Do Looks Matter? A Case Study on Extensive Green Roofs Using Discrete Choice Experiments
Abstract
:1. Introduction
2. Discrete Choice Experiments: Background
3. Materials and Methods
3.1. Defining the Hypothetical Situation
3.2. Selecting Relevant Attributes and Levels
3.3. Determining Optimal Experimental Design
3.4. Construction of Choice Sets and Questionnaire
3.5. Survey Execution: Preference Measurements
3.6. Model Estimation: Econometric Analysis
4. Results
4.1. Respondent Characteristics
4.2. Econometric Analysis
4.2.1. Mixed Logit Model
4.2.2. Attribute Importance and Conditional Marginal WTP Estimates
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Experimental Design
Constraints |
---|
If moss cover is 25% and weed conspicuousness is high, then gap percentage should not be 75%. If gap percentage is 75% and weed conspicuousness is high, then moss cover should not be 25%. If gap percentage is 75% and moss cover is 25%, then weed conspicuousness should not be high. |
If gap percentage is 75% and weed conspicuousness is high, then cost should not be 100 euro/m2. If gap percentage is 75% and moss cover is 25%, then cost should not be 100 euro/m2. If moss cover is 25% and weed conspicuousness is high, then cost should not be 100 euro/m2. |
Appendix B. Model Results Including Students
Variables | Coefficient (SE) | SD (SE) |
---|---|---|
Cost | −3.669 *** (−0.114) | 0.985 *** (−0.095) |
ASC | 1.905 *** (−0.317) | 2.62 *** (−0.266) |
Construction (Mat) | −0.0344 (−0.098) | 0.589 *** (−0.149) |
Construction (Module) | −0.243 * (−0.105) | −0.728 *** (−0.146) |
Vegetation (Combi) | 0.684 *** (−0.116) | 0.966 *** (−0.157) |
Vegetation (Herbs) | 0.136 (−0.13) | 1.394 *** (−0.162) |
Moss | 0.00483 (−0.005) | 0.003 (−0.014) |
Weeds (Low) | 0.895 *** (−0.129) | 1.033 *** (−0.148) |
Weeds (Mid) | 0.469 *** (−0.105) | −0.314 (−0.242) |
Gaps | −3.735 *** (−0.115) | 0.983 *** (−0.101) |
Log likelihood | −2027.042 | |
McFadden R2 | 0.218 | |
Observations | 8712 |
Attribute | Relative Importance |
---|---|
Construction | 0.05% |
Vegetation | 0.14% |
Moss | 0.02% |
Weeds | 0.18% |
Gaps | 53.86% |
Cost | 45.35% |
ASC | 0.39% |
Attribute | Conditional mWTP (euro/m2 × level) |
---|---|
ASC | 0.52 (0.35; 0.69) |
Construction (Mat) | −0.01 (−0.06; 0.04) |
Construction (Module) | −0.07 (−0.12; −0.01) |
Vegetation (Combi) | 0.19 (0.12; 0.25) |
Vegetation (Herbs) | 0.04 (−0.03; 0.11) |
Moss | 0 (0; 0) |
Weeds (Low) | 0.24 (0.17; 0.32) |
Weeds (Mid) | 0.13 (0.07; 0.19) |
Gaps | −1.02 (−1.09; −0.95) |
References
- Getter, K.L.; Rowe, D.B. The role of extensive green roofs in sustainable development. HortScience 2006, 41, 1276–1285. [Google Scholar]
- Oberndorfer, E.; Lundholm, J.T.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Köhler, M.; Liu, K.K.Y.; Rowe, D.B. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. Bioscience 2007, 57, 823. [Google Scholar] [CrossRef]
- Sutton, R.K. Introduction to Green Roof Ecosystems. In Green Roof Ecosystems; Sutton, R.K., Ed.; Springer: Basel, Switzerland, 2015; pp. 1–25. ISBN 978-3-319-14983-7. Available online: https://link.springer.com/chapter/10.1007/978-3-319-14983-7_1 (accessed on 15 December 2017).
- Hobbs, R.J.; Arico, S.; Aronson, J.; Baron, J.S.; Cramer, V.A.; Epstein, P.R.; Ewel, J.J.; Klink, C.A.; Lugo, A.E.; Norton, D.; et al. Novel ecosystems : Theoretical and management aspects of the new ecological world order. Glob. Ecol. Biogeogr. 2006, 15, 1–7. [Google Scholar] [CrossRef]
- Cook-Patton, S.C.; Bauerle, T.L. Potential benefits of plant diversity on vegetated roofs: A literature review. J. Environ. Manag. 2012, 106, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Veisten, K.; Smyrnova, Y.; Klæboe, R.; Hornikx, M.; Mosslemi, M.; Kang, J. Valuation of green walls and green roofs as soundscape measures: Including monetised amenity values together with noise-attenuation values in a cost-benefit analysis of a green wall affecting courtyards. Int. J. Environ. Res. Public Health 2012, 9, 3770–3778. [Google Scholar] [CrossRef] [PubMed]
- Bass, B.; Krayenhoff, S.; Martilli, A.; Stull, R. Mitigating the urban heat island with green roof infrastructure. In Urban Heat Island Summit: Mitigation of and Adaptation to Extreme Summer Heat, 2002, Toronto, 1–4 May 2002; 2002; p. 10. Available online: https://www.coolrooftoolkit.org/wp-content/uploads/2012/04/finalpaper_bass.pdf (accessed on 15 December 2017).
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Castleton, H.F.; Stovin, V.; Beck, S.B.M.; Davison, J.B. Green roofs; building energy savings and the potential for retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- Liu, K.K.Y.; Minor, J. Performance Evaluation of an Extensive Green Roof. Present Green Rooftops Sustain. Communities 2005, 1, 1–11. [Google Scholar]
- Francis, L.F.M.; Jensen, M.B. Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban For. Urban Green. 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Porsche, U.; Köhler, M. Life cycle costs of green roofs—A Comparison of Germany, USA, and Brazil. In RIO 3—World Climate & Energy Event; 2003; pp. 1–5. Available online: https://www.researchgate.net/publication/246686427_Life_Cycle_Costs_of_Green_Roofs_A_Comparison_of_Germany_USA_and_Brazil (accessed on 15 December 2017).
- Kadas, G. Rare Invertebrates Colonizing Green Roofs in London. Urban Habitats 2006, 4, 66–86. [Google Scholar]
- Brenneisen, S. Space for urban wildlife: Designing green roofs as habitats in Switzerland. Urban Habitats 2006, 4, 27–36. [Google Scholar]
- Fischer, P.; Natscher, L. Dränwasser in Trinkwasserqualität (Drainage water in drinking water quality). Dach + Grün 2002, 4, 24–31. [Google Scholar]
- Kohler, M. Fassaden—Und Dachbegrunung (Wall and Roof Greening); Ulmer: Stuttgart, Germany, 1993; ISBN 3800150646. [Google Scholar]
- Clark, C.; Adriaens, P.; Talbot, F.B. Green roof valuation: A probabilistic economic analysis of environmental benefits. Environ. Sci. Technol. 2008, 42, 2155–2161. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Williams, K.J.H.; Sargent, L.D.; Williams, N.S.G.; Johnson, K.A. 40-second green roof views sustain attention: The role of micro-breaks in attention restoration. J. Environ. Psychol. 2015, 42, 182–189. [Google Scholar] [CrossRef]
- Nurmi, V.; Votsis, A.; Perrels, A.; Lehvävirta, S. Green Roof Cost-Benefit Analysis: Special Emphasis on Scenic Benefits. J. Benefit-Cost Anal. 2016, 7, 488–522. [Google Scholar] [CrossRef]
- Berto, R.; Stival, C.A.; Rosato, P. Enhancing the environmental performance of industrial settlements: An economic evaluation of extensive green roof competitiveness. Build. Environ. 2018, 127, 58–68. [Google Scholar] [CrossRef]
- Dunnett, N. Green Roofs for Biodiversity: Reconciling Aesthetics With Ecology; Boston, MA, USA, 2006; Available online: http://www.greenroofresearch.co.uk/ecology/Dunnett,%20N.%20P.%202006%20Green%20roofs%20for%20biodiversity-%20reconciling%20aesthetics%20with%20ecology.pdf (accessed on 15 December 2017).
- Sutton, R.K. Aesthetics for Green roofs and Green walls. Living Archit. Monit. 2014, 1–19. Available online: https://digitalcommons.unl.edu/arch_land_facultyschol/19/ (accessed on 15 December 2017).
- White, E.V.; Gatersleben, B. Greenery on residential buildings: Does it affect preferences and perceptions of beauty? J. Environ. Psychol. 2011, 31, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Jungels, J.; Rakow, D.A.; Allred, S.B.; Skelly, S.M. Attitudes and aesthetic reactions toward green roofs in the Northeastern United States. Landsc. Urban Plan. 2013, 117, 13–21. [Google Scholar] [CrossRef]
- Fernandez-Canero, R.; Emilsson, T.; Fernandez-Barba, C.; Herrera Machuca, M.Á. Green roof systems: A study of public attitudes and preferences in southern Spain. J. Environ. Manag. 2013, 128, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Williams, K.J.H.; Sargent, L.D.; Farrell, C.; Williams, N.S. Living roof preference is influenced by plant characteristics and diversity. Landsc. Urban Plan. 2014, 122, 152–159. [Google Scholar] [CrossRef]
- Carlisle, S.; Piana, M. Green Roof Plant Assemblage and Dynamics. In Green Roof Ecosystems; Sutton, R.K., Ed.; Springer: Basel, Switzerland, 2015; pp. 285–310. ISBN 978-3-319-14983-7. Available online: https://link.springer.com/chapter/10.1007/978-3-319-14983-7_12 (accessed on 15 December 2017).
- Thuring, C.E.; Dunnett, N. Vegetation composition of old extensive green roofs (from 1980s Germany). Ecol. Process. 2014, 3, 11. [Google Scholar] [CrossRef]
- Lysens, L. Rol en Betekenis van Groendaken voor de Biodiversiteit (The Role and Importance of Green Roofs for Biodiversity). Master’s Thesis, KU Leuven, Leuven, Belgium, 2004. [Google Scholar]
- Sutton, R.K.; Lambrinos, J. Green Roof Ecosystems: Summary and Synthesis. In Green Roof Ecosystems; Sutton, R.K., Ed.; Springer: Basel, Switzerland, 2015; pp. 423–440. ISBN 978-3-319-14983-7. Available online: https://link.springer.com/chapter/10.1007/978-3-319-14983-7_17 (accessed on 15 December 2017).
- Köhler, M. Long-term Vegetation Research on Two Extensive Green Roofs in Berlin. Urban Habitats 2006, 4, 3–26. [Google Scholar]
- Carson, R.T.; Louviere, J.J. A Common Nomenclature for Stated Preference Elicitation Approaches. Environ. Resour. Econ. 2011, 49, 539–559. [Google Scholar] [CrossRef]
- Carson, R.T.; Czajkowski, M. The discrete choice experiment approach to environmental contingent valuation. In Handbook of Choice Modelling; Hess, S., Daly, A., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2014; pp. 1–77. ISBN 9781781003152. Available online: https://econpapers.repec.org/bookchap/elgeechap/14820_5f9.htm (accessed on 15 December 2017).
- Hanley, N.; Mourato, S.; Wright, R.E. Choice modelling approaches: A superior alternative for environmental valuation? J. Econ. Surv. 2001, 15, 435–462. [Google Scholar] [CrossRef]
- Louviere, J.J.; Hensher, D.A. Design and Analysis of Simulated Choice or Allocation Experiments in Travel Choice Modeling; 1982; pp. 11–17. Available online: https://trid.trb.org/view.aspx?id=189334 (accessed on 15 December 2017).
- Louviere, J.J.; Woodworth, G. Choice Allocation Consumer Experiments: An Approach Aggregate Data. J. Mark. Res. 1983, 20, 350–367. [Google Scholar] [CrossRef]
- Adamowicz, W.; Louviere, J.J.; Williams, M. Combining revealed and stated preference methods for valuing environmental amenities. J. Environ. Econ. Manag. 1994, 26, 271–292. [Google Scholar] [CrossRef]
- Hanley, N.; Wright, R.E.; Adamowicz, W. Using Choice Experiments to Value the Environment. Environ. Resour. Econ. 1998, 11, 413–428. [Google Scholar] [CrossRef]
- Hoyos, D. The state of the art of environmental valuation with discrete choice experiments. Ecol. Econ. 2010, 69, 1595–1603. [Google Scholar] [CrossRef]
- Champ, P.A.; Boyle, K.J.; Brown, T.C. A Primer on Nonmarket Valuation: The Economics of Non-Market Goods and Resources, 2nd ed.; Champ, P.A., Boyle, K.J., Brown, T.C., Eds.; Springer: Dordrecht, The Netherlands, 2017; ISBN 1402014457. Available online: http://econdse.org/wp-content/uploads/2016/07/Champ-Boyle-Brown-Primer-on-Nonmarket-Valuation-2003.pdf (accessed on 15 December 2017).
- Lancaster, K.J. A New Approach to Consumer Theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974; pp. 105–142. ISBN 0127761500. [Google Scholar]
- Louviere, J.J.; Hensher, D.A.; Swait, J.D. Stated Choice Methods: Analysis and Applications; Cambridge University Press: Cambridge, UK, 2000; ISBN 0521788307. [Google Scholar]
- Perman, R.; Ma, Y.; Common, M.; Maddison, D.; McGilvray, J. Choice experiments. In Natural Resource and Environmental Economics; Pearson Addison Wesley: Harlow, UK, 2011; pp. 429–435. ISBN 9780321417534. [Google Scholar]
- Hermy, M.; Mentens, J.; Raes, D. Groendaken, kroon op de stad (Green roofs, crown on the city). In Groenbeheer, een Verhaal met Toekomst; VELT VZW: Berchem, BE, Belgium, 2005; pp. 327–385. ISBN 9789080662223. [Google Scholar]
- Grant, G. Green Roofs and Facades, 1st ed.; IHS BRE Press: Bracknell, UK, 2006; ISBN 9781860819407. [Google Scholar]
- Hendriks, N.A.; van den Hout, A.F. Daken in’t Groen: Ontwerprichtlijnen Voor gras-, Kruiden-en Tuindaken (Roofs in Green: Design Guidelines for Grass, Herb and Garden Roofs); Stichting Bouwresearch: Rotterdam, The Netherlands, 1992; ISBN 9053670726. [Google Scholar]
- Van Mechelen, C.; Van Meerbeek, K.; Dutoit, T.; Hermy, M. Functional diversity as a framework for novel ecosystem design: The example of extensive green roofs. Landsc. Urban Plan. 2015, 136, 165–173. [Google Scholar] [CrossRef]
- ChoiceMetrics Pty Ltd. Ngene 1.1.2. 2014. Available online: https://www.choice-metrics.com/features.html (accessed on 15 December 2017).
- De Valck, J.; Vlaeminck, P.; Broekx, S.; Liekens, I.; Aertsens, J.; Chen, W.; Vranken, L. Benefits of clearing forest plantations to restore nature? Evidence from a discrete choice experiment in Flanders, Belgium. Landsc. Urban Plan. 2014, 125, 65–75. [Google Scholar] [CrossRef]
- Galesic, M. Dropouts on the Web: Effects of Interest and Burden Experienced During an Online Survey. J. Off. Stat. 2006, 22, 313–328. [Google Scholar]
- Kuhfeld, W.F. Experimental Design, Efficiency, Coding, and Choice Designs. In Marketing Research Methods in Sas (Technical Paper MR-2010C); 2005; pp. 47–97. Available online: https://support.sas.com/techsup/technote/mr2010c.pdf (accessed on 15 December 2017).
- Rose, J.M.; Bliemer, M.C.J. Constructing Efficient Stated Choice Experimental Designs. Transp. Rev. 2009, 29, 587–617. [Google Scholar] [CrossRef]
- Qualtrics Qualtrics (03-2016). 2016. Available online: http://www.qualtrics.com (accessed on 15 December 2017).
- FOD Economie—Statistics Belgium. Kerncijfers: Statistisch Overzicht van België (Key Figures: Statistical Overview of Belgium); 2015; p. 123. Available online: http://statbel.fgov.be/nl/statistieken/cijfers (accessed on 15 December 2017).
- Hensher, D.A.; Greene, W.H. The Mixed Logit Model: The State of Practice. Transportation 2003, 30, 133–176. [Google Scholar] [CrossRef]
- Train, K. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2003; ISBN 0521816963. [Google Scholar]
- Hole, A.R. Fitting mixed logit models by using maximum simulated likelihood. Stata J. 2007, 7, 388–401. [Google Scholar]
- Carson, R.T.; Groves, T.; List, J.A. Consequentiality: A Theoretical and Experimental Exploration of a Single Binary Choice. J. Assoc. Environ. Resour. Econ. 2014, 1, 171–207. [Google Scholar] [CrossRef]
- Carson, R.T.; Groves, T. Incentive and informational properties of preference questions. Environ. Resour. Econ. 2007, 37, 181–210. [Google Scholar] [CrossRef]
- Vossler, C.A.; Doyon, M.; Rondeau, D. Truth in Consequentiality: Theory and Field Evidence on Discrete Choice Experiments. Am. Econ. J. Microecon. 2012, 4, 145–171. [Google Scholar] [CrossRef]
- Lizin, S.; Van Passel, S.; De Schepper, E.; Vranken, L. The future of organic photovoltaic solar cells as a direct power source for consumer electronics. Sol. Energy Mater. Sol. Cells 2012, 103, 1–10. [Google Scholar] [CrossRef]
- Hole, A.R. A Comparison of Approaches to Estimating Confidence Intervals for Willingness to Pay Measures. Health Econ. 2007, 16, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Studiedienst Vlaamse Regering Vlaanderen in Cijfers (Flanders in Numbers). 2015, p. 20. Available online: http://www.vlaanderen.be/nl/vlaamse-overheid/organisatie-van-de-vlaamse-overheid/cijfergegevens-over-vlaanderen (accessed on 15 December 2017).
- FOD Economie—Statistics Belgium Huishoudbudgetonderzoek 2012–2014 (Household Budget Survey 2012–2014). 2014. Available online: https://statbel.fgov.be/nl/themas/huishoudens/huishoudbudget#news (accessed on 15 December 2017).
- Bianchini, F.; Hewage, K. Probabilistic social cost-benefit analysis for green roofs: A lifecycle approach. Build. Environ. 2012, 58, 152–162. [Google Scholar] [CrossRef]
- Greene, W.H.; Hensher, D.A. A latent class model for discrete choice analysis: Contrasts with mixed logit. Transp. Res. Part B Methodol. 2003, 37, 681–698. [Google Scholar] [CrossRef]
- Ben-akiva, A.M.; Mcfadden, D.; Train, K.; Walker, J.; Bhat, C.; Bierlaire, M.; Bolduc, D.; Boersch-supan, A.; Brownstone, D.; Bunch, D.; et al. Hybrid Choice Models: Progress and Challenges. Mark. Lett. 2002, 13, 163–175. [Google Scholar] [CrossRef]
Attribute | Levels | Description/Background |
---|---|---|
Construction method | Sowing | Applying seeds or cuttings to the substrate |
Mats | Applying mats with pre-grown vegetation to the roof | |
Modules | Placing containers with pre-grown vegetation on the roof | |
Green roof vegetation type | Dominated by Sedum (succulents) | Ground-covering plants delivering year round cover |
Combination of Sedum and herbaceous plants | Mix of the above and larger plants which deliver color accents in summer | |
Dominated by herbaceous plants | Domination by larger plants and grasses with flowering in summer | |
Percentage cover by mosses | 5% of roof area | Lowest level of moss cover |
15% of roof area | Intermediate level of moss cover | |
25% of roof area | Highest level of moss cover | |
Weed conspicuousness | Barely conspicuous | Limited coverage of unwanted species with height barely differing from rest of vegetation |
Conspicuous | Large coverage of unwanted species with height one to three times the height of the rest of the vegetation | |
Very conspicuous | Very large coverage of unwanted species with height more than three times the height of the rest of the vegetation | |
Percentage of vegetation gaps | 5% of roof area | Lowest percentage of coverage by gaps |
25% of roof area | Intermediate percentage of coverage by gaps | |
50% of roof area | High percentage of coverage by gaps | |
75% of roof area | Very high percentage of coverage by gaps | |
Cost: euro/m2 | 40 euro/m2 | Lowest cost |
70 euro/m2 | Intermediate cost | |
100 euro/m2 | Highest cost |
Variable | Value |
---|---|
Sample size, n | 155 |
Gender (% of males) | 55.48 |
Education (n (%)) | |
Secondary education | 14 (9.03) |
Higher education | 139 (89.68) |
Other | 2 (1.29) |
Income (n (%)) | |
Not answered | 26 (16.77) |
Of those who answered | 101 (83.22) |
Below 3001 | 54 (41.86) |
3001–4000 | 35 (27.13) |
Above 4000 | 40 (31.01) |
Familiarity with green roofs (n (%)) | |
Extremely familiar | 58 (37.42) |
Very familiar | 42 (27.10) |
Moderately familiar/Heard of it | 34 (21.94) |
Slightly familiar | 16 (10.32) |
Not at all familiar/Never heard of it | 5 (3.23) |
Variables | Coefficient (SE) | SD (SE) |
---|---|---|
Cost | −3.771 *** (−0.149) | 1.023 *** (−0.15) |
ASC | 2.443 *** (−0.484) | 3.537 *** (−0.462) |
Construction (Mat) | −0.0679 (−0.121) | −0.513 * (−0.206) |
Construction (Module) | −0.197 (−0.137) | 0.84 *** (−0.188) |
Vegetation (Combi) | 0.657 *** (−0.145) | 0.965 *** (−0.209) |
Vegetation (Herbs) | 0.273 (−0.167) | 1.386 *** (−0.199) |
Moss | 0.000569 (−0.006) | −0.001 (−0.021) |
Weeds (Low) | 0.986 *** (−0.175) | −1.291 *** (−0.191) |
Weeds (Mid) | 0.536 *** (−0.13) | −0.042 (−0.596) |
Gaps | −3.77 *** (−0.154) | 0.971 *** (−0.164) |
Log likelihood | −1247.950 | |
McFadden R2 | 0.258 | |
Observations | 5580 |
Attribute | Relative Importance |
---|---|
Construction method | 0.04% |
Vegetation type | 0.13% |
Moss cover percentage | 0% |
Weed conspicuousness | 0.2% |
Vegetation gap percentage | 53.37% |
Cost | 45.76% |
ASC | 0.49% |
Attribute | Conditional mWTP (euro/m2 × level) |
---|---|
ASC | 0.65 (0.39; 0.9) |
Construction (Mat) | −0.02 (−0.08; 0.04) |
Construction (Module) | −0.05 (−0.12; 0.02) |
Vegetation (Combi) | 0.17 (0.1; 0.25) |
Vegetation (Herbs) | 0.07 (−0.01; 0.16) |
Moss | 0 (0; 0) |
Weeds (Low) | 0.26 (0.16; 0.36) |
Weeds (Mid) | 0.14 (0.07; 0.21) |
Gaps | −1 (−1.1; −0.9) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanstockem, J.; Vranken, L.; Bleys, B.; Somers, B.; Hermy, M. Do Looks Matter? A Case Study on Extensive Green Roofs Using Discrete Choice Experiments. Sustainability 2018, 10, 309. https://doi.org/10.3390/su10020309
Vanstockem J, Vranken L, Bleys B, Somers B, Hermy M. Do Looks Matter? A Case Study on Extensive Green Roofs Using Discrete Choice Experiments. Sustainability. 2018; 10(2):309. https://doi.org/10.3390/su10020309
Chicago/Turabian StyleVanstockem, Jan, Liesbet Vranken, Brent Bleys, Ben Somers, and Martin Hermy. 2018. "Do Looks Matter? A Case Study on Extensive Green Roofs Using Discrete Choice Experiments" Sustainability 10, no. 2: 309. https://doi.org/10.3390/su10020309
APA StyleVanstockem, J., Vranken, L., Bleys, B., Somers, B., & Hermy, M. (2018). Do Looks Matter? A Case Study on Extensive Green Roofs Using Discrete Choice Experiments. Sustainability, 10(2), 309. https://doi.org/10.3390/su10020309