Compatibility between Crops and Solar Panels: An Overview from Shading Systems
Abstract
:1. Introduction
2. Material and Methods
3. Shading, Mesh, Screens and Others
3.1. Mesh
3.2. Screens
3.3. Others
4. Photovoltaic Modules in Greenhouses
5. Other Related Studies
6. Studies Related to Shading and Photovoltaic Panels in Greenhouses by Country
7. Studies Related to Shading and Photovoltaic Modules in Greenhouses by Year
8. Studies Related to Authors and the Number of Citations
9. Studies Related to Journals and the Number of Citations
10. Conclusions of the Review
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Callejón-Ferre, A.J.; Manzano-Agugliaro, F.; Díaz-Pérez, M.; Carreño-Ortega, A.; Pérez-Alonso, J. Effect of shading with aluminised screens on fruit production and quality in tomato (Solanumlycopersicum L.) under greenhouse conditions. Span. J. Agric. Res. 2009, 7, 41–49. [Google Scholar] [CrossRef]
- Castilla, N. Invernaderos de Plástico: Tecnología y Manejo; Mundi-Prensa: Madrid, Spain, 2005. [Google Scholar]
- Ureña-Sánchez, R.; Callejón-Ferre, A.J.; Pérez-Alonso, J.; Carreño-Ortega, A. Greenhouse tomato production with electricity generation by roof-mounted flexible solar panels. Sci. Agric. 2012, 69, 233–239. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Ming, L. Influences of greenhouse-integrated semi-transparent photovoltaics on microclimate and lettuce growth. Int. J. Agric. Biol. Eng. 2017, 10, 11–22. [Google Scholar] [CrossRef]
- Cockshull, K.E.; Graves, C.J.; Cave, C.R.J. The influence of shading on yield of glasshouse tomatoes. J. Hortic. Sci. 1992, 67, 11–24. [Google Scholar] [CrossRef]
- Web of Science (Wos). Electronic Access to the University of Almería Library with the License of the Spanish Foundation for Science and Technology (FECYT) of the ‘Web of Science’ (Wos) Provided by ‘Clarivate Analytics’; Foundation for Science and Technology (FECYT), Library of the University of Almería: Almería, Spain, 2018. [Google Scholar]
- Scopus. Electronic Access to the University of Almería Library with the License of the Spanish Foundation for Science and Technology (FECYT) of the ‘Scopus’ Provided by ‘Scopus’; Foundation for Science and Technology (FECYT), Library of the University of Almería: Almería, Spain, 2018. [Google Scholar]
- Abdel-Mawgoud, A.M.R.; El-Abd, S.O.; Singer, S.M.; Hsiao, T.C. Effect of shade on the growth and yield of tomato plants. Acta Hortic. 1996, 434, 313–320. [Google Scholar] [CrossRef]
- Papadopoulos, A.P.; Pararajasingham, S. The influence of plant spacing on light interception and use in greenhouse tomato (Lycopersiconesculentum Mill): A review. Sci. Hortic. 1997, 69, 1–29. [Google Scholar] [CrossRef]
- Klaring, H.P. Growth of broccoli as affected by global radiation and air temperature. Gartenbauwissenschaft 1998, 63, 116–122. [Google Scholar]
- Kittas, C.; Baille, A.; Giaglaras, P. Influence of covering material and shading on the spectral distribution of light in greenhouses. J. Agric. Eng. Res. 1999, 73, 341–351. [Google Scholar] [CrossRef]
- Araki, Y.; Inoue, S.; Murakami, K. Effect of shading on growth and quality of summer spinach. Acta Hortic. 1999, 483, 105–110. [Google Scholar] [CrossRef]
- Abreu, P.E.; Meneses, J.F. Influence of soil covering, plastic ageing and roof whitening on climate and tomato crop response in an unheated plastic Mediterranean greenhouse. Acta Hortic. 2000, 534, 343–350. [Google Scholar] [CrossRef]
- Kittas, C.; Katsoulas, N.; Baille, A. Influence of an aluminized thermal screen on greenhouse microclimate and canopy energy balance. Trans. ASAE 2003, 46, 1653–1663. [Google Scholar] [CrossRef]
- Kittas, C.; Katsoulas, N.; Baille, A. Influence of aluminized thermal screens on greenhouse microclimate and night transpiration. Acta Hortic. 2003, 614, 387–392. [Google Scholar] [CrossRef]
- Sandri, M.A.; Andriolo, J.L.; Witter, M.; Dal Ross, T. Effect of shading on tomato plants grown under greenhouse. J. Hortic. Bras. 2003, 4, 642–645. [Google Scholar] [CrossRef]
- Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; García, M.L.; Caparrós, I.; Giménez, M.J. Influence of an external greenhouse mobile shading on tomato transpiration. Acta Hortic. 2004, 659, 195–199. [Google Scholar] [CrossRef]
- Bartzanas, T.; Kittas, C. Heat and mass transfer in a large evaporative cooled greenhouse equipped with a progressive shading. Acta Hortic. 2005, 691, 625–631. [Google Scholar] [CrossRef]
- Lorenzo, P.; García, M.L.; Sánchez-Guerrero, M.C.; Medrano, E.; Caparrós, I.; Giménez, M. Influence of mobile shading on yield, crop transpiration and water use efficiency. Acta Hortic. 2006, 719, 471–478. [Google Scholar] [CrossRef]
- Rosales, M.A.; Ruiz, J.M.; Hernández, J.; Soriano, T.; Castilla, N.; Romero, L. Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. J. Sci. Food Agric. 2006, 86, 1545–1551. [Google Scholar] [CrossRef]
- Gent, M.P.N. Effect of degree and duration of shade on quality of greenhouse tomato. HortScience 2007, 42, 514–520. [Google Scholar]
- Abdel-Ghany, A.M.; Al-Helal, I.M. Characterization of solar radiation transmission through plastic shading nets. Sol. Energy Mater. Sol. Cell. 2010, 94, 1371–1378. [Google Scholar] [CrossRef]
- Sato, H.; Yanagi, T.; Hirai, H.; Ueda, Y.; Oda, Y. Effects of Shading on Growth, Fruit Yield and Dry Matter Partitioning of Single Truss Tomato Plants. Environ. Control Biol. 2010, 32, 231–237. [Google Scholar] [CrossRef]
- Aberkani, K.; Hao, X.M.; de Halleux, D.; Dorais, M.; Vineberg, S.; Gosselin, A. Effects of Shading Using a Retractable Liquid Foam Technology on Greenhouse and Plant Microclimates. Horttechnology 2010, 20, 283–291. [Google Scholar]
- Abdel-Ghany, A.M.; Al-Helal, I.M. Analysis of solar radiation transfer: A method to estimate the porosity of a plastic shading net. Energy Convers. Manag. 2011, 52, 1755–1762. [Google Scholar] [CrossRef]
- Al-Helal, I.M.; Abdel-Ghany, A.M. Measuring and evaluating solar radiative properties of plastic shading nets. Sol. Energy Mater. Sol. Cell. 2011, 95, 677–683. [Google Scholar] [CrossRef]
- Chen, C.; Shen, T.; Weng, Y. Simple model to study the effect of temperature on the greenhouse with shading nets. Afr. J. Biotechnol. 2011, 10, 5001–5014. [Google Scholar] [CrossRef]
- García, M.L.; Medrano, E.; Sánchez-Guerrero, M.C.; Lorenzo, P. Climatic effects of two cooling systems in greenhouses in the Mediterranean area: External mobile shading and fog system. Biosyst. Eng. 2011, 108, 133–143. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M. A method for determining the long-wave radiative properties of a plastic shading net under natural conditions. Sol. Energy Mater. Sol. Cell. 2012, 99, 268–276. [Google Scholar] [CrossRef]
- Holcman, E.; Sentelhas, P.C. Microclimate under different shading screens in greenhouses cultivated with bromeliads. Rev. Bras. Eng. Agric. Ambient. 2012, 16, 858–863. [Google Scholar] [CrossRef] [Green Version]
- Ilic, Z.S.; Milenkovic, L.; Stanojevic, L.; Cvetkovic, D.; Fallik, E. Effects of the modification of light intensity by color shade nets on yield and quality of tomato fruits. Sci. Hortic. 2012, 139, 90–95. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Picuno, P.; Al-Helal, I.; Alsadon, A.; Ibrahim, A.; Shady, M. Radiometric Characterization, solar and thermal radiation in a greenhouse as affected by shading configuration in an arid climate. Energies 2015, 8, 13928–13937. [Google Scholar] [CrossRef]
- Hernández, V.; Hellín, P.; Fenoll, J.; Garrido, I.; Cava, J.; Flores, P. Impact of Shading on Tomato Yield and Quality Cultivated with Different N Doses Under High Temperature Climate. Procedia Environ. Sci. 2015, 29, 197–198. [Google Scholar] [CrossRef]
- Ahemd, H.A.; Al-Faraj, A.A.; Abdel-Ghany, A.M. Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. Sci. Hortic. 2016, 201, 36–45. [Google Scholar] [CrossRef]
- Nagy, Z.; Daood, H.; Nemenyi, A.; Ambrozy, Z.; Pek, Z.; Helyes, L. Impact of Shading Net Color on Phytochemical Contents in Two Chili Pepper Hybrids Cultivated Under Greenhouse Conditions. Hortic. Sci. Technol. 2017, 35, 418–430. [Google Scholar] [CrossRef]
- Murakami, K.; Fukuoka, N.; Noto, S. Improvement of greenhouse microenvironment and sweetness of melon (Cucumismelo L.) fruits by greenhouse shading with a new kind of near-infrared ray-cutting net in mid-summer. Sci. Hortic. 2017, 218, 1–7. [Google Scholar] [CrossRef]
- Yasin, M.; Rosenqvist, E.; Andreasen, C. The Effect of Reduced Light Intensity on Grass Weeds. Weed Sci. 2017, 65, 603–613. [Google Scholar] [CrossRef]
- Costa, E.; Santo, T.L.E.; Batista, T.B.; Curi, T.M.R.C. Different type of greenhouse and substrata on pepper production. Hortic. Bras. 2017, 35, 458–466. [Google Scholar] [CrossRef]
- Holcman, E.; Sentelhas, P.C.; Mello, S.D. Cherry tomato yield in greenhouses with different plastic covers. Cienc. Rural 2017, 47, 10. [Google Scholar] [CrossRef]
- Priarone, A.; Fossa, M.; Paietta, E.; Rolando, D. Energy demand hourly simulations and energy saving strategies in greenhouses for the Mediterranean climate. J. Phys. Conf. Ser. 2017, 796, 796. [Google Scholar] [CrossRef]
- Kozai, T.; He, D.; Ohtsuka, H. Simulation of solar radiation transmission into a lean-to greenhouse with photovoltaic cells on the roof-Case study for a greenhouse with infinite longitudinal length. Environ. Control Biol. 1999, 37, 101–108. [Google Scholar] [CrossRef]
- Yano, A.; Tsuchiya, K.; Nishi, K.; Moriyama, T.; Ide, O. Development of a greenhouse side-ventilation controller driven by photovoltaic energy. Biosyst. Eng. 2007, 96, 633–641. [Google Scholar] [CrossRef]
- Campiotti, C.; Dondi, F.; Genovese, A.; Alonzo, G.; Catanese, V.; Incrocci, L.; Bibbiani, C. Photovoltaic as Sustainable Energy for Greenhouse and Closed Plant Production System. Acta Hortic. 2008, 797, 373–378. [Google Scholar] [CrossRef]
- Yano, A.; Furue, A.; Kadowaki, M.; Tanaka, T.; Hiraki, E.; Miyamoto, M.; Ishizu, F.; Noda, S. Electrical energy generated by photovoltaic modules mounted inside the roof of a north-south oriented greenhouse. Biosyst. Eng. 2009, 2, 228–238. [Google Scholar] [CrossRef]
- Minuto, G.; Bruzzone, C.; Tinivella, F.; Delfino, G.; Minuto, A. Photovoltaics on greenhouse roofs to produce more energy. Inf. Agrar. Suppl. 2009, 65, 16–19. [Google Scholar]
- Yano, A.; Kadowaki, M.; Furue, A.; Tamaki, N.; Tanaka, T.; Hiraki, E.; Kato, Y.; Ishizu, F.; Noda, S. Shading and electrical features of a photovoltaic array mounted inside the roof of an east-west oriented greenhouse. Biosyst. Eng. 2010, 4, 367–377. [Google Scholar] [CrossRef]
- Qoaider, L.; Steinbrecht, D. Photovoltaic systems: A cost competitive option to supply energy to off-grid agricultural communities in arid regions. Appl. Energy 2010, 87, 427–435. [Google Scholar] [CrossRef]
- Carlini, M.; Villarini, M.; Esposto, S.; Bernardi, M. Performance Analysis of Greenhouses with Integrated Photovoltaic Modules. Lect. Notes Comput. Sci. 2010, 6017, 206–214. [Google Scholar] [CrossRef]
- Sonneveld, P.J.; Swinkels, G.L.A.M.; Campen, J.; van Tujil, B.A.J.; Janssen, H.J.J.; Bot, G.P.A. Performance results of a solar greenhouse combining electrical and thermal energy production. Biosyst. Eng. 2010, 106, 48–57. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Campiotti, C.; Dondi, F.; Di Carlo, F.; Scoccianti, M.; Alonzo, G.; Bibbiani, C.; Incrocci, L. Preliminary Results of a PV Closed Greenhouse System for High Irradiation Zones in South Italy. Acta Hortic. 2011, 893, 243–250. [Google Scholar] [CrossRef]
- Pérez-Alonso, J.; Callejón-Ferre, A.J.; Ureña-Sánchez, R.; Carreño-Ortega, A.; Vázquez-Cabrera, F.J.; Pérez-García; Marti, B.V. PAR assessment within an Almeria-type greenhouse in integrating a photovoltaic roof. In Proceedings of the 69th International Conference on Agricultural Engineering LAND TECHNIK AgEng, Hannover, Germany, 11–12 November 2011; Volume 2124, p. 343. [Google Scholar]
- Ganguly, A.; Ghosh, S. Performance Analysis of a Floriculture Greenhouse Powered by Integrated Solar Photovoltaic Fuel Cell System. J. Sol. Energy Eng.-Trans. ASME 2011, 133, 041001. [Google Scholar] [CrossRef]
- Carlini, M.; Honorati, T.; Castellucci, S. Photovoltaic Greenhouses: Comparison of Optical and Thermal Behaviour for Energy Savings. Math. Probl. Eng. 2012, 2012, 743–764. [Google Scholar] [CrossRef]
- Kadowaki, M.; Yano, A.; Ishizu, F.; Tanaka, T.; Noda, S. Effects of greenhouse photovoltaic array shading on Welsh onion growth. Biosyst. Eng. 2012, 111, 290–297. [Google Scholar] [CrossRef]
- Marucci, A.; Monarca, D.; Cecchini, M.; Colantoni, A.; Manzo, A.; Cappuccini, A. The semitransparent photovoltaic films for Mediterranean greenhouse: a new sustainable technology. Math. Probl. Eng. 2012, 14. [Google Scholar] [CrossRef]
- Pérez-Alonso, J.; Pérez-García, M.; Pasamontes-Romera, M.; Callejón-Ferre, A.J. Performance analysis and neural modelling of a greenhouse integrated photovoltaic system. Renew. Sustain. Energy Rev. 2012, 16, 1675–4685. [Google Scholar] [CrossRef]
- Poncet, C.; Muller, M.M.; Brun, R.; Fatnassi, H. Photovoltaic Greenhouses, Non-Sense or a Real Opportunity for the Greenhouse Systems? Acta Hortic. 2012, 927, 75–79. [Google Scholar] [CrossRef]
- Klaring, H.P.; Krumbein, A. The Effect of Constraining the Intensity of Solar Radiation on the Photosynthesis, Growth, Yield and Product Quality of Tomato. J. Agron. Crop Sci. 2013, 199, 351–359. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraza, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Castellano, S. Photovoltaic greenhouses: Evaluation of shading effect and its influence on agricultural performances. J. Agric. Eng. 2014, 45, 168–174. [Google Scholar] [CrossRef]
- Juang, P.; Kacira, M. System Dynamics of a Photovoltaic Integrated Greenhouse. Acta Hortic. 2014, 1037, 107–112. [Google Scholar] [CrossRef]
- Cossu, M.; Murgia, L.; Ledda, L.; Deligios, P.A.; Sirigu, A.; Chessa, F.; Pazzona, A. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity. Appl. Energy 2014, 133, 89–100. [Google Scholar] [CrossRef]
- Tani, A.; Shiina, S.; Nakashima, K.; Hayashi, M. Improvement in lettuce growth by light diffusion under solar panels. J. Agric. Meteorol. 2014, 70, 139–149. [Google Scholar] [CrossRef]
- Pérez-Alonso, J.; Callejón-Ferre, A.J.; Pérez-García, M.; Sánchez-Hermosilla, J. Evaluation of the tomato crop production under exterior selective shading in “raspa y amagado” greenhouses. In Proceedings of the 7th IberianCongress of AgriculturalEngineering and Horticultural Sciences, Madrid, Spain, 26–29 August 2013; pp. 470–475. [Google Scholar]
- Pérez-García, M.; Cabrera, F.J.; Pérez-Alonso, J.; Callejón-Ferre, A.J. Electricity production of flexible photovoltaic modules integrated on the roof of a “raspa y amagado” type greenhouse. In Proceedings of the 7th Iberian Congress of Agricultural Engineering and Horticultural Sciences, Madrid, Spain, 26–29 August 2013; pp. 907–912. [Google Scholar]
- Serrano, I.; Muñoz-García, M.A.; Alonso-García, M.C.; Vela, N. Evaluation of the use of solar panels as a shade in greenhouses. In Proceedings of the 7th Iberian Congress of Agricultural Engineering and Horticultural Sciences, Madrid, Spain, 26–29 August 2013; pp. 2056–2061. [Google Scholar]
- Yano, A.; Onoe, M.; Najata, J. Prototype semi-transparent photovoltaic modules for greenhouse roof applications. Biosyst. Eng. 2014, 122, 62–73. [Google Scholar] [CrossRef]
- Fatnassi, H.; Poncet, C.; Bazzano, M.M.; Brun, R.; Bertin, N. A numerical simulation of the photovoltaic greenhouse microclimate. Sol. Energy 2015, 120, 575–584. [Google Scholar] [CrossRef]
- Marucci, A.; Monarca, D.; Cecchini, M.; Colantoni, A.; Capuccini, A. Analysis of internal shading degree to a prototype of dynamics photovoltaic greenhouse through simulation software. J. Agric. Eng. 2015, 46, 144–150. [Google Scholar] [CrossRef]
- Bulgari, R.; Cola, G.; Ferrante, A.; Franzoni, G.; Mariani, L.; Martinetti, L. Micrometeorological environment in traditional and photovoltaic greenhouses and effects on growth and quality of tomato (Solanumlycopersicum L.). Ital. J. Agrometeorol. 2015, 20, 27–38. [Google Scholar]
- Yang, F.; Zhang, Y.; Hao, Y.Y.; Cui, Y.X.; Wang, W.Y.; Ji, T.; Shi, F.; Wei, B. Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application. Appl. Opt. 2015, 54, 10232–10239. [Google Scholar] [CrossRef] [PubMed]
- Castellano, S.; Tsirogiannis, I.L. Daylight analysis inside photovoltaic greenhouses. In Proceedings of the 43rd International Symposium on Agricultural Engineering, Actual Tasks on Agricultural Engineering, Opatija, Croatia, 24–27 February 2015; pp. 703–712. [Google Scholar]
- Cossu, M.; Yano, A.; Li, Z.; Onoe, M.; Nakamura, H.; Matsumoto, T.; Nakata, J. Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system. Appl. Energy 2016, 162, 1042–1051. [Google Scholar] [CrossRef]
- Marucci, A.; Cappuccini, A. Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions. Appl. Energy 2016, 170, 362–376. [Google Scholar] [CrossRef]
- Marucci, A.; Capuccini, A. Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period. Energy 2016, 102, 302–312. [Google Scholar] [CrossRef]
- Hassanien, R.H.E.; Li, M.; Lin, W.D. Advanced applications of solar energy in agricultural greenhouses. Renew. Sustain. Energy Rev. 2016, 54, 989–1001. [Google Scholar] [CrossRef]
- Buttaro, D.; Renna, M.; Gerardi, C.; Blando, F.; Santamaria, P.; Serio, F. Soilles production of wild rocket as affected by greenhouse coverage with photovoltaic modules. Acta Sci. Pol.-Hortic. Cultus 2016, 15, 129–142. [Google Scholar]
- Castellano, S.; Santamaria, P.; Serio, F. Photosynthetic photon flux density distribution inside photovoltaic greenhouses, numerical simulation, and experimental results. Appl. Eng. Agric. 2016, 32, 861–869. [Google Scholar] [CrossRef]
- Castellano, S.; Santamaria, P.; Serio, F. Solar radiation distribution inside a monospan greenhouse with the roof entirely covered by photovoltaic panels. J. Agric. Eng. 2016, 47, 1–6. [Google Scholar] [CrossRef]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Saifultah, M.; Gwak, J.; Yun, J.H. Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV). J. Mater. Chem. A 2016, 4, 8512–8540. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaicsystems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Cossu, M.; Ledda, L.; Urracci, G.; Sirigu, A.; Cossu, A.; Murgia, L.; Pazzona, A.; Yano, A. An algorithm for the calculation of the light distribution in photovoltaic greenhouses. Sol. Energy 2017, 141, 38–48. [Google Scholar] [CrossRef]
- Cossu, M.; Yano, A.; Murgia, L.; Ledda, L.; Deligios, P.A.; Sirigu, A.; Chessa, F.; Pazzona, A. Effects of the photovoltaic roofs on the greenhouse microclimate. Acta Hortic. 2017, 1170, 461–468. [Google Scholar] [CrossRef]
- Carreño-Ortega, A.; Galdeano-Gómez, E.; Pérez-Mesa, J.C.; Galera-Quiles, M.C. Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect? Energies 2017, 10, 761. [Google Scholar] [CrossRef]
- Marucci, A.; Monarca, D.; Colantoni, A.; Campiglia, E.; Cappuccini, A. Analysis of the internal shading in a photovoltaic greenhouse tunnel. J. Agric. Eng. 2017, 48, 154–160. [Google Scholar] [CrossRef]
- Valle, B.; Simonneau, T.; Sourd, F.; Pechier, P.; Hamard, P.; Frisson, T.; Ryckewaert, M.; Christophe, A. Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy 2017, 206, 1495–1507. [Google Scholar] [CrossRef]
- Trypanagnostopoulos, G.; Kavga, A.; Souliotis, M.; Tripanagnostopoulos, Y. Greenhouse perfomance results for roof installed photovoltaics. Renew. Energy 2017, 111, 724–731. [Google Scholar] [CrossRef]
- Loik, M.E.; Carter, S.A.; Alers, G.; Wade, C.E.; Shugar, D.; Corrado, C.; Jokerst, D.; Kitayama, C. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus. Earth Future 2017, 5, 1044–1053. [Google Scholar] [CrossRef]
- Yildirim, N.; Bilir, L. Evaluation of a hybrid system for a nearly zero energy greenhouse. Energy Convers. Manag. 2017, 148, 1278–1290. [Google Scholar] [CrossRef]
- Tripanagnostopoulos, Y.; Katsoulas, N.; Kittas, C. Potential energy cost and footprint reduction in Mediterranean greenhouses by means of renewable energy use. Acta Hortic. 2017, 1164, 461–466. [Google Scholar] [CrossRef]
- Kavga, A.; Trypanagnostopoulos, G.; Zervoudakis, G.; Tripanagnostopoulos, Y. Growth and Physiological Characteristics of Lettuce (Lactuca sativa L.) and Rocket (Eruca sativa Mill.) Plants Cultivated under Photovoltaic Panels. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 46, 206–212. [Google Scholar] [CrossRef]
- Marucci, A.; Zambon, I.; Colantoni, A.; Monarca, D. A combination of agricultural and energy purposes: Evaluation of a prototype of photovoltaic greenhouse tunnel. Renew. Sustain. Energy Rev. 2018, 82, 1178–1186. [Google Scholar] [CrossRef]
- Liu, W.; Liu, L.; Guan, C.; Zhang, F.; Li, M.; Lv, H.; Yao, P.; Ingenhoff, J. A novel agricultural photovoltaic system based on solar spectrum separation. Sol. Energy 2018, 162, 84–94. [Google Scholar] [CrossRef]
- Bot, G.; van de Braak, N.; Challa, H.; Hemming, S.; Rieswijk, T.; Von Straten, G.; Verlodt, I. The solar greenhouse: State of the art in energy saving and sustainable energy supply. Acta Hortic. 2005, 691, 501–508. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Meinen, E.; Nijs, E.M.F.M.; Raaphorst, M.G.M. Quantification of the growth response to light quantity of greenhouse grown crops. Acta Hortic. 2006, 711, 97–103. [Google Scholar] [CrossRef]
- Hemming, S.; Van der Braak, N.; Dueck, T.; Jongschaap, R.; Marissen, N. Filtering natural light by the greenhouse covering using model simulations-More production and better plant quality by diffuse light? Acta Hortic. 2006, 711, 105–110. [Google Scholar] [CrossRef]
- Suri, M.; Huld, T.A.; Dunlop, E.D.; Ossenbrink, H.A. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy 2007, 81, 1295–1305. [Google Scholar] [CrossRef]
- Hemming, S.; Dueck, T.; Janse, J.; van Noort, F. The Effect of Diffuse Light on Crops. Acta Hortic. 2008, 801, 1293–1300. [Google Scholar] [CrossRef]
- Sonneveld, P.J.; Swinkels, G.L.A.M.; Bot, G.P.A.; Flamand, G. Feasibility study for combining cooling and high grade energy production in a solar greenhouse. Biosyst. Eng. 2010b, 105, 51–58. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M.; Al-Helal, I.M. Solar energy utilization by a greenhouse: General relations. Renew. Energy 2011, 36, 189–196. [Google Scholar] [CrossRef]
- Abdel-Ghany, A.M. Solar energy conversions in the greenhouses. Sustain. Cities Soc. 2011, 1, 219–226. [Google Scholar] [CrossRef]
- Bibi, B.; Sajid, M.; Rab, A.; Shah, S.T.; Ali, N.; Jan, I.; Haq, I.; Wahid, F.; Haleema, B.; Ali, I. Effect of partial shade on growth and yield of tomato cultivars. Glob. J. Biol. Agric. Health Sci. 2012, 1, 22–26. [Google Scholar]
- Verheul, M.J. Effects of Plant Density, Leaf Removal and Light Intensity on Tomato Quality and Yield. Acta Hortic. 2012, 956, 365–372. [Google Scholar] [CrossRef]
- Schuch, I.; Dannehl, D.; Miranda-Trujillo, L.; Rocksch, T.; Schmidt, U. ZINEG Project—Energetic Evaluation of a Solar Collector Greenhouse with Above-Ground Heat Storage in Germany. Acta Hortic. 2014, 1037, 195–201. [Google Scholar] [CrossRef]
- Klaring, H.P.; Klopotek, Y.; Krumbein, A.; Schwarz, D. The effect of reducing the heating set point on the photosynthesis, growth, yield and fruit quality in greenhouse tomato production. Agric. For. Meteorol. 2015, 214, 178–188. [Google Scholar] [CrossRef]
- Bian, Z.H.; Yang, Q.C.; Liu, W.K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J. Sci. Food Agric. 2015, 95, 869–877. [Google Scholar] [CrossRef] [PubMed]
- El-Maghlany, W.M.; Teamah, M.A.; Tanaka, H. Optimum design and orientation of the greenhouses for maximum capture of solar energy in North Tropical Region. Energy Convers. Manag. 2015, 105, 1096–1104. [Google Scholar] [CrossRef]
- Cakir, U.; Sahin, E. Using solar greenhouses in cold climates and evaluating optimum type according to sizing, position and location: A case study. Comput. Electron. Agric. 2015, 117, 245–257. [Google Scholar] [CrossRef]
- Attar, I.; Farhat, A. Efficiency evaluation of a solar water heating system applied to the greenhouse climate. Sol. Energy 2015, 119, 212–224. [Google Scholar] [CrossRef]
- Shyam;Al-Helal, I.M.; Singh, A.K.; Tiwari, G.N. Performance evaluation of photovoltaic thermal greenhouse dryer and development of characteristic curve. J. Renew. Sustain. Energy 2015, 7, 033109. [Google Scholar] [CrossRef]
- Elkhadraoui, A.; Kooli, S.; Hamdi, I.; Farhat, A. Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renew. Energy 2015, 77, 1–8. [Google Scholar] [CrossRef]
- Reca, J.; Torrente, C.; López-Luque, R.; Martínez, J. Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses. Renew. Energy 2016, 85, 1143–1154. [Google Scholar] [CrossRef]
- Ziapour, B.M.; Hashtroudi, A. Performance study of an enhanced solar greenhouse combined with the phase change material using genetic algorithm optimization method. Appl. Therm. Eng. 2017, 110, 253–264. [Google Scholar] [CrossRef]
- Arabkooshar, A.; Farzaneh-Gord, M.; Ghezelbash, R.; Koury, R.N.N. Energy consumption pattern modification in greenhouses by a hybrid solar-geothermal heating system. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 631–643. [Google Scholar] [CrossRef]
- Xue, J.L. Economic assessment of photovoltaic greenhouses in China. J. Renew. Sustain. Energy 2017, 9. [Google Scholar] [CrossRef]
- Anifantis, A.S.; Colantoni, A.; Pascuzzi, S. Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating. Renew. Energy 2017, 103, 115–127. [Google Scholar] [CrossRef]
Authors | Location | Observations |
---|---|---|
Cockshull et al. (1992) [5] | United Kingdom | Shading nets and whitewashing on tomato |
Abdel-Mawgoud et al. (1996) [8] | Egypt | Effects of shading |
Papadopoulos y Pararajasingham (1997) [9] | Canada | Plant spacing |
Klaring (1998) [10] | Germany | Shading on broccoli |
Kittas et al. (1999) [11] | Greece | Shading on the spectral distribution of light |
Araki et al. (1999) [12] | Belgium | Shading nets on spinach |
Abreu y Meneses (2000) [13] | Portugal | Effects of whitewashing on tomato |
Kittas et al. (2003a) [14] | Greece | Aluminized thermal shading screen on roses |
Kittas et al. (2003b) [15] | Greece | Aluminized thermal shading screen on roses |
Sandri et al. (2003) [16] | Brazil | Effects of shading screen on tomato |
Medrano et al. (2004) [17] | Spain | Mobile shading on tomato |
Bartzanas y Kittas (2005) [18] | Greece | Shading and evaporative cooling system |
Lorenzo et al. (2006) [19] | Spain | Mobile shading on tomato |
Rosales et al. (2006) [20] | Spain | Temperature and solar radiation |
Gent (2007) [21] | United States | Reflective-aluminized shading screen on tomato |
Callejón-Ferre et al. (2009) [1] | Spain | Reflective-aluminized shading screen on tomato |
Abdel-Ghany y Al-Helal (2010) [22] | Saudi Arabia | Shading nets |
Sato et al. (2010) [23] | Japan | Effects of shading |
Aberkani et al. (2010) [24] | Canada | Shading using a retractable liquid foam on tomato and pepper |
Abdel-Ghany y Al-Helal (2011) [25] | Saudi Arabia | Shading nets |
Al-Helal y Abdel-Ghany (2011) [26] | Saudi Arabia | Shading nets |
Chen et al. (2011) [27] | Taiwan | Shading nets |
García et al. (2011) [28] | Spain | Mobile shading and fog system |
Abdel-Ghany y Al-Helal (2012) [29] | Saudi Arabia | Shading nets |
Holcman y Sentlhas (2012) [30] | Brazil | Shading screens of different colors |
Ilic et al. (2012) [31] | Serbia | Shading nets |
Abdel-Ghany et al. (2015) [32] | Saudi Arabia | Shading nets |
Hernández et al. (2015) [33] | Spain | Shading and increased N doses |
Ahmed et al. (2016) [34] | Saudi Arabia | Shading nets and whitewashing on tomato and pepper |
Nagy et al. (2017) [35] | Hungary | Shading nets on pepper |
Murakami et al. (2017) [36] | Japan | Shading nets on melon |
Yasin et al. (2017) [37] | Denmark | Shading nets on Grass Weeds |
Costa et al. (2017) [38] | Brazil | Reflective-aluminized shading screen on tomato |
Holcman et al. (2017) [39] | Brazil | Thermo-reflective shading screen on tomato |
Priarone et al. (2017) [40] | Italy | Benefits of shading |
Authors | Location | Observations |
---|---|---|
Kozai et al. (1999) [41] | Japan | Electricity generated using photovoltaic cells |
Yano et al. (2007) [42] | Japan | Applications of photovoltaic power systems |
Campiotti et al. (2008) [43] | Italy | Prototype of photovoltaic greenhouse |
Yano et al. (2009) [44] | Japan | Photovoltaic modules mounted inside the roof |
Minuto et al. (2009) [45] | Italy | Semi-transparent photovoltaic systems |
Yano et al. (2010) [46] | Japan | Configuration of photovoltaic modules |
Qoaider y Steinbrecht (2010) [47] | Germany | The economic feasibility of photovoltaic technology |
Carlini et al. (2010) [48] | Italy | Performance analysis of greenhouses with PV |
Sonneveld et al. (2010) [49] | Netherlands | Hybrid system with PV and thermal energy |
Dupraz et al. (2011) [50] | France | Agrivoltaic system |
Campiotti et al. (2011) [51] | Italy | Photovoltaic system on tomato |
Pérez-Alonso et al. (2011)[52] | Spain | Flexible solar panels and shading |
Ganguly et al. (2011) [53] | India | Floriculture greenhouse by solar photovoltaic |
Carlini et al. (2012) [54] | Italy | Photovoltaic system on tomato |
Kadowaki et al. (2012) [55] | Japan | Configuration of photovoltaic modules on onions |
Marucci et al. (2012) [56] | Italy | Semi-transparent photovoltaic systems |
Pérez-Alonso et al. (2012)[57] | Spain | Evaluation of a photovoltaic system |
Poncet et al. (2012) [58] | France | Agrivoltaic system |
Klaring y Krumbein (2013) [59] | Germany | PM and permanent shading |
Marrou et al. (2013) [60] | France | Agrivoltaic system |
Castellano (2014) [61] | Italy | Configuration of photovoltaic modules |
Juang y Kacira (2014) [62] | South Corea | PM in an arid environment |
Cossu et al. (2014) [63] | Italy | PM and shading |
Tani et al. (2014) [64] | Japan | PM and light diffusion on lettuce |
Pérez-Alonso et al. (2014) [65] | Spain | PM and shading on tomato |
Pérez-García et al. (2014) [66] | Spain | Evaluation of a photovoltaic system |
Serrano et al. (2014) [67] | Spain | PM and shading |
Yano et al. (2014) [68] | Japan | Semi-transparent photovoltaic systems |
Fatnassi et al. (2015) [69] | France | Configuration of photovoltaic modules |
Marucci et al. (2015) [70] | Italy | Prototype of dynamics photovoltaic greenhouse |
Bulgari et al. (2015) [71] | Italy | PM and shading on tomato |
Yang et al. (2015) [72] | China | Transparent photovoltaic systems |
Castellano y Tsirogiannis (2015) [73] | Italy | Configuration of photovoltaic modules |
Cossu et al. (2016) [74] | Japan | Semi-transparent photovoltaic systems |
Marucci y Capuccini (2016a) [75] | Italy | PM and energy efficiency |
Marucci y Capuccini (2016b) [76] | Italy | PM and energy efficiency |
Hassanien et al. (2016) [77] | Egypt | The challenges for photovoltaic systems |
Buttaro et al. (2016) [78] | Italy | Semi-transparent photovoltaic systems |
Castellano et al. (2016a) [79] | Italy | PM and photosynthetic photon flux |
Castellano et al. (2016b) [80] | Italy | PM and shading |
Cuce et al. (2016) [81] | United Kingdom | PM and energy consumption |
Saifultah et al. (2016) [82] | South Corea | Semi-transparent photovoltaic systems |
Dinesh y Pearce (2016) [83] | United States | Agrivoltaic system |
Cossu et al. (2017) [84] | Japan | PM and radiation |
Cossu et al. (2017) [85] | Japan | Configuration of photovoltaic modules |
Carreño-Ortega et al. (2017) [86] | Spain | Environmental and socioeconomic development |
Marucci et al. (2017) [87] | Italy | Photovoltaic greenhouse tunnel |
Valle et al. (2017) [88] | France | Agrivoltaic system |
Trypanagnostopoulos et al. (2017) [89] | Greece | PM and shading |
Loik et al. (2017) [90] | United States | PM and energy balance |
Yildirim et al. (2017) [91] | Turkey | PM and economic and environmental evaluation |
Trypanagnostopoulos et al. (2017) [92] | Greece | Electricity generated using photovoltaic cells |
Kavga et al. (2017) [93] | Greece | PM and shading |
Marucci et al. (2018) [94] | Italy | Photovoltaic greenhouse tunnel |
Liu et al. (2018) [95] | China | PM and shading |
Authors | Location | Observations |
---|---|---|
Bot et al. (2005) [96] | Netherlands | Energy saving |
Marcelis et al. (2006) [97] | Netherlands | Effects of light quantity |
Hemming et al. (2006) [98] | Netherlands | Effects of diffuse light |
Suri et al. (2007) [99] | Italy | Solar energy in the European Union |
Hemming et al. (2008) [100] | Netherlands | Effects of diffuse light |
Sonneveld et al. (2010b) [101] | Netherlands | The feasibility of solar energy |
Abdel-Ghany y Al-Helal (2011) [102] | Saudi Arabia | Thermal model |
Abdel-Ghany (2011) [103] | Saudi Arabia | Solar energy and heat |
Bibi et al. (2012) [104] | Pakistan | Effects of diffuse light |
Verheul (2012) [105] | Norway | Light Intensity |
Schuch et al. (2014) [106] | Germany | Solar energy and heating |
Klaring et al. (2015) [107] | Germany | Heating and carbon dioxide emissions |
Bian et al. (2015) [108] | China | Effects of light quality |
El-Maghlany et al. (2015) [109] | Egypt | Solar energy and heating cost savings |
Cakir y Sahin (2015) [110] | Turkey | Analysis of types greenhouses |
Attar y Farhat (2015) [111] | Tunisia | Heating and costs |
Shyam et al. (2015) [112] | India | Greenhouse dryer |
Elkhadraoui (2015) [113] | Tunisia | Greenhouse dryer |
Reca et al. (2016) [114] | Spain | The profitability of photovoltaic systems |
Ziapour y Hashtroudi (2017) [115] | Iran | Solar energy and saving energy process |
Arabkooshar et al. (2017) [116] | Iran | Hybrid solar-geothermal heating system |
Xue (2017) [117] | China | Solar energy and costs |
Anifantis et al. (2017) [118] | Italy | Heating |
Authors | Documents | Authors | Documents |
---|---|---|---|
Yano A | 8 | Onoe M | 2 |
Abdel-Ghany AM | 8 | Cecchini M | 2 |
Al-Helal IM | 6 | Trypanagnostopoulos G | 2 |
Marucci A | 6 | Chessa F | 2 |
Colantoni A | 5 | Deligios PA | 2 |
Callejón-Ferre AJ | 5 | Marrou H | 2 |
Kittas C | 5 | Murakami K | 2 |
Pérez-Alonso J | 5 | Poncet C | 2 |
Castellano S | 4 | Hiraki E | 2 |
Monarca D | 4 | Caparrós I | 2 |
Pérez-García M | 4 | Giménez M | 2 |
Cossu M | 4 | Brun R | 2 |
Serio F | 3 | Bibbiani C | 2 |
Santamaria P | 3 | Incrocci L | 2 |
Sánchez-Guerrero MC | 3 | Holcman E | 2 |
García ML | 3 | Furue A | 2 |
Pazzona A | 3 | Sentelhas PC | 2 |
Sirigu A | 3 | Carlini M | 2 |
Ledda L | 3 | Fatnassi H | 2 |
Murgia L | 3 | Sonneveld PJ | 2 |
Noda S | 3 | Alonzo G | 2 |
Cappuccini A | 3 | Campiotti C | 2 |
Klaring HP | 3 | Farhat A | 2 |
Carreño-Ortega A | 3 | Krumbein A | 2 |
Baille A | 3 | Dufour L | 2 |
Katsoulas k | 3 | Swinkels GLAM | 2 |
Ishizu F | 3 | Bot GPA | 2 |
Medrano E | 3 | Cabrera FJ | 2 |
Lorenzo P | 3 | Dueck T | 2 |
Tripanagnostopoulos Y | 3 | Li M | 2 |
Kadowaki M | 3 | Kavga A | 2 |
Hemming S | 3 | Dondi F | 2 |
Tanaka T | 3 | Capuccini A | 2 |
Journals/Conferences | Documents |
---|---|
Acta Horticulturae | 19 |
Biosystems Engineering | 8 |
Renewable Energy | 6 |
Solar Energy | 5 |
Renewable & Sustainable Energy Reviews | 5 |
Applied Energy | 5 |
Journal of Agricultural Engineering | 5 |
ScientiaHorticulturae | 4 |
Energy Conversion and Management | 3 |
Solar Energy Materials and Solar Cells | 3 |
Energies | 2 |
Agricultural and Forest Meteorology | 2 |
Journal of Renewable and Sustainable Energy | 2 |
Mathematical Problems in Engineering | 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aroca-Delgado, R.; Pérez-Alonso, J.; Callejón-Ferre, Á.J.; Velázquez-Martí, B. Compatibility between Crops and Solar Panels: An Overview from Shading Systems. Sustainability 2018, 10, 743. https://doi.org/10.3390/su10030743
Aroca-Delgado R, Pérez-Alonso J, Callejón-Ferre ÁJ, Velázquez-Martí B. Compatibility between Crops and Solar Panels: An Overview from Shading Systems. Sustainability. 2018; 10(3):743. https://doi.org/10.3390/su10030743
Chicago/Turabian StyleAroca-Delgado, Raúl, José Pérez-Alonso, Ángel Jesús Callejón-Ferre, and Borja Velázquez-Martí. 2018. "Compatibility between Crops and Solar Panels: An Overview from Shading Systems" Sustainability 10, no. 3: 743. https://doi.org/10.3390/su10030743
APA StyleAroca-Delgado, R., Pérez-Alonso, J., Callejón-Ferre, Á. J., & Velázquez-Martí, B. (2018). Compatibility between Crops and Solar Panels: An Overview from Shading Systems. Sustainability, 10(3), 743. https://doi.org/10.3390/su10030743