Research on Technological Innovation Efficiency of Tourist Equipment Manufacturing Enterprises
Abstract
:1. Introduction
2. Literature Review
3. Methods, Variables, and Data Descriptions
3.1. Research Methods
3.1.1. Data Envelopment Analysis (DEA)
3.1.2. DEA–Malmquist
3.2. Description of Variables and Indicators
3.3. Data Source
4. Empirical Research
4.1. Analysis of Static DEA
4.2. Analysis of DEA–Malmquist
4.3. Analysis of Tobit Regression Model
5. Conclusions and Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Firm | 2017 | 2016 | 2015 | 2014 | ||||||||
CRS | VRS | SCA | CRS | VRS | SCA | CRS | VRS | SCA | CRS | VRS | SCA | |
DMU1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
DMU2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
DMU3 | 0.657 | 0.760 | 0.865 | 0.325 | 0.326 | 0.999 | 0.359 | 0.422 | 0.851 | 0.262 | 0.384 | 0.682 |
DMU4 | 0.268 | 0.406 | 0.661 | 0.294 | 0.475 | 0.620 | 0.346 | 0.513 | 0.674 | 0.349 | 0.543 | 0.642 |
DMU5 | 0.291 | 0.296 | 0.983 | 0.352 | 0.417 | 0.845 | 0.405 | 0.856 | 0.473 | 0.132 | 0.199 | 0.663 |
DMU6 | 0.437 | 0.554 | 0.790 | 0.946 | 1.000 | 0.946 | 0.682 | 1.000 | 0.682 | 0.574 | 0.757 | 0.758 |
DMU7 | 0.345 | 0.494 | 0.700 | 0.465 | 1.000 | 0.465 | 0.691 | 1.000 | 0.691 | 0.415 | 1.000 | 0.415 |
DMU8 | 0.128 | 0.132 | 0.970 | 0.097 | 0.103 | 0.939 | 0.307 | 0.379 | 0.810 | 1.000 | 1.000 | 1.000 |
DMU9 | 0.825 | 1.000 | 0.825 | 0.692 | 1.000 | 0.692 | 0.919 | 1.000 | 0.919 | 1.000 | 1.000 | 1.000 |
DMU10 | 0.746 | 1.000 | 0.746 | 0.824 | 1.000 | 0.824 | 0.997 | 1.000 | 0.997 | 0.898 | 1.000 | 0.898 |
DMU11 | 0.377 | 0.385 | 0.979 | 0.436 | 0.558 | 0.782 | 0.638 | 0.845 | 0.755 | 0.578 | 0.755 | 0.766 |
DMU12 | 0.738 | 0.766 | 0.963 | 0.455 | 0.514 | 0.886 | 0.498 | 0.556 | 0.895 | 0.627 | 0.639 | 0.981 |
Mean | 0.568 | 0.649 | 0.847 | 0.574 | 0.699 | 0.833 | 0.654 | 0.798 | 0.812 | 0.653 | 0.773 | 0.817 |
Std. | 0.285 | 0.299 | 0.120 | 0.294 | 0.319 | 0.162 | 0.261 | 0.243 | 0.156 | 0.307 | 0.268 | 0.184 |
Firm | 2013 | 2012 | 2011 | |||||||||
CRS | VRS | SCA | CRS | VRS | SCA | CRS | VRS | SCA | ||||
DMU1 | 0.621 | 1.000 | 0.621 | 1.000 | 1.000 | 1.000 | 0.978 | 1.000 | 0.978 | |||
DMU2 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |||
DMU3 | 0.662 | 0.666 | 0.994 | 0.671 | 0.913 | 0.735 | 0.530 | 0.838 | 0.633 | |||
DMU4 | 0.353 | 0.492 | 0.717 | 0.040 | 0.143 | 0.279 | 0.914 | 0.974 | 0.938 | |||
DMU5 | 0.050 | 0.107 | 0.468 | 0.052 | 0.055 | 0.941 | 0.764 | 0.775 | 0.987 | |||
DMU6 | 0.701 | 0.701 | 1.000 | 0.687 | 0.790 | 0.869 | 0.825 | 0.899 | 0.918 | |||
DMU7 | 0.381 | 1.000 | 0.381 | 0.396 | 1.000 | 0.396 | 0.238 | 1.000 | 0.238 | |||
DMU8 | 0.872 | 1.000 | 0.872 | 0.789 | 1.000 | 0.789 | 0.430 | 0.447 | 0.962 | |||
DMU9 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |||
DMU10 | 0.740 | 0.850 | 0.871 | 0.600 | 0.799 | 0.752 | 0.427 | 0.507 | 0.843 | |||
DMU11 | 0.829 | 0.834 | 0.994 | 0.724 | 0.924 | 0.783 | 1.000 | 1.000 | 1.000 | |||
DMU12 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | |||
Mean | 0.684 | 0.804 | 0.827 | 0.663 | 0.802 | 0.795 | 0.759 | 0.870 | 0.875 | |||
Std. | 0.284 | 0.266 | 0.216 | 0.331 | 0.323 | 0.228 | 0.266 | 0.190 | 0.217 |
References
- The State Council of China. China’s Manufacturing 2025. Available online: http://www.miit.gov.cn/n973401/n1234620/n1234622/c4409653/content.html (accessed on 5 December 2018).
- Cheng, J.; Lin, L.U.; Zhu, F.B. On the study progress of tourist industrial merging and its enlightenment. Tour. Trib. 2011, 26, 13–19. [Google Scholar]
- The State Council of China. The Implementation Suggestions on Promoting the Development of the Tourist Equipment Manufacturing Industry. Available online: http://www.miit.gov.cn/n1146290/n4388791/c4325772/content.html (accessed on 27 August 2018).
- Li, B.W. Research on the concept, cultivation and development of tourist manufacturing industry. Inq. Econ. Issues 2014, 3, 186–190. [Google Scholar]
- Geng, S.T.; Yang, S.F. Value chain upgrade strategy of China’s tourist equipment manufacturing. Acad. Exchang. 2015, 258, 139–143. [Google Scholar]
- Liu, W.Y. Empirical analysis on agglomeration in China’s equipment manufacturing industry. Econ. Theory Bus. Manag. 2011, 6, 103–112. [Google Scholar]
- Wu, L. Research on the evolution of the breakthrough innovation mechanism for equipment manufacturing industry. Sci. Sci. Manag. S T 2014, 35, 121–128. [Google Scholar]
- Niu, Z.D.; Zhang, Q.X. An analysis of technological innovation efficiency of manufacturing equipment industries in China. J. Quant. Tech. Econ. 2012, 11, 51–57. [Google Scholar]
- Chen, C.; Wang, Y. The international competitiveness of China’s equipment manufacturing industry and its technical progress effects. Forum Sci. Technol. China 2014, 12, 80–86. [Google Scholar]
- Zhang, D.N.; Chen, Y. Study on development level and mode of equipment manufacturing industry in China. J. Quant. Tech. Econ. 2014, 31, 99–114. [Google Scholar]
- Ge, J.P.; Lin, L.; Huang, M. Innovation Management: The mechanism and paths of enhancing the international competitiveness of China’s equipment manufacturing industry through information technology. In Proceedings of the 9th Wuhan International Conference on E-Business, Wuhan, China, 29 May 2010. [Google Scholar]
- Gereffi, G.; Humphrey, J.; Economy, T.S. The governance of global value chains. Rev. Int. Political Econ. 2005, 12, 78–104. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Z.; Liu, Z.B. Determinants of Chinese machinery industries’ position in GVCS: Based on input-output empirical analysis of divided industries. J. Int. Trade 2011, 4, 115–125. [Google Scholar]
- Kaplinsky, R.; Morris, M. Value chain analysis: A tool for enhancing export supply policies. Int. J. Technol. Learn. Innov. Dev. 2008, 1, 283–308. [Google Scholar] [CrossRef]
- Garbie, I.H. An analytical technique to model and assess sustainable development index in manufacturing enterprises. Int. J. Prod. Res. 2014, 52, 4876–4915. [Google Scholar] [CrossRef]
- Lovdal, N.; Neumannn, F. Internationalization as a strategy to overcome industry barriers: An assessment of the marine energy industry. Energy Policy 2011, 39, 1093–1100. [Google Scholar] [CrossRef]
- Xie, B.C.; Duan, N.; Wang, Y.S. Environmental efficiency and abatement cost of China’s industrial sectors based on a three-stage data envelopment analysis. J. Clean. Prod. 2017, 153, 626–636. [Google Scholar] [CrossRef]
- Si, L.B.; Qiao, H.Y. Evaluation of technological innovation efficiency in equipment manufacturing industry based on input orientation—Panel data analysis based on data envelopment model. J. Discret. Math. Sci. Cryptogr. 2017, 20, 1381–1386. [Google Scholar] [CrossRef]
- Fan, D.C.; Ming-Yue, D.U. Research on technological innovation resource allocation efficiency and its influencing factors in high-end equipment manufacturing industries—Based on the empirical analysis of the two-stage stoned-tobit model. Chin. J. Manag. Sci. 2018, 26, 13–24. [Google Scholar]
- Lu, F.Y.; Chang, Y.H.; Lu, X. Performance analysis of R&D input and output in China’s equipment manufacturing industry—based on the three national economic censuses. J. Ind. Technol. Econ. 2016, 4, 153–160. [Google Scholar]
- Xiao, J.H.; Xie, K.; Wu, Y.; Rang, J.S. Coevolution of enterprise and consumer to construct dynamic capability: A case Study of b2c e-commerce dream bazaar. Manag. World. 2014, 8, 134–151. [Google Scholar]
- Etzkowitz, H.; Leydesdorff, L. The triple helix—University-industry-government relations: A laboratory for knowledge based economic development. Soc. Sci. Electron. Publ. 2014, 14, 14–19. [Google Scholar]
- Villarreal, O.; Calvo, N. From the Triple Helix model to the Global Open Innovation model: A case study based on international cooperation for innovation in Dominican Republic. J. Eng. Technol. Manag. 2015, 35, 71–92. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Campbell, D.F. ‘Mode 3’ and ‘Quadruple Helix’: Toward a 21st century fractal innovation ecosystem. Int. J. Technol. Manag. 2009, 46, 201–234. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Campbell, D.F. Open innovation diplomacy and a 21st century fractal research, education and innovation (FREIE) ecosystem: Building on the quadruple and quintuple helix innovation concepts and the “mode 3” knowledge production system. J. Knowl. Econ. 2011, 2, 327–372. [Google Scholar] [CrossRef]
- Okamuro, H. Determinants of successful R&D cooperation in Japanese small businesses: The impact of organizational and contractual characteristics. Res. Policy 2007, 36, 1529–1544. [Google Scholar] [Green Version]
- Zhou, K.Z.; Gao, G.Y.; Zhao, H. State ownership and firm innovation in China: An integrated view of institutional and efficiency logics. Adm. Sci. Q. 2017, 62, 375–404. [Google Scholar] [CrossRef]
- Chen, Q.J. Does government spending on science and technology improve the efficiency of enterprise technology innovation? Bus. Manag. J. 2017, 554, 6–19. [Google Scholar]
- Herrera, L.; Sanchez-Gonzalez, G. Firm size and innovation policy. Int. Small Bus. J. 2013, 31, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Feng, B.; Wu, Y.; Wang, L.J. Do government grants promote innovation efficiency in China’s high-tech industries? Technovation. 2016, 57, 4–13. [Google Scholar] [CrossRef]
- Albats, E.; Fiegenbaum, I.; Cunningham, J.A. A micro level study of university industry collaborative lifecycle key performance indicators. J. Technol. Transf. 2018, 43, 389–431. [Google Scholar] [CrossRef]
- Chen, X.S.; Wang, H.Q.; Gu, Y. The effect of innovation environment on the equipment manufacturing industry in China. In Proceedings of the 19th International Conference on Industrial Engineering and Engineering Management: Management System Innovation, Changsha, China, 27 October 2012. [Google Scholar]
- Banker, R.D.; Natarajan, R. Evaluating contextual variables affecting productivity using data envelopment analysis. Oper. Res. 2008, 56, 48–58. [Google Scholar] [CrossRef]
- Huang, C.; Dai, C.; Guo, M. A hybrid approach using two-level DEA for financial failure prediction and integrated SE-DEA and GCA for indicators selection. Appl. Math. Comput. 2015, 251, 431–441. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1979, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Guan, J.C.; Yam, R.C.; Mok, C.K.; Ma, N. A study of the relationship between competitiveness and technological innovation capability based on DEA models. Eur. J. Oper. Res. 2006, 170, 971–986. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J. Environmental DEA method for assessing productivity of European countries. Technol. Econ. Dev. Econ. 2017, 23, 589–607. [Google Scholar] [CrossRef]
- Hu, B.G.; Pang, J. A research on empirical analysis of technological collaborative innovation of agricultural industrialization leading enterprises: Based on dynamic DEA and multinomial logistic regression model. Econ. Probl. 2016, 2, 74–79. [Google Scholar]
- Malmquist, S. Index numbers and indifference surfaces. Trabajos de Estadística 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Hashimoto, A.; Haneda, S. Measuring the change in R&D efficiency of the Japanese pharmaceutical industry. Res. Policy 2008, 37, 1829–1836. [Google Scholar] [Green Version]
- Xu, J.; Qu, X. Research on the efficiency and influencing factors of environmental technology innovation of equipment manufacturing industries. Oper. Res. Manag. Sci. 2015, 1, 035. [Google Scholar]
- Klumpp, M. Do forwarders improve sustainability efficiency? Evidence from a European DEA Malmquist Index Calculation. Sustainability 2017, 9, 842. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M. Productivity growth, technical progress, and efficiency change in industrialized countries: Reply. Am. Econ. Rev. 1997, 87, 1040–1044. [Google Scholar]
- Gu, N.H.; Li, J.F. An empirical analysis on the regional disparity of technical efficiency realized in China’s service industries. Econ. Res. J. 2006, 1, 46–56. [Google Scholar]
- Xia, W.; Zhong, P. Study on R&D dynamic efficiency of Chinese manufacturing industries based on DEA-Malmquist Index. R D Manag. 2011, 2, 009. [Google Scholar]
- Dong, X.Q.; Zhao, J.; Yuan, P.W. Research on innovation efficiency loss of state-owned enterprises. China Ind. Econ. 2014, 311, 97–108. [Google Scholar]
- Wen, J.; Feng, G. Heterogeneous institutional investor, nature of firm and independent innovation. Econ. Res. J. 2012, 3, 53–64. [Google Scholar]
- Jiang, J.; Guan, J.C. An analysis of relative efficiency to Chinese low-and medium-technology sectors. Stud. Sci. Sci. 2008, 26, 1325–1332. [Google Scholar]
- Wang, Z.B.; Li, C.B. The impact of asset-light strategy on firms’ profit margin—Evidence from China’s manufacturing firms. China Ind. Econ. 2015, 327, 108–121. [Google Scholar]
- Li, J.Y.; Mu, Y.; Economics, S.O.; University, N. Innovation performance of Chinese public companies based on DEA method. Sci. Sci. Manag. S T 2015, 36, 11–121. [Google Scholar]
- Nazarko, J.; Chodakowska, E. Labour efficiency in construction industry in Europe based on frontier methods: Data envelopment analysis and stochastic frontier analysis. J. Civ. Eng. Manag. 2017, 23, 787–795. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, J.; Zhang, J.; Ma, J.; Zhang, Y. Total factor productivity assessment of tourism industry: Evidence from China. Asia Pac. J. Tour. Res. 2015, 20, 280–294. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, X.; Sangaiah, A.K. A Study of Green Development Mode and Total Factor Productivity of the Food Industry Based on the Industrial Internet of Things. IEEE Commun. Mag. 2018, 56, 72–78. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, S.; Xu, G.; Zhou, G. Quantitative analysis and evaluation of enterprise group financial company efficiency in China. Sustainability 2018, 10, 3210. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J. Measuring productivity of construction industry in Europe with Data Envelopment Analysis. Procedia Eng. 2015, 122, 204–212. [Google Scholar]
- Castellacci, F.; Natera, J.M. The dynamics of national innovation systems: A panel cointegration analysis of the coevolution between innovative capability and absorptive capacity. Res. Policy 2013, 42, 579–594. [Google Scholar] [CrossRef] [Green Version]
Variable | Indicator | Description of Indicator |
---|---|---|
Input variable | X1: Intensity of R and D personnel | = number of R and D personnel/total number of employees |
X2: Intensity of R and D expenditure | = R and D expenditure/operating income | |
Output variable | Y1: Number of patent applications | = number of patent applications |
Y2: Profit ratio of sales | = Total profit/operating income | |
Y3: Total labor productivity | = operating income/total number of employees |
Year | EC | TC | PEC | SEC | MI |
---|---|---|---|---|---|
2011–2012 | 0.681 | 1.056 | 0.752 | 0.906 | 0.719 |
2012–2013 | 1.190 | 0.573 | 1.126 | 1.056 | 0.681 |
2013–2014 | 0.991 | 1.111 | 0.988 | 1.003 | 1.101 |
2014–2015 | 1.071 | 0.988 | 1.067 | 1.003 | 1.058 |
2015–2016 | 0.808 | 0.977 | 0.789 | 1.024 | 0.790 |
2016–2017 | 1.003 | 0.989 | 0.954 | 1.051 | 0.993 |
Mean | 0.941 | 0.929 | 0.936 | 1.006 | 0.874 |
Firm | EC | TC | PEC | SEC | MI |
---|---|---|---|---|---|
1 | 1.004 | 1.063 | 1.000 | 1.004 | 1.067 |
2 | 1.000 | 0.825 | 1.000 | 1.000 | 0.825 |
3 | 1.037 | 1.023 | 1.000 | 1.037 | 1.060 |
4 | 0.815 | 0.604 | 0.864 | 0.943 | 0.492 |
5 | 0.852 | 0.797 | 0.852 | 0.999 | 0.679 |
6 | 0.900 | 0.997 | 0.926 | 0.972 | 0.897 |
7 | 1.064 | 1.027 | 0.889 | 1.197 | 1.092 |
8 | 0.817 | 0.967 | 0.816 | 1.001 | 0.790 |
9 | 0.968 | 0.957 | 1.000 | 0.968 | 0.927 |
10 | 1.097 | 1.020 | 1.120 | 0.980 | 1.119 |
11 | 0.850 | 0.980 | 0.853 | 0.996 | 0.833 |
12 | 0.951 | 1.006 | 0.957 | 0.994 | 0.957 |
Mean | 0.941 | 0.929 | 0.936 | 1.006 | 0.874 |
Dependent Variable | MI | EC | TC | PEC | SEC |
---|---|---|---|---|---|
Intercept | 0.674 *** | 0.833 *** | 0.834 *** | 0.963 *** | 0.862 *** |
(0.07) | (0.05) | (0.08) | (0.08) | (0.04) | |
Ownership | −0.017 | −0.011 | 0.011 | −0.120 * | 0.110 *** |
(0.05) | (0.04) | (0.04) | (0.05) | (0.03) | |
International | 0.235 *** | 0.137 *** | 0.106 * | 0.100 * | 0.061 |
(0.06) | (0.05) | (0.05) | (0.05) | (0.04) | |
University | 0.165 *** | 0.076 * | 0.093 * | −0.016 | 0.107 *** |
(0.04) | (0.04) | (0.04) | (0.05) | (0.03) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Deng, N.; Gao, H. Research on Technological Innovation Efficiency of Tourist Equipment Manufacturing Enterprises. Sustainability 2018, 10, 4826. https://doi.org/10.3390/su10124826
Lin Y, Deng N, Gao H. Research on Technological Innovation Efficiency of Tourist Equipment Manufacturing Enterprises. Sustainability. 2018; 10(12):4826. https://doi.org/10.3390/su10124826
Chicago/Turabian StyleLin, Yuanyuan, Nianqi Deng, and Hailian Gao. 2018. "Research on Technological Innovation Efficiency of Tourist Equipment Manufacturing Enterprises" Sustainability 10, no. 12: 4826. https://doi.org/10.3390/su10124826
APA StyleLin, Y., Deng, N., & Gao, H. (2018). Research on Technological Innovation Efficiency of Tourist Equipment Manufacturing Enterprises. Sustainability, 10(12), 4826. https://doi.org/10.3390/su10124826