Perception of User Criteria in the Context of Sustainability of Modern Methods of Construction Based on Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Wood Construction User Parameters in the Context of Efficiency and Sustainability
2.2. Socio-Economic Survey Methodology and the Structure of Parameters
- Dissatisfaction (weight −2)
- Partial satisfaction (weight −1)
- Neutral evaluation (weight 0)
- Partial satisfaction (weight +1)
- Satisfaction (weight +2)
3. Results
- -
- -
- Off-site technologies (prefabricated wooden constructions) consist of:
- -
Analysis of the Sustainability of Assembled Constructions Based on Wood
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Union (EU). Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC; Directives; Office Journal of the EU: Brussels, Belgium, 2012. [Google Scholar]
- European Council for an Energy Efficient Economy (ECEEE). Products Covered and Their Status in the EuP Process; ECEEE: Stockholm, Sweden, 2013. [Google Scholar]
- International Energy Agency (IEA). Technology Roadmap—Energy Efficient Building Envelopes; OECD: Paris, France, 2013. [Google Scholar]
- Ministry of Environment of the Slovak Republic. The National Sustainable Development Strategy for Slovak Republic. 2014. Available online: https://lnk.sk/glvP (accessed on 4 September 2017).
- Zuo, J.; Zhao, Z.Y. Green building research—Current status and future agenda: A review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Pearce, D. The Social and Economic Value of Construction—The Construction Industry’s Contribution to Sustainable Development; CRISP: London, UK, 2003. [Google Scholar]
- Tsai, C.Y.; Chang, A.S. Framework for developing construction sustainability items: The example of highway design. J. Clean. Prod. 2012, 20, 127–136. [Google Scholar] [CrossRef]
- Ylmaz, M.; Bakis, A. Sustainability in construction. Procedia Soc. Behav. Sci. 2015, 195, 2253–2262. [Google Scholar] [CrossRef]
- Huttmanová, E. Selected Aspects and Problems of Evaluation of Sustainable Development. 2017. Available online: http://www.pulib.sk/elpub2/FM/Kotulic14/pdf_doc/11.pdf (accessed on 2 October 2017).
- Mederly, P. Environmentálne Indikátory Trvalo Udržateľného Rozvoja. Ph.D. Thesis, Fakulta Prírodných vied UKF v Nitre, Nitra, Slovakia, 2009. [Google Scholar]
- Tambouratzis, T. Analysing the construction of the environmental sustainability index 2005. Int. J. Environ. Sci. Technol. 2016, 13, 2817–2836. [Google Scholar] [CrossRef]
- Pošiváková, T.; Hromada, R.; Veszelits Laktičová, K.; Vargová, M.; Pošivák, J.; Molnár, L. Selected Aspects of Integrated Environmental Management. Ann. Agric. Environ. Med. 2018. [Google Scholar] [CrossRef]
- Baird, G. Sustainable Buildings in Practice; Routledge: Oxford, UK, 2007. [Google Scholar]
- Pan, W.; Gibb, A.F.; Dainty, A.R.J. Perspective of UK housebuilders on the use of offsite modern methods of construction. Constr. Manag. Econ. 2007, 25, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Vinodh, S.; Jayakrishna, K.; Kumar, V.; Dutta, R. Development of decision support system for sustainability evaluation: A case study. Clean Technol. Environ. 2014, 16, 163–174. [Google Scholar] [CrossRef]
- Szekeres, K. Development trends of global construction industry and requirements on sustainable construction. Nehnuteľnosti Býv. 2009, 1, 1–11. [Google Scholar]
- Chen, Y.; Okudan, G.E.; Riley, D.R. Sustainable performance criteria for construction method selection in concrete buildings. Autom. Constr. 2010, 19, 235–244. [Google Scholar] [CrossRef]
- Smith, R.E.; Timberlake, J. Prefab Architecture: A Guide to Modular Design and Construction; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-0-470-27561-0. [Google Scholar]
- Burwood, S.; Jess, P. Modern Methods of Construction Evolution or Revolution? A BURA Steering and Development Forum Report; American Research Institute for Policy Development: New York, NY, USA, 2005; Available online: http://www.buildicf.co.uk/pdfs/1%20mmc%20evolution%20or%20revolution%20%20paper.pdf (accessed on 1 October 2017).
- Rajničová, L. Analýza možností využitia LCA v rozhodovacom procese v odpadovom hospodárstve. Novus Sci. 2007, 1, 489–493. [Google Scholar]
- Korytárová, J.; Hromádka, V.; Dufek, Z. Large city circle road Brno. Organ. Technol. Manag. Constr. Int. J. 2012, 3, 584–592. [Google Scholar] [CrossRef]
- Lupisek, A.; Nehasilova, M.; Mancik, S.; Zelezna, J.; Ruzicka, J.; Fiala, C.; Tywoniak, J.; Hajek, P. Desighn strategies of building with low embodied energy. Proc. Inst. Civ. Eng. Eng. Sustain. 2017, 170, 65–80. [Google Scholar]
- Yang, K.H.; Song, J.K.; Song, K.I. Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 2013, 39, 265–272. [Google Scholar] [CrossRef]
- Napolano, L.; Menna, C.; Asprone, D.; Prota, A.; Manfredi, G. LCA-based study on structural retrofit options for masonry buildings. Int. J. Life Cycle Assess. 2015, 20, 23–35. [Google Scholar] [CrossRef]
- Charmondusit, K.; Phatarachaisakul, S.; Prasertpong, P. The quantitative eco-efficiency measurement for small and medium enterprise: A case study of wooden toy industry. Clean Technol. Environ. 2014, 16, 935–945. [Google Scholar] [CrossRef]
- Strauss, A.; Frangopol, D.M.; Bergmeister, K. Life-Cycle and Sustainability of Civil Infrastructure Systems; CRC: London, UK, 2013. [Google Scholar]
- STN EN 15643-3. Sustainability of Construction. Assessment of Buildings. Part 3: Framework for Assessing Social Performance; CEN: Brussels Belgium, 2012. [Google Scholar]
- Report by the National Audit Office (RNAO). Using Modern Methods of Construction to Build Homes more Quickly and Efficiently; RNAO: London, UK, 2005. [Google Scholar]
- Gibb, A.G.F. Standardization and pre-assembly—Distinguishing myth from reality using case study research. Constr. Manag. Econ. 2001, 19, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Lovell, H.; Smith, S.J. Agencement in housing markets, the case of the UK construction industry. Geoforum 2010, 41, 457–468. [Google Scholar] [CrossRef]
- Arif, M.; Egbu, C. Making a case for offsite construction in China. Eng. Constr. Archit. Manag. 2010, 17, 536–548. [Google Scholar] [CrossRef]
- Blismas, N.; Wakefield, R. Concrete prefabricated housing via advances in systems technologies, development of a technology roadmap. Eng. Constr. Archit. Manag. 2009, 17, 99–110. [Google Scholar] [CrossRef]
- Lane, A. Barriers and Solutions to the Use of Modern Methods of Construction. 2006. Available online: https://lnk.sk/myST (accessed on 5 September 2017).
- Azman, M.N.A.; Ahamad, M.S.S.; Hilmi, N.D. The perspective view of Malaysian industrialized building system (IBS) under IBS precast manufacturing. In Proceedings of the 4th International Engineering Conference—Towards Engineering of 21st Century, Gaza City, Gaza Strip, 15–16 October 2012. [Google Scholar]
- Xie, X.; Lu, Y.; Gou, Z. Green Building Pro-Environment Behaviors: Are Green Users Also Green Buyers? Sustainability 2017, 9, 1703. [Google Scholar] [CrossRef]
- Kolb, J. Dřevostavby; Vydavateľstvo Grada Publishing: Praha, Czech Republic, 2008; ISBN 978-80-247-2275-7. [Google Scholar]
- Slovak Federation for Processors of Wood. 2017. Available online: http://www.zsdsr.sk/en/home (accessed on 4 September 2017).
- Nässén, J.; Hedenus, F.; Karlsson, S.; Holmberg, J. Concrete vs. wood in buildings—An energy system approach. Build. Environ. 2012, 51, 361–369. [Google Scholar] [CrossRef]
- Thanoon, W.A.M.; Peng, L.W.; Kadari, M.R.A.; Jaafar, M.S.; Salit, M.S. The essential characteristics of industrialised building system. In Proceedings of the International Conference on Industrialised Building Systems, Kuala Lumpur, Malaysia, 10–11 September 2003. [Google Scholar]
- Zgutova, K.; Decky, M.; Sramek, J.; Dreveny, I. Using of Alternative Methods at Earthworks Quality Control. Procedia Earth Planet. Sci. 2015, 15, 263–270. [Google Scholar] [CrossRef]
- Olsova, J.; Gašparik, J.; Stefunkova, Z.; Briatka, P. Interaction of the asphalt layers reinforced by glass-fiber mesh. In Proceedings of the 2nd International Conference on Engineering Sciences and Technologies, Tatranské Matliare, Slovak Republic, 20 June–1 July 2016; pp. 803–808. [Google Scholar]
- Antošová, N.; Minarovičová, K. The methodology for the selection of technologies for the removal of microorganisms from ETICS. Appl. Mech. Mater. Adv. Archit. Des. Constr. 2016, 820, 200–205. [Google Scholar] [CrossRef]
- Sathre, R.; O’Connor, J. Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ. Sci. Policy 2010, 13, 104–114. [Google Scholar] [CrossRef]
- Sebok, T.; Vondruska, M.; Kulisek, K. Influence of MSFC-type dispersant composition on the performance of soluble anhydrite binders. Cem. Concr. Res. 2001, 31, 1593–1599. [Google Scholar] [CrossRef]
- Gašparik, J.; Gašparík, M. Automated quality excellence evaluation. Gerontechnology 2012, 11, 84. [Google Scholar] [CrossRef]
- Bálintová, M.; Števulová, N. Volatile organic compounds as indoor air pollutants. Chem. Listy 2002, 96, 500. [Google Scholar]
- Minarovičová, K.; Antošová, N. Sustainability of ETICS maintenance technologies. Appl. Mech. Mater. Adv. Archit. Des. Constr. 2016, 820, 194–199. [Google Scholar] [CrossRef]
- Buratti, C.; Moretti, E.; Belloni, E.; Agosti, F. Development of Innovative Aerogel Based Plasters: Preliminary Thermal and Acoustic Performance Evaluation. Sustainability 2014, 6, 5839–5852. [Google Scholar] [CrossRef]
- Woloszyn, M.; Kalamees, T.; Abadie, M.O.; Steeman, M.; Kalagasidis, A.S. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Build. Environ. 2009, 44, 515–524. [Google Scholar] [CrossRef]
- Gustavsson, L.; Pingoud, K.; Sathre, R. Carbon dioxide balance ofwood substitution: Comparing concrete- and wood-framed buildings. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 667–691. [Google Scholar] [CrossRef]
- Takano, A.; Hughes, M.; Winter, S. A multidisciplinary approach to sustainable building material selection: A case study in a Finnish context. Build. Environ. 2014, 82, 526–535. [Google Scholar] [CrossRef]
- Soares, N.; Costa, J.J.; Gaspar, A.R.; Santos, P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficienc. Energy Build. 2013, 59, 82–103. [Google Scholar] [CrossRef]
- Moya, J.A.; Pardo, N.; Mercier, A. Energy Efficiency and CO2 Emissions: Prospective Scenarios for the Cement Industry; JRC: Petten, The Netherland, 2012. [Google Scholar]
- Gustavsson, L.; Joelsson, A. Life cycle primary energy analysis of residential buildings. Energy Build. 2010, 42, 210–220. [Google Scholar] [CrossRef]
- Sustainability of Construction Works—Assessment of Buildings—Part 3: Framework for the Assessment of Social Performance; EN 15643-3; Prepared by CEN/TC 350/WG 5; NSAI: Dublin, Ireland, 2012.
- Sustainability of Construction Works—Assessment of Buildings—Part 4: Framework for the Assessment of Economic Performance; EN 15643-4; Prepared by CEN/TC 350/WG 4; NSAI: Dublin, Ireland, 2012.
- Tepelnotechnické Vlastnosti Stavebných Konštrukcií a Budov; STN 73 0540; Tepelná Ochrana Budov; SÚTN: Bratislava, Slovakia, 2002.
- Sustainability of Construction. Assessment of Buildings. Part 4: A Framework for Assessing Economic Characteristics; STN EN 15643-4; NSAI: Dublin, Ireland, 2012. [Google Scholar]
- Sustainability of Construction. Assessment of the Environmental Performance of Buildings. Calculation Methods; STN EN 15978; NSAI: Dublin, Ireland, 2012. [Google Scholar]
- Ceder, Zrubové Stavby, Ceder. 2014. Available online: http://www.ceder.sk/ (accessed on 15 October 2017).
- Reinprecht, L. Zrubový Konštrukčný Systém, Mojdom. 2005. Available online: http://mojdom.zoznam.sk/cl/10027/95558/Zrubovy-konstrukcny-system (accessed on 12 September 2017).
- Dubjel, K.; Bobeková, E. Realizácia Rodinného Domu Drevenou Stĺpikovou Sústavou, Asb.sk. 2012. Available online: https://www.asb.sk/stavebnictvo/drevostavby/realizacia-rodinneho-domu-drevenou-stlpikovou-sustavou (accessed on 8 October 2017).
- Marshal-CZ, Výrobné Haly Pre Drevostavby. 2014. Available online: https://www.drevoportal.cz/entry/prps06-marshalcz (accessed on 2 September 2017).
- Knut, M. NES BAU. 2017. Available online: http://www.nesbau.sk/ (accessed on 7 October 2017).
- Pifko, H.; Špaček, R. Efektívne Bývanie; Vydavateľstvo Eurostav: Bratislava, Slovakia, 2008. [Google Scholar]
- Jain, R.K.; Taylor, J.E.; Peschiera, G. Assessing eco-feedback interface usage and design to drive energy efficiency in buildings. Energy Build. 2012, 48, 8–17. [Google Scholar] [CrossRef]
- Lausten, J. Energy efficiency requirements in building codes, energy efficiency policies for new buildings. In Support of the G8 Plan of Action; International Energy Agency, OECD/IEA: Paris, France, 2008. [Google Scholar]
- Block, M.; Bokalders, V. The Whole Building Handbook: “How to Design Healthy, Efficient and Sustainable Buildings”; RIBA Publishing: London, UK, 2010. [Google Scholar]
- Divoký, J. Marketing Survey of Public Opinion on the Use of Countryside in the South Bohemian Region. Ph.D. Thesis, Mendel University in Brno, Brno, Czech Republic, 2018. [Google Scholar]
- Roch, T. Marketing Survey of Public Opinion on the Use of Countryside in the Pardubice Region. Bachelor’s Thesis, Mendel University in Brno, Brno, Czech Republic, 2014. [Google Scholar]
- Václavek, L. Marketing Survey of Public Opinion on the Use of Countryside in the Brno. Bachelor’s Thesis, Mendel University in Brno, Brno, Czech Republic, 2013. [Google Scholar]
- Finch, G. Energy Efficient Building Enclosure Design Guidelines for Wood-Frame Buildings; RDH Building Engineering Ltd.: Vancouver, BC, Canada, 2013. [Google Scholar]
- Sathre, R.; Gustavsson, L. Using wood products to mitigate climate change: External costs and structural change. Appl. Energy 2009, 86, 251–257. [Google Scholar] [CrossRef]
- Herda, G. Building Sustainability Assessment and Benchmarking; United Nations Settlements Programme (UN-Habitat): Nairobi, Kenya, 2017. [Google Scholar]
- Dirlich, S. A Comparison of Assessment and Certification Schemes for Sustainable Building and Suggestions for an International Standard System. IMRE J. 2011, 5, 1–12. [Google Scholar]
- Ortiz, O.; Castells, F.; Sonnemann, G. Sustainability in the construction industry: A review of recent developments based on LCA. Constr. Build. Mater. 2009, 23, 28–39. [Google Scholar] [CrossRef]
- Ding, G.K.C. Sustainable construction—The role of environmental assessment tools. J. Environ. Manag. 2008, 86, 451–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haapio, A.; Viitaniemi, P. A critical review of building environmental assessment tools. Environ. Impact Assess. 2008, 28, 469–482. [Google Scholar] [CrossRef]
- Ali, H.H.; Al Nsairat, S.F. Developing a green building assessment tool for developing countries—Case of Jordan. Build. Environ. 2009, 44, 1053–1064. [Google Scholar] [CrossRef]
- Chang, K.-F.; Chiang, C.-M.; Chou, P.-C. Adapting aspects of GBTool 2005—Searching for suitability in Taiwan. Build. Environ. 2007, 42, 310–316. [Google Scholar] [CrossRef]
- Blair, J. Affordability and Sustainability Outcomes: A Triple Bottom Line Assessment of Traditional Development and Master Planned Communities; Australian Housing and Urban Research Institute: Melbourne, Australia, 2004; Volume 1. [Google Scholar]
- Watson, P.; Mitchell, P.; Jones, D. Environmental Assessment for Commercial Buildings: Stakeholder Requirements and Tool Characteristics; Report 2001-006-B-01; CRC Construction Innovation: Brisbane, Australia, 2004. [Google Scholar]
- Guo, H.; Liu, Y.; Meng, Y.; Huang, H.; Sun, C.; Shao, Y. A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China. Sustainability 2017, 9, 1426. [Google Scholar] [CrossRef]
- Menassa, C.C. Evaluating sustainable retrofits in existing buildings under uncertainty. Energy Build. 2011, 43, 3576–3583. [Google Scholar] [CrossRef]
- Pulselli, R.M.; Simoncini, E.; Pulselli, F.M.; Bastianoni, S. Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy Build. 2007, 39, 620–628. [Google Scholar] [CrossRef]
- Biswas, T.; Krishnamurti, R. Data Sharing for Sustainable Building Assessment. Int. J. Arch. Comput. 2012, 10, 555–574. [Google Scholar] [CrossRef]
- Wagner, K. Generation of a Tropically Adapted Energy Performance Certificate for Residential Buildings. Sustainability 2014, 6, 8415–8431. [Google Scholar] [CrossRef]
- Siva, V.; Hoppe, T.; Jain, M. Green Buildings in Singapore; Analyzing a Frontrunner’s Sectoral Innovation System. Sustainability 2017, 9, 919. [Google Scholar] [CrossRef]
- Vijayan, A.; Kumar, A. A Review of Tools to Assess the Sustainability in Building Construction. Environ. Prog. 2005, 24, 125–132. [Google Scholar] [CrossRef]
- Entrop, A.G.; Brouwers, H.J.H. Assessing the sustainability of buildings using a framework of triad approaches. J. Build. Apprais. 2009, 5, 293–310. [Google Scholar] [CrossRef]
- Villarinho, R.L.; Naked, H.A. Building Sustainability Assessment throughout Multicriteria Decision Making. J. Constr. Eng. 2013, 2013, 578671. [Google Scholar] [CrossRef]
- Pifko, H. NEED—Navrhovanie Energeticky Efektívnych Domov; Vydavateľstvo Eurostav: Bratislava, Slovakia, 2017. [Google Scholar]
- Katunsky, D.; Katunska, J.; Toth, S. Possibility of choices industrial hall object reconstruction. In Proceedings of the 15th International Multidisciplinary Scientific Geoconference SGEM, Albena, Bulgaria, 18–24 June 2015; pp. 389–396. [Google Scholar] [CrossRef]
- Living Building Challenge (LBC). 2017. Available online: https://living-future.org/ (accessed on 9 September 2017).
Sustainability of Buildings | |||
---|---|---|---|
Parameters Assessed in the Environmental Field | Parameters Assessed in the Social Field | Parameters Assessed in the Economic Field | |
|
|
| |
|
| ||
|
Part 4: Examination of Selected Sustainability Parameters | ||
---|---|---|
Questions | Type of Answer | |
| Multiple choice (a scale of 0 to 5) | |
| Open (details to be added) | |
| Multiple choice (a scale of 0 to 5) | |
| Open (details to be added) | |
|
| Multiple choice (a scale of 1 to 5) |
(p < 0.05) | Panel Construction System vs. Column Construction System | Panel Construction System vs. Log Construction System | Column Construction System vs. Log Construction System | |||
---|---|---|---|---|---|---|
p Values | p Values | p Values | ||||
Overall construction build quality | 0.0160 | * | 0.0034 | ** | 0.2591 | ns |
The occurrence of errors at the beginning of the construction use (after moving in) | 0.0099 | ** | 0.0354 | * | 0.3702 | ns |
The occurrence of errors during the use of the building | 0.1219 | ns | 0.1818 | ns | 0.3761 | ns |
Visual comfort in the construction’s interior | 0.3105 | ns | 0.2943 | ns | 0.4650 | ns |
Visual comfort of the construction’s exterior | 0.5000 | ns | 0.1564 | ns | 0.2020 | ns |
Construction’s functionality | 0.0454 | * | 0.0109 | ns | 0.3188 | ns |
Layout | 0.4440 | ns | 0.0571 | ns | 0.0885 | ns |
Quality of living in the construction | 0.2276 | ns | 0.1083 | ns | 0.3096 | ns |
Materials used for construction | 0.1364 | ns | 0.0527 | ns | 0.2312 | ns |
Thermal comfort in the summer period | 0.2111 | ns | 0.2665 | ns | 0.1201 | ns |
Thermal comfort in the winter period | 0.0045 | ** | 0.0004 | *** | 0.1071 | ns |
Acoustic comfort in the construction | p < 0.0001 | *** | 0.0006 | *** | 0.4650 | ns |
Lighting comfort in the construction | 0.3347 | ns | p < 0.0001 | *** | 0.0002 | *** |
Air quality in the construction’s interior | 0.0956 | ns | 0.1039 | ns | 0.3837 | ns |
Construction health safety | 0.0603 | ns | 0.0129 | * | 0.1914 | ns |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Švajlenka, J.; Kozlovská, M. Perception of User Criteria in the Context of Sustainability of Modern Methods of Construction Based on Wood. Sustainability 2018, 10, 116. https://doi.org/10.3390/su10020116
Švajlenka J, Kozlovská M. Perception of User Criteria in the Context of Sustainability of Modern Methods of Construction Based on Wood. Sustainability. 2018; 10(2):116. https://doi.org/10.3390/su10020116
Chicago/Turabian StyleŠvajlenka, Jozef, and Mária Kozlovská. 2018. "Perception of User Criteria in the Context of Sustainability of Modern Methods of Construction Based on Wood" Sustainability 10, no. 2: 116. https://doi.org/10.3390/su10020116
APA StyleŠvajlenka, J., & Kozlovská, M. (2018). Perception of User Criteria in the Context of Sustainability of Modern Methods of Construction Based on Wood. Sustainability, 10(2), 116. https://doi.org/10.3390/su10020116