Within-Class and Neighborhood Effects on the Relationship between Composite Urban Classes and Surface Temperature
Abstract
:1. Introduction
- Within STURLA classes, which land cover class components have the most significant impact on surface temperature?
- What are the neighborhood effects on surface temperature?
- How do land cover components and neighborhood effect interact in driving the surface temperature of particular STURLA classes?
2. Methods
2.1. The Case Study of Berlin
2.2. Berlin Classification and Class Grass/Shrubs (g) –Tree Canopy (t) –Low-Rise (l) –Mid-Rise (m) –Roads-Other Paved (p) –Bare Soil (b) (GTLMPB)
2.3. Within-Class and Neighborhood Analysis
2.4. Surface Temperature
2.5. Analysis of Relationship between Surface Temperature and Within-Class and Neighborhood Variables
2.5.1. Data Exploration
2.5.2. Variable Selection
2.5.3. Interaction Terms Selection
2.5.4. Model Verification
3. Results
3.1. Berlin Classification, Surface Temperature, GTLMPB
3.2. Relationship between Surface Temperature, and Within-Class and Neighborhood Variables
3.2.1. Main Effects
3.2.2. Interaction Effects
3.2.3. Variable Importance
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- UN-Habitat. Planning Sustainable Cities: Global Report on Human Settlements 2009; Earthscan: London UK, 2009; pp. 1–338. [Google Scholar]
- Elmqvist, T.; Fragkias, M.; Goodness, J.; Güneralp, B.; Marcotullio, P.J.; McDonald, R.I.; Parnell, S.; Schewenius, M.; Sendstad, M.; Seto, K.C.; et al. (Eds.) Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- McPhearson, T.; Pickett, S.T.; Grimm, N.B.; Niemelä, J.; Alberti, M.; Elmqvist, T.; Weber, C.; Haase, D.; Breuste, J.; Qureshi, S. Advancing Urban Ecology toward a Science of Cities. Bioscience 2016, 66, 198–212. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Dizdaroglu, D. Ecological approaches in planning for sustainable cities. A review of the literature. Glob. J. Environ. Sci. Manag. 2015, 1, 159–188. [Google Scholar]
- Zhou, W.; Pickett, S.T.A.; Cadenasso, M.L. Shifting concepts of urban spatial heterogeneity and their implications for sustainability. Landsc. Ecol. 2017, 32, 15–30. [Google Scholar] [CrossRef]
- Bastian, O.; Grunewald, K.; Syrbe, R.-U.; Walz, U.; Wende, W. Landscape services: the concept and its practical relevance. Landsc. Ecol. 2014, 29, 1463–1479. [Google Scholar] [CrossRef]
- Van Oudenhoven, A.P.E.; Petz, K.; Alkemade, R.; Hein, L.; de Groot, R.S. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol. Indic. 2012, 21, 110–122. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L. Linking ecological and built components of urban mosaics: An open cycle of ecological design. J. Ecol. 2008, 96, 8–12. [Google Scholar] [CrossRef]
- Cadenasso, M.L.; Pickett, S.T.A.; Schwarz, K. Spatial heterogeneity in urban ecosystems: Reconceptualizing land cover and a framework for classification. Front. Ecol. Environ. 2007, 5, 80–88. [Google Scholar] [CrossRef]
- Zhou, W.; Cadenasso, M.; Schwarz, K.; Pickett, S. Quantifying Spatial Heterogeneity in Urban Landscapes: Integrating Visual Interpretation and Object-Based Classification. Remote Sens. 2014, 6, 3369–3386. [Google Scholar] [CrossRef]
- Hamstead, Z.A.; Kremer, P.; Larondelle, N.; McPhearson, T.; Haase, D. Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecol. Indic. 2016, 70, 574–585. [Google Scholar] [CrossRef]
- Larondelle, N.; Hamstead, Z.A.; Kremer, P.; Haase, D.; McPhearson, T. Applying a novel urban structure classification to compare the relationships of urban structure and surface temperature in Berlin and New York City. Appl. Geogr. 2014, 53, 427–437. [Google Scholar] [CrossRef]
- Alavipanah, S.; Haase, D.; Lakes, T.; Qureshi, S. Integrating the third dimension into the concept of urban ecosystem services: A review. Ecol. Indic. 2017, 72, 374–398. [Google Scholar] [CrossRef]
- Kaplan, S.; Peeters, A.; Erell, E. Predicting air temperature simultaneously for multiple locations in an urban environment: A bottom up approach. Appl. Geogr. 2016, 76, 62–74. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Schwarz, N.; Bauer, A.; Haase, D. Assessing climate impacts of planning policies-An estimation for the urban region of Leipzig (Germany). Environ. Impact Assess. Rev. 2011, 31, 97–111. [Google Scholar] [CrossRef]
- Schwarz, N. Urban form revisited-Selecting indicators for characterising European cities. Landsc. Urban Plan. 2010, 96, 29–47. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P. A temperature and vegetation adjusted NTL urban index for urban area mapping and analysis. ISPRS J. Photogramm. Remote Sens. 2018, 135, 93–111. [Google Scholar] [CrossRef]
- Trlica, A.; Hutyra, L.R.; Schaaf, C.L.; Erb, A.; Wang, J.A. Albedo, land cover, and daytime surface temperature variation across an urbanized landscape. AGU Earth’s Future 2017. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Rinner, C.; Hussain, M. Toronto’s urban heat island-exploring the relationship between land use and surface temperature. Remote Sens. 2011, 3, 1251–1265. [Google Scholar] [CrossRef]
- Yazhou, Z.; Yulin, Z.; Tao, Y.; Xinyu, R. Urban Green Effects on Land Surface Temperature Caused by Surface Characteristics: A Case Study of Summer Beijing Metropolitan Region. Infrared Phys. Technol. 2017, 86, 35–43. [Google Scholar]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Middel, A.; Harlan, S.L.; Brazel, A.J.; Turner, B.L. Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral-demographic-economic factors. Remote Sens. Environ. 2016, 174, 233–243. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar]
- Chen, A.; Yao, X.A.; Sun, R.; Chen, L. Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban For. Urban Green. 2014, 13, 646–654. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Urban ecosystem services assessment along a rural-urban gradient: A cross-analysis of European cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D.; Kabisch, N. Mapping the diversity of regulating ecosystem services in European cities. Glob. Environ. Chang. 2014, 26, 119–129. [Google Scholar] [CrossRef]
- Environmental Atlas of Berlin. Digital Environmental Atlas: 01.02 Soil Sealing; Senatsverwaltung für Stadtentwicklung: Berlin, Germany, 2012. [Google Scholar]
- Environmental Atlas of Berlin. Digital Environmental Atlas. 06.10 Building and Vegetation Height; Senatsverwaltung für Stadtentwicklung: Berlin, Germany, 2014. [Google Scholar]
- Larondelle, N.; Lauf, S. Balancing demand and supply of multiple urban ecosystem services on different spatial scales. Ecosyst. Serv. 2016, 22, 18–31. [Google Scholar] [CrossRef]
- European Environmental Agency. Urban Atlas. 2012. Available online: http://land.copernicus.eu/local/urban-atlas/urban-atlas-2012/ (accessed on 5 November 2016).
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Hu, L.; Brunsell, N.A. The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sens. Environ. 2013, 134, 162–174. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kommareddy, I.; Hansen, M.; Vermote, E.; Zhang, C.; Kommareddy, A. Algorithm Theoretical Basis Document Web Enabled Landsat Data (WELD). Available online: https://globalmonitoring.sdstate.edu/projects/weld/WELD_ATBD.pdf (accessed on 27 February 2018).
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Vlassova, L.; Perez-Cabello, F.; Nieto, H.; Martín, P.; Riaño, D.; la Riva, J.D. Assessment of methods for land surface temperature retrieval from landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sens. 2014, 6, 4345–4368. [Google Scholar] [CrossRef]
- Zareie, S.; Khosravi, H.; Nasiri, A. Derivation of land surface temperature from Landsat Thematic Mapper (TM) sensor data and analyzing relation between land use changes and surface temperature. Solid Earth Discuss. 2016, 1–15. [Google Scholar] [CrossRef]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B 1964, 2, 211–254. [Google Scholar]
- Tibshirani, R. Regression Selection and Shrinkage via the Lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [Google Scholar]
- Marquardt, D.W. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 1970, 12, 591–612. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory; Akadémiai Kiadó: Budapest, Hungary, 1973. [Google Scholar]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Huber, P.J. Robust Statistics; John Wiley & Sons: Hoboken, NJ, USA, 1981; Volume 82. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Givoni, B. Impact of planted areas on urban environmental quality: A review. Atmos. Environ. Part B Urban Atmos. 1991, 25, 289–299. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Armson, D.; Stringer, P.; Ennos, A.R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 2012, 11, 245–255. [Google Scholar] [CrossRef]
- Haase, D. Effects of urbanisation on the water balance—A long-term trajectory. Environ. Impact Assess. Rev. 2009, 29, 211–219. [Google Scholar] [CrossRef]
- Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The effect of multi-dimensional indicators on urban thermal conditions. J. Clean. Prod. 2018, 177, 115–123. [Google Scholar] [CrossRef]
Var. | Var. Description | Var. | Var. Description |
---|---|---|---|
ST | Surface temperature (°C) | NH_1 | % neighborhood grass/shrub cover |
IC_1 | % within-class grass/shrub cover | NH_2 | % neighborhood tree cover |
IC_2 | % within-class tree cover | NH_3 | % neighborhood low-rise cover |
IC_3 | % within-class low-rise cover | NH_4 | % neighborhood mid-rise cover |
IC_4 | % within-class mid-rise cover | NH_5 | % neighborhood high-rise cover |
IC_6 | % within-class road cover | NH_6 | % neighborhood road cover |
IC_8 | % within-class bare soil cover | NH_7 | % neighborhood water cover |
IC_9 | % within-class other paved cover | NH_8 | % neighborhood bare soil cover |
NH_9 | % neighborhood other paved cover |
Coefficients | Estimate | Std. Error | t Value | p-Value | |
---|---|---|---|---|---|
(Intercept) | 1.02 × 10−3 | 4.01 × 10−6 | 254.706 | <2 × 10−16 | *** |
NH_2 | 2.19 × 10−4 | 1.35 × 10−5 | 16.1923 | <2 × 10−16 | *** |
NH_4 | −3.44 × 10−4 | 1.95 × 10−5 | −17.603 | <2 × 10−16 | *** |
NH_5 | −1.38 × 10−3 | 1.02 × 10−4 | −13.476 | <2 × 10−16 | *** |
NH_7 | 1.61 × 10−4 | 2.27 × 10−5 | 7.07617 | 1.57 × 10−12 | *** |
NH_8 | −2.71 × 10−4 | 2.72 × 10−5 | −9.9629 | <2 × 10−16 | *** |
NH_9 | −1.38 × 10−4 | 1.53 × 10−5 | −9.0329 | <2 × 10−16 | *** |
IC_2 | 1.73 × 10−4 | 8.80 × 10−5 | 19.6777 | <2 × 10−16 | *** |
IC_3 | 2.32 × 10−5 | 3.40 × 10−5 | 0.68284 | 0.49472 | |
IC_4 | −2.03 × 10−4 | 1.33 × 10−5 | −15.254 | <2 × 10−16 | *** |
IC_9 | −9.62 × 10−4 | 1.41 × 10−5 | −6.8116 | 1.01 × 10−11 | *** |
NH_2 × IC_3 | 4.50 × 10−4 | 1.36 × 10−4 | 3.31257 | 0.00093 | *** |
NH_4 × IC_3 | −2.08 × 10−3 | 2.12 × 10−4 | −9.8238 | <2 × 10−16 | *** |
NH_5 × IC_4 | 3.99 × 10−3 | 4.85 × 10−4 | 8.21461 | 2.36 × 10−16 | *** |
NH_2 × NH_8 | 2.00 × 10−3 | 1.21 × 10−4 | 16.5751 | <2 × 10−16 | *** |
NH_2 × IC_9 | −4.15 × 10−4 | 5.33 × 10−5 | −7.8006 | 6.71 × 10−15 | *** |
Std. Coef. | Our Model | Robust_Huber | Robust_Bisquare |
---|---|---|---|
NH_2 | 2.98 × 10−5 | 2.85 × 10−5 | 2.76 × 10−5 |
NH_4 | −2.44 × 10−5 | −2.43 × 10−5 | −2.41 × 10−5 |
NH_5 | −1.54 × 10−5 | −1.53 × 10−5 | −1.54 × 10−5 |
NH_7 | 4.87 × 10−6 | 3.97 × 10−5 | 3.66 × 10−6 |
NH_8 | −1.20 × 10−5 | −1.25 × 10−5 | −1.36 × 10−5 |
NH_9 | −1.14 × 10−5 | −1.15 × 10−5 | −1.22 × 10−5 |
IC_2 | 2.81 × 10−5 | 2.80 × 10−5 | 2.78 × 10−5 |
IC_3 | 1.15 × 10−6 | 1.43 × 10−6 | 1.51 × 10−6 |
IC_4 | −1.85 × 10−5 | −1.81 × 10−5 | −1.78 × 10−5 |
IC_9 | −1.10 × 10−5 | −1.16 × 10−5 | −1.11 × 10−5 |
NH_2 × IC_3 | 4.34 × 10−6 | 4.54 × 10−6 | 4.46 × 10−6 |
NH_4 × IC_3 | −1.13 × 10−5 | −1.26 × 10−5 | −1.30 × 10−5 |
NH_5 × IC_4 | 1.02 × 10−5 | 8.96 × 10−6 | 8.21 × 10−6 |
NH_2 × NH_8 | 2.21 × 10−5 | 2.67 × 10−5 | 3.00 × 10−5 |
NH_2 × IC_9 | −1.02 × 10−5 | −9.64 × 10−6 | −1.01 × 10−5 |
NH_2 |
IC_2 |
NH_4 |
NH_2 × NH_8 |
IC_4 |
NH_5 |
NH_8 |
NH_9 |
NH_4 × IC_3 |
IC_9 |
NH_2 × IC_9 |
NH_5 × IC_4 |
NH_7 |
NH_2 × IC_3 |
IC_3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kremer, P.; Larondelle, N.; Zhang, Y.; Pasles, E.; Haase, D. Within-Class and Neighborhood Effects on the Relationship between Composite Urban Classes and Surface Temperature. Sustainability 2018, 10, 645. https://doi.org/10.3390/su10030645
Kremer P, Larondelle N, Zhang Y, Pasles E, Haase D. Within-Class and Neighborhood Effects on the Relationship between Composite Urban Classes and Surface Temperature. Sustainability. 2018; 10(3):645. https://doi.org/10.3390/su10030645
Chicago/Turabian StyleKremer, Peleg, Neele Larondelle, Yimin Zhang, Elise Pasles, and Dagmar Haase. 2018. "Within-Class and Neighborhood Effects on the Relationship between Composite Urban Classes and Surface Temperature" Sustainability 10, no. 3: 645. https://doi.org/10.3390/su10030645
APA StyleKremer, P., Larondelle, N., Zhang, Y., Pasles, E., & Haase, D. (2018). Within-Class and Neighborhood Effects on the Relationship between Composite Urban Classes and Surface Temperature. Sustainability, 10(3), 645. https://doi.org/10.3390/su10030645