstract
:1. Introduction
Hypothesis
2. Theoretical and Conceptual Framework
2.1. Theoretical Framework
2.2. The Nexus of Value Addition and Productivity
3. Materials and Method
3.1. Study Area and Sampling Procedure
3.2. Description of Productivity Variables
3.3. Data Analysis
- Input distance measure
- Constant returns to scale
- (i)
- Efficiency change;
- (ii)
- Technical change;
- (iii)
- Pure technical efficiency change(corresponding to the VRS efficiency measure);
- (iv)
- Scale efficiency change; and
- (v)
- Total Factor productivity change.
- Potential outcome of farmers who are value adders and self-select into value adder groups
- Potential outcomes of non- value adders who self-self into non-value adder groups.
- Potential outcomes of value adders if they were non-value adders
4. Results and Discussion
4.1. Summary Characteristics of Farmers across Cassava Production Systems
4.2. Summary Statistics of Costs and Returns across Cassava Production Systems in Nigeria
4.3. Productivity Measures across Cassava Production Systems
4.4. Productivity Growth across Cassava Production Systems
4.5. Productivity Impact of Value Addition across Cassava Production Systems
4.6. Estimated Impact of Value Addition on Productivity of Cassava Farmers
5. Conclusions and Policy Recommendations
Author Contributions
Acknowledgments
Funding
Conflicts of Interest
References and Note
- Fan, S.; Brzeska, J.; Keyzer, M.; Halsema, A. From Subsistence to Profit: Transforming Smallholder Farms; International Food Policy Research Institute (IFPRI): Washington, DC, USA, July 2013. [Google Scholar]
- Martin, G.; Martin-Clouaire, R.; Duru, M. Farming system design to feed the changing world. A review. Agron. Sustain. Dev. 2013, 33, 131–149. [Google Scholar] [CrossRef]
- Obayelu, A.E.; Afolami, C.A.; Agbonlahor, M.U. Relative profitability of cassava-based mixed cropping systems among various production scale operators in Ogun and Oyo States Southwest Nigeria. Afr. Dev. Rev. 2013, 25, 513–525. [Google Scholar] [CrossRef]
- Aminu, F.O.; Okeowo, T.A. economic analysis of cassava mixed farming enterprises in Epe Local Government Area, Lagos State, Nigeria. Appl. Trop. Agric. 2016, 21, 122–130. [Google Scholar]
- Abu, B.M.; Issahaku, H.; Nkegbe, P.K. Farm-gate versus market centre sales: A multi-crop approach. Agric. Food Econ. 2016, 4, 21. [Google Scholar] [CrossRef]
- Food and Agricultural Organisation (FAO). Nigeria at a Glance. Available online: http://www.fao.org/nigeria/fao-in-nigeria/nigeria-at-a-glance/en/ (accessed on 5 September 2018).
- Mmasa, J.J. Value addition practices to agricultural commodities in Tanzania. Tanzan. Country Level Knowl. Netw. Policy Brief 2013, 20, 1–15. [Google Scholar]
- Ubalua, A.O. Cassava Wastes: Treatment options and value addition alternatives. Afr. J. Biotechnol. 2007, 6, 2065–2073. [Google Scholar] [CrossRef]
- Brees, M.; Parcell, J.; Giddens, N. Capturing vs. Creating Value. MU Agricultural Guide, University of Missouri Cooperative Extension 2010. Available online: http://extension.missouri.edu/p/G641 (accessed on 31 August 2018).
- Lu, R.; Dudensing, R. What do we mean by value-added agriculture? Choices 2015, 30, 1–8. [Google Scholar]
- Virchow, D.; Beuchelt, T.; Denich, M.; Loos, T.K.; Hoppe, M.; Kuhn, A. The value web approach. Rural Focus 2014, 21, 16–18. [Google Scholar]
- Aw, B.Y.; Chen, X.; Roberts, M.J. Firm-level evidence on productivity differentials and turnover in Taiwanese manufacturing. J. Dev. Econ. 2001, 66, 51–86. [Google Scholar] [CrossRef]
- Ghebru, H.; Holden, S.T. Technical efficiency and productivity differential effects of land right certification: A quasi-experimental evidence. Q. J. Int. Agric. 2015, 54, 1–31. [Google Scholar]
- Besharat, A.; Amirahmadi, M. The study of factors affecting productivity in the agriculture sector of Iran. Afr. J. Agric. Res. 2011, 6, 4340–4348. [Google Scholar]
- Kissoly, L.; Faße, A.; Grote, U. Small scale framers’ integration in agricultural value chains: The role for food security in rural Tanzania. In Proceedings of the Conference on International Research on Food Security, Natural Resources Management and Rural Development, Tropentag 2015, Berlin, Germany, 16–18 September 2015. [Google Scholar]
- Warsanga, W.B.; Evans, E.A. Welfare impact of wheat farmers’ participation in the value chain in Tanzania. Mod. Econ. 2018, 9, 853. [Google Scholar] [CrossRef]
- Obaga, B.R.; Mwaura, F.O. Impact of farmers’ participation in banana value addition in household welfare in Kisii Central Sub-County. Int. Acad. J. Soc. Sci. Educ. 2018, 2, 25–46. [Google Scholar]
- Kehinde, A.L.; Aboaba, K.O. Analysis of value addition in the processing of cassava tubers to “garri” among cottage level processors in southwestern Nigeria. In Proceedings of the International Conference of the African Association of Agricultural Economists, Addis Ababa, Ethiopia, 23–26 September 2016. [Google Scholar]
- Singh, I.; Squire, L.; Strauss, J. (Eds.) Agricultural Household Models: Extensions and Applications; Johns Hopkins University Press: Baltimore, MD, USA, 1986. [Google Scholar]
- Sadoulet, E.; de Janvry, A. Quantitative Development Policy Analysis; The Johns Hopkins University Press: Baltimore, MD, USA; London, UK, 1995. [Google Scholar]
- Mendola, M. Farm Household Production Theories: A Review of “Institutional” and “Behavioral” Responses. Asian Dev. Rev. 2007, 24, 49–68. [Google Scholar] [CrossRef]
- Schultz, T.W. Transforming Traditional Agriculture; University of Chicago Press: Chicago, IL, USA, 1964. [Google Scholar]
- Meyer, J. Expected utility as a paradigm for decision making in agriculture. In A Comprehensive Assessment of the Role of Risk in US Agriculture; Springer: Boston, MA, USA, 2002; pp. 3–19. [Google Scholar]
- Olomola, A.S. Competitive Commercial Agriculture in Africa Study (CCAA). World Bank Site Resource. Available online: siteresources.worldbank.org (accessed on 1 September 2018).
- National Bureau of Statistics (NBS). Cassava production in Nigeria, 1970–2010. NBS Stat. Bull. Federal Republic of Nigeria 2010.
- Jenkins, S.P.; Siedler, T. Using Household Panel Data to Understand the Intergenerational Transmission of Poverty; Discussion Paper 694; German Institute for Economic Research (DIW): Berlin, Germany, 2007. [Google Scholar]
- Assaad, R.A.; Krafft, C.; Yassin, S. Comparing Retrospective and Panel Data Collection Methods to Assess Labor Market Dynamics; Discussion Paper No 11052; Institute of Labour Economics (IZA): Bonn, Germany, 2017. [Google Scholar]
- Hsiao, C. Panel data analysis—Advantages and challenges. Test 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Coelli, T.; Prasada Rao, D.S.; O’Donnell, C.; Battese, G. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Springer Science and Business Media: New York, NY, USA, 2005; ISBN 0387242651. [Google Scholar]
- Stolp, C. Strengths and weaknesses of data envelopment analysis: An urban and regional perspective. Comput. Environ. Urban Syst. 1990, 14, 103–116. [Google Scholar] [CrossRef]
- Hossain, M.K.; Kamil, A.A.; Baten, M.A.; Mustafa, A. Stochastic frontier approach and data envelopment analysis to total factor productivity and efficiency measurement of Bangladeshi rice. PLoS ONE 2012, 7, e46081. [Google Scholar] [CrossRef] [PubMed]
- Portela, M.C.A.S.; Thanassoulis, E. Zero weights and non-zero slacks: Different solutions to the same problem. Ann. Oper. Res. 2006, 145, 129–147. [Google Scholar] [CrossRef]
- Mazvimavi, K.; Ndlovu, P.V.; An, H.; Murendo, C. Productivity and efficiency analysis of maize under conservation agriculture in Zimbabwe. In Proceedings of the International Conference for Agricultural Economists Triennial Conference, Foz do Iguaçu, Brazil, 18–24 August 2012. [Google Scholar]
- Sarkis, J. Preparing your data for DEA. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis; Joe, Z., Wade, C., Eds.; Springer: Boston, MA, USA, 2007; pp. 305–320. ISBN 978-0-387-71607-7. [Google Scholar]
- Coelli, T.J.; Rao, D.S. Total Factor Productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980–2000. Agric. Econ. 2005, 32, 115–134. [Google Scholar] [CrossRef]
- Sipiläinen, T.; Kuosmanen, T.; Kumbhakar, S.C. Measuring productivity differentials–An application to milk production in Nordic countries. In Proceedings of the 12th Congress of the European Association of Agricultural Economics–EAAE, Ghent, Belgium, 26–29 August 2008. [Google Scholar]
- Awotide, B.A.; Abdoulaye, T.; Alene, A.; Manyong, V.M. Impact of access to credit on agricultural productivity: Evidence from smallholder cassava farmers in Nigeria. In Proceedings of the International Conference of Agricultural Economists (ICAE), Milan, Italy, 9–14 August 2015. [Google Scholar]
- Seng, K. The Effects of nonfarm activities on farm households’ food consumption in rural Cambodia. Dev. Stud. Res. 2015, 2, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Negash, M.; Swinnen, J.F. Biofuels and food security: Micro-evidence from Ethiopia. Energy Policy 2013, 61, 963–976. [Google Scholar] [CrossRef] [Green Version]
- Hasebe, T. Copula base maximum likelihood estimation of sample selection model. Stata J. 2013, 13, 547–573. [Google Scholar] [CrossRef]
- Alene, A.D.; Manyong, V.M. The effects of education on agricultural productivity under traditional and improved technology in northern Nigeria: An endogenous switching regression analysis. Empir. Econ. 2007, 32, 141–159. [Google Scholar] [CrossRef]
- Maddala, G.S. Disequilibrium, self-selection, and switching models. Handb. Econ. 1986, 3, 1633–1688. [Google Scholar]
- Lokshin, M.; Sajaia, Z. Maximum likelihood estimation of endogenous switching regression models. Stata J. 2004, 4, 282–289. [Google Scholar] [CrossRef]
- Long, W.; Appleton, S.; Song, L. Job Contact and Wages of Rural-Urban Migrants in China; Discussion Paper 7577; Institute for the Study of Labour (IZA): Bonn, Germany, 2013. [Google Scholar]
- Abdulai, A.; Huffman, W. The adoption and impact of soil and water conservation technology: An endogenous switching regression application. Land Econ. 2014, 90, 26–43. [Google Scholar] [CrossRef]
- Lee, L.F. Some approaches to the correction of selectivity bias. Rev. Econ. Stud. 1982, 49, 355–372. [Google Scholar] [CrossRef]
- StataCorp. Stata: Release 13. Statistical Software, StataCorp LP: College Station, TX, USA, 2013.
- Wright, W.; Annes, A. Farm women and the empowerment potential in value-added agriculture. Rural Sociol. 2016, 81, 545–571. [Google Scholar] [CrossRef]
- Masamha, B.; Thebe, V.; Uzokwe, V. Mappping cassava food value chains in Tanzania’s smallholder farming sector: The implications of intra-household gender dynamics. J. Rural Stud. 2018, 58, 82–92. [Google Scholar] [CrossRef]
- Born, H.; Bachmann, J. Adding Value to Farm Products: An Overview; National Center for Appropriate Technology: Butte, MT, USA, 2006. [Google Scholar]
- Evans, E. Value Added Agriculture: Is It Right for Me. Obtenido de EDIS Document FE638, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville. 2012. Available online: http://edis.ifas.ufl.edu/pdffiles/FE/FE63800.Pdf (accessed on 18 September 2018).
- Huffman, W. Human Capital: Education and Agriculture. Iowa State University Economic Staff Paper Series 312. 1999. Available online: http://lib.dr.iastate.edu/econ_las_staffpaper/312 (accessed on 5 September 2018).
- Uematsu, H.; Mishra, A.K. Can education be a barrier to technology adoption? Presented at the Agricultural & Applied Economics Association 2010, AAEA CAES & WAEA Joint Annual Meeting, Denver, CO, USA, 25–27 July 2010. [Google Scholar]
- Davis, K.; Nkonya, E.; Kato, E.; Mekonnen, D.A.; Odendo, M.; Miiro, R.; Nkuba, J. Impact of farmer field schools on agricultural productivity and poverty in East Africa. World Dev. 2012, 40, 402–413. [Google Scholar] [CrossRef]
- Kijima, Y.; Ito, Y.; Otsuka, K. Assessing the impact of training on lowland rice productivity in an African setting: Evidence from Uganda. World Dev. 2012, 40, 1610–1618. [Google Scholar] [CrossRef]
- Roy, R.; Shivamurthy, M.; Radhakrishna, R. Impact of value addition training on participants of farmers training institutes. World Appl. Sci. J. 2013, 22, 1401–1411. [Google Scholar] [CrossRef]
- Ntshangase, N.L.; Muroyiwa, B.; Sibanda, M. Farmers’ perceptions and factors influencing the adoption of no-till conservation agriculture by small-scale farmers in Zashuke, KwaZulu-Natal Province. Sustainability 2018, 10, 555. [Google Scholar] [CrossRef]
- Brem, R.M.; Obare, G.A.; Owuor, G. Is value addition in honey a panacea for poverty reduction in the asal in Africa? Empirical evidence from Baringo District, Kenya. In Proceedings of the Joint 3rd African Association of Agricultural Economists (AAAE) and 48th Agricultural Economists Association of South Africa (AEASA) Conference, Cape Town, South Africa, 19–23 September 2010. [Google Scholar]
- Danso-Abbeam, G.; Antwi Bosiako, J.; Ehiakpor, D.; Mabe, F.; Aye, G. Adoption of improved maize variety among farm households in the northern region of Ghana. Cogent Econ. Finance 2017, 5, 1416896. [Google Scholar] [CrossRef]
- Islam, K.Z.; Sumelius, J.; Bäckman, S. Do differences in technical efficiency explain the adoption rate of HYV rice? Evidence from Bangladesh. Agric. Econ. Rev. 2012, 13, 93–104. [Google Scholar]
- Tripp, R.; Gisselquist, D. A Fresh Look at Agricultural Input Regulation; Natural Resource Perspectives; Overseas Development Institute (ODI): London, UK, March 1996. [Google Scholar]
- Wang, B.; Dong, F.; Chen, M.; Zhu, J.; Tan, J.; Fu, X.; Chen, S. Advances in recycling and utilization of agricultural wastes in China: Based on environmental risk, crucial pathways, influencing factors, policy mechanism. Procedia Environ. Sci. 2016, 31, 12–17. [Google Scholar] [CrossRef]
- Oseni, G.; Corral, P.; Goldstein, M.; Winters, P. Explaining gender differentials in agricultural production in Nigeria. In African Region Gender Practice Policy Brief; The World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Kilic, T.; Palacios-Lopez, A.; Goldstein, M. Caught in a productivity trap: A distributional perspective on gender differences in Malawian agriculture. World Dev. 2015, 70, 416–463. [Google Scholar] [CrossRef]
- Njobe, B. Women and Agriculture: The Untapped Opportunity in the Wave of Transformation; Background Paper; African Development Bank: Abidjan, Cote d’Ivoire, 2015. [Google Scholar]
- Emmanuel, D.; Owusu-Sekyere, E.; Owusu, V.; Jordaan, H. Impact of agricultural extension service on adoption of chemical fertilizer: Implications for rice productivity and development in Ghana. NJAS-Wagening. J. Life Sci. 2016, 79, 41–49. [Google Scholar] [CrossRef]
- Chand, R.; Prasanna, P.L.; Singh, A. Farm size and productivity: Understanding the strengths of smallholders and improving their livelihoods. Econ. Political Wkly. 2011, 25, 5–11. [Google Scholar]
- Ladvenicova, J.; Miklovicova, S. The relationship between farm size and productivity in Slovakia. Visegrad J. Bioecon. Sustain. Devel. 2015, 4, 46–50. [Google Scholar] [CrossRef]
- Singh, R.K.P.; Kumar, A.; Singh, K.M.; Chandra, N.; Bharati, R.C.; Kumar, U.; Kumar, P. Farm size and productivity relationship in smallholder farms: Some empirical evidences from Bihar, India. J. Community Mobilization Sustain. Dev. 2018, 13, 61–67. [Google Scholar]
- Ahmad, M.; Jadoon, M.A.; Ahmad, I.; Khan, H. Impact of trainings imparted to enhance agricultural production in district Mansehra. Sarhad J. Agric. 2007, 23, 1211. [Google Scholar]
- Ulimwengu, J.; Badiane, O. Vocational training and agricultural productivity: Evidence from rice production in Vietnam. J. Agric. Educ. Ext. 2010, 16, 399–411. [Google Scholar] [CrossRef]
- Ndour, C.T. Effects of human capital on agricultural productivity in Senegal. World Sci. News 2017, 64, 34–43. [Google Scholar]
- Liverpool-Tasie, L.S.; Kuku, O.; Ajibola, A. Review of Literature on Agricultural Productivity, Social Capital and Food Security in Nigeria; NSSP Working Paper 21; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2011; Available online: http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/126846 (accessed on 7 September 2018).
- Mawejje, J.; Terje Holden, S. Does social network capital buy higher agricultural prices? A case of coffee in Masaka district, Uganda. Int. J. Soc. Econ. 2014, 41, 573–585. [Google Scholar] [CrossRef]
- Jacques, D.C.; Marinho, E.; d’Andrimont, R.; Waldner, F.; Radoux, J.; Gaspart, F.; Defourny, P. Social capital and transaction costs in millet markets. Heliyon 2018, 4, e00505. [Google Scholar] [CrossRef] [PubMed]
- Wossen, T.; Berger, T.; Di Falco, S. Social capital, risk preference and adoption of improved farm land management practices in Ethiopia. Agric. Econ. 2015, 46, 81–97. [Google Scholar] [CrossRef]
- Amare, M.; Shiferaw, B. Nonfarm employment, agricultural intensification, and productivity change: Empirical findings from Uganda. Agric. Econ. 2017, 48, 59–72. [Google Scholar] [CrossRef]
- Baloch, M.A.; Thapa, G.B. The effect of agricultural extension services: Date farmers’ case in Balochistan, Pakistan. J. Saudi Soc. Agric. Sci. 2016, 17, 282–289. [Google Scholar] [CrossRef]
Variables | SP (n = 192) | PP (n = 199) | PM (n = 42) | PPM (n = 49) | POOLED (n = 482) | Chi Test |
---|---|---|---|---|---|---|
Gender of farmer (%) | 77 *** | |||||
Male | 91.15 | 54.77 | 92.86 | 62.50 | 73.39 | |
Female | 8.85 | 45.23 | 7.14 | 37.50 | 26.62 | |
Age of farmer (mean years) | 48.82 (15.38) | 45.98 (11.95) | 52.93 (14.50) | 46.57 (10.02) | 47.78 (20.14) | 9.35 *** |
Household size(mean) | 7.08 (4.23) | 6.41 (2.84) | 9.62 (6.55) | 8.00 (3.91) | 7.11 (4.06) | 15.12 *** |
Years of education of farmer (mean) | 7.28 (4.75) | 6.59 (5.08) | 5.60 (4.91) | 7.47 (5.63) | 6.87 (5.01) | 5.57 |
Years of experience (mean) | 21.38 (14.19) | 17.50 11.58) | 20.14 (12.63) | 19.92 (10.19) | 19.52 (12.74) | 8.53 ** |
Land area used (ha; mean) | 2.34 (4.07) | 1.85 (2.26) | 4.59 (8.48) | 3.33 (5.28) | 2.43 (4.27) | 8.89 *** |
Received agricultural training (%) | 20.83 | 31.16 | 11.90 | 24.49 | 24.69 | 9.70 *** |
Use Credit (%) | 23.44 | 24.62 | 23.81 | 42.86 | 25.93 | 8.20 ** |
Registration of agricultural enterprise (%) | 1.56 | 0.00 | 4.76 | 6.12 | 1.66 | 11.82 *** |
Access to extension services (%) | 22.40 | 29.65 | 23.81 | 36.73 | 26.97 | 5.39 |
Membership of Social group (%) | 36.46 | 39.70 | 38.10 | 55.10 | 39.83 | 5.73 |
Variable Items | 2017 | 2016 | 2015 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SP | PP | PM | PPM | POOLED | SP | PP | PM | PPM | POOLED | SP | PP | PM | PPM | POOLED | |
Revenue (N) | 332,414.9 | 570,144.2 | 5,496,025 | 794,252 | 984,329 | 297,573.1 | 645,213.9 | 4,135,661 | 767,969.1 | 823,360.7 | 282,737.1 | 707,896.9 | 2,915,499 | 546,430.5 | 657,614.7 |
Labour costs (N) | 122,726.6 | 191,574.4 | 195,997.6 | 171,051 | 162,448.5 | 86,704.04 | 906,722.2 | 150,317.3 | 131,846.9 | 435,391.5 | 80,584.64 | 895,209 | 128,694.6 | 138,913.3 | 427,034.8 |
Seed cost (N) | 19,156.25 | 206,835.5 | 227,514.3 | 178,809.6 | 131,028.1 | 15,020.83 | 182,789.7 | 214,835.7 | 142,353.8 | 114,642.3 | 14,597.66 | 179,402.8 | 191,175 | 115,807.9 | 108,315 |
Power (N) | 9186.458 | 30,148.39 | 8566.667 | 39,218.37 | 20,839.89 | 7594.531 | 20,658.62 | 8463.095 | 27,274.71 | 15,064.58 | 6927.865 | 20,866.33 | 6264.286 | 25,481.63 | 14,510.89 |
Transportation (N) | 17,056.27 | 31,052.76 | 52,100 | 44,675.51 | 28,696.27 | 10,778.14 | 20,873.62 | 48,476.19 | 31,434.69 | 20,331.02 | 9366.276 | 17,705.53 | 42,988.1 | 24,053.06 | 17,232 |
Period/Technical Efficiency | CRS | VRS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SP | PP | PM | PPM | POOLED | SP | PP | PM | PPM | POOLED | |
2015 | 0.836 | 0.825 | 0.770 | 0.894 | 0.732 | 0.865 | 0.881 | 0.840 | 0.937 | 0.806 |
2016 | 0.833 | 0.808 | 0.737 | 0.895 | 0.718 | 0.859 | 0.868 | 0.833 | 0.943 | 0.803 |
2017 | 0.839 | 0.812 | 0.761 | 0.911 | 0.716 | 0.881 | 0.874 | 0.842 | 0.948 | 0.796 |
System/Growth Indices | 2016 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
SP | PP | PM | PPM | Pooled | SP | PP | PM | PPM | Pooled | |
Efficiency change | 0.997 | 0.978 | 0.960 | 1.004 | 0.982 | 1.007 | 1.006 | 1.030 | 1.020 | 0.997 |
Technical change | 1.005 | 1.027 | 1.037 | 1.019 | 1.020 | 0.978 | 0.974 | 0.950 | 0.933 | 0.980 |
Pure technical efficiency change | 1.006 | 0.986 | 0.982 | 1.009 | 0.996 | 0.994 | 1.006 | 1.014 | 1.007 | 0.992 |
Scale efficiency change | 0.991 | 0.992 | 0.977 | 0.995 | 0.986 | 1.013 | 1.000 | 1.016 | 1.013 | 1.005 |
Total factor productivity change | 1.002 | 1.005 | 0.995 | 1.023 | 1.002 | 0.985 | 0.980 | 0.979 | 0.952 | 0.976 |
Selection Model | Productivity Equation | ||
---|---|---|---|
Value Adders/Non Value Adders | Value Adders | Non Value Adders | |
Constant | 0.552 *** (0.181) | 5.322 *** (0.137) | 4.592 *** (0.189) |
Gender of farmer (base = female) | −1.019 *** (0.094) | 0.347 *** (0.076) | 0.471 *** (0.117) |
Age of farmer | 0.005 (0.003) | 0.005 (0.003) | −0.008 *** (0.003) |
Land area | 0.021 *** (0.010) | −0.058 *** (0.007) | −0.079 *** (0.008) |
Years of education | −0.028 *** (0.008) | 0.000 (0.006) | 0.008 (0.007) |
Agricultural training | 0.187 ** (0.094) | −0.197 *** (0.074) | −0.007 (0.082) |
Non-farm activities | 0.075 (0.073) | 0.032 (0.059) | −0.106 * (0.063) |
Access to extension | 0.278 *** (0.092) | 0.142 ** (0.073) | −0.163 ** (0.078) |
Years of experience | −0.008 *** (0.003) | −0.010 *** (0.003) | 0.004 (0.003) |
Access to credit | 0.014 (0.083) | −0.101 (0.064) | 0.045 (0.071) |
Membership of social group | 0.098 (0.072) | 0.248 *** (0.058) | 0.010 (0.063) |
Marital status (base = single) | 0.172 ** (0.082) | ||
Registration status of enterprise (base = no) | 1.113 *** (0.205) | ||
Level of utilization (base = Low) | |||
Medium | 0.399 *** (0.072) | ||
Full | 0.329 *** (0.075) | ||
Ln Sigma1 | −0.168 *** (0.042) | ||
Ln Sigma2 | −0.188 *** (0.057) | ||
Rho1 | 0.615 *** (0.082) | ||
Rho2 | −0.895 *** (0.034) | ||
LR test of independence | 24.99 *** |
Mean | t-Test | |
---|---|---|
Unconditional | ||
5.048(0.010) | ||
4.395 (0.010) | ||
ATE | 0.653 (0.014) | 46.92 *** |
Conditional | ||
5.392 (0.011) | ||
5.128 (0.013) | ||
ATT | 0.263 (0.010) | 14.91 *** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeyemo, T.A.; Okoruwa, V.O. Value Addition and Productivity Differentials in the Nigerian Cassava System. Sustainability 2018, 10, 4770. https://doi.org/10.3390/su10124770
Adeyemo TA, Okoruwa VO. Value Addition and Productivity Differentials in the Nigerian Cassava System. Sustainability. 2018; 10(12):4770. https://doi.org/10.3390/su10124770
Chicago/Turabian StyleAdeyemo, Temitayo A., and Victor O. Okoruwa. 2018. "Value Addition and Productivity Differentials in the Nigerian Cassava System" Sustainability 10, no. 12: 4770. https://doi.org/10.3390/su10124770
APA StyleAdeyemo, T. A., & Okoruwa, V. O. (2018). Value Addition and Productivity Differentials in the Nigerian Cassava System. Sustainability, 10(12), 4770. https://doi.org/10.3390/su10124770