Analysis of Flood Risk Due to Sea Level Rise in the Menor Sea (Murcia, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vulnerability Analysis
2.2.1. Remote Sensing Applied in the Delimitation of Exposed Areas
2.2.2. Coastal Vulnerability Index
2.3. Calculation of the Risk of Flooding of the Menor Sea
3. Results and Discussion
3.1. Coastal Vulnerability in the Menor Sea
3.2. Risk of Flooding in the Menor Sea
3.3. Environmental Impacts
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stenseth, N.C.; Ottersen, G.; Hurrell, J.W.; Mysterud, A.; Lima, M.; Chan, K.S.; Yoccoz, N.G.; Ådlandsvik, B. Studying climate effects on ecology through the use of climate indices: The North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Milrta, M.; Pashiardis, S.; Hejkrlik, L.; Heino, R.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M. Beyond global warming: Ecology and global change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Kirschbaum, M.U. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 1995, 27, 753–760. [Google Scholar] [CrossRef]
- Mori, N.; Yasuda, T.; Mase, H.; Tom, T.; Oku, Y. Projection of extreme wave climate change under global warming. Hydrol. Res. Lett. 2010, 4, 15–19. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Meehl, G.A. Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 755–828. [Google Scholar]
- Bindoff, N.L.; Willebrand, J.; Artale, V.; Cazenave, A.; Gregory, J.; Gulev, S.; Hanawa, K.; Le Quéré, C.; Levitus, S.; Nojiri, Y.; et al. Observations: Oceanic Climate Change and Sea Level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Bardají, T.; Zazo, C.; Cabero, A.; Dabrio, C.; Goy, J.L.; Lario, J.; Silva, P.G. Impacto del Cambio Climático en el litoral. Enseñanza de las Ciencias de la Tierra 2009, 17, 141–154. [Google Scholar]
- Vellinga, M.; Wood, R. Impacts of thermohaline circulation shutdown in the twenty-first century. Clim. Chang. 2008, 91, 43–63. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Harper, J.T.; O’Neel, S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 2008, 321, 1340–1343. [Google Scholar] [CrossRef] [PubMed]
- Kopp, R.E.; Simons, F.J.; Mitrovica, J.X.; Maloof, A.C.; Oppenheimer, M. Probabilistic assessment of sea level during the last interglacial stage. Nature 2009, 462, 863–868. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, M.; Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef] [PubMed]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Clim. Dyn. 2010, 34, 461–472. [Google Scholar] [CrossRef]
- Katsman, C.A.; Oldenborgh, J.V. Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—The Netherlands as an example. Clim. Dyn. 2011, 109, 617–645. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. Digital Shoreline Analysis System (DSAS) Version 4.3—An ArcGIS Extension for Calculating Shoreline Change; U.S. Geological Survey Open-File Report 2008-1278; U.S. Geological Survey: Reston, VA, USA, 2009.
- Ojeda, J.; Álvarez, J.I.; Martín, D.; Fraile, P. El uso de las TIG para el cálculo del índice de vulnerabilidad costera (CVI) ante una potencial subida del nivel del mar en la costa andaluza. España. Rev. Int. Cienc. Tecnol. Inf. Geogr. 2009, 9, 83–100. [Google Scholar]
- De Pascalis, F.; Pérez-Ruzafa, A.; Gilabert, J.; Marcos, C.; Umgiesser, G. Climate change response of the Mar Menor coastal lagoon (Spain) using a hydrodynamic finite element model. Estuar. Coast. Shelf Sci. 2012, 114, 118–129. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I.M.; Ros, J. Evolución de las Características Ambientales y de los Poblamientos del Mar Menor (Murcia, SE de España). In Anales de Biología. 1987, pp. 53–65. Available online: http://revistas.um.es/analesbio/article/view/35381 (accessed on 12 March 2018).
- Pilkey, O.H.; Davis, T.W. An analysis of coastal recession models North Carolina coast. Sea level fluctuation and coastal evolution: Tulsa, Okla. Soc. Econ. Paleontol. Mineral. 1987, 41, 59–68. [Google Scholar]
- Masselink, G.; Short, A.D. The effect of tidal range on beach morphodynamics and morphology: A conceptual beach model. J. Coast. Res. 1993, 9, 785–800. [Google Scholar]
- Chuvieco, E. Teledetección Ambiental. La Observación de la Tierra Desde el Espacio; Ariel: Barcelona, Spain, 2008. [Google Scholar]
- Tso, B.; Mather, P. Classification Methods for Remotely Sensed Data; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Chang. 2009, 19, 240–247. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Boski, T.; Goy, J.L.; Zazo, C.; Dabrio, C.J. Coastal-flood risk management in Central Algarve: Vulnerability and Flood Risk Indices (South Portugal). Ecol. Indic. 2016, 71, 302–316. [Google Scholar] [CrossRef]
- Somoza, L. Estudio del Cuaternario Litoral Entre Cabo de Palos y Guardamar (Murcia-Alicante). Las Variaciones del Nivel del Mar en Relación con el Contexto Geodinámico; Spanish Institute of Oceanography: Barcelona, Spain, 1993; Volume 12. [Google Scholar]
- Lario, J.; Luque, L.; Zazo, C.; Goy, J.L.; Spencer, C.; Cabero, A.; Bardají, T.; Borja, F.; Dabrio, C.J.; Civis, C.; et al. Tsunami vs. storm surge deposits: A review of the sedimentological and geomorphological record of Extreme Waves Events (EWE) during the Holocene in the Gulf of Cadiz, Spain”. Z. Geomorphol. 2010, 54 (Suppl. 3), 231–235. [Google Scholar] [CrossRef]
- Lario, J.; Zazo, C.; Goy, J.L.; Silva, P.G.; Bardají, T.; Cabero, A.; Dabrio, C.J. Holocene paleotsunami catalogue of SW Iberia. Quat. Int. 2011, 242, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Samaras, A.G.; Karambas, T.V.; Archetti, R. Simulation of tsunami generation, propagation and coastal inundation in the Eastern Mediterranean. Ocean Sci. 2015, 11, 643–655. [Google Scholar] [CrossRef]
- Luque, L.; Lario, J.; Zazo, C.; Goy, J.L.; Dabrio, C.J.; Silva, P.G. Tsunami deposits as paleoseismic indicators: Examples from the Spanish coast. Acta Geol. Hisp. 2001, 36, 197–211. [Google Scholar]
- Marcos, M.; Jordà, G.; Gomis, D.; Pérez, B. Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob. Planet. Chang. 2011, 77, 116–128. [Google Scholar] [CrossRef]
- Forte, F.; Pennetta, L.; Strobl, R.O. Historic records and GIS applications for flood risk analysis in the Salento peninsula (Southern Italy). Nat. Hazards Earth Syst. Sci. 2005, 5, 833–844. [Google Scholar] [CrossRef]
- Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope–Evros region, Greece. Sci. Total Environ. 2015, 538, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, O.; Garcia, T.; Matias, A.; Taborda, R.; Dias, J.A. An integrated method for the determination of set-back lines for coastal erosion hazards on sandy shores. Cont. Shelf Res. 2006, 26, 1030–1044. [Google Scholar] [CrossRef]
- Kroon, A.; Davidson, M.A.; Aarninkhof, S.G.J.; Archetti, R.; Armaroli, C.; Gonzalez, M.; Medri, S.; Osorio, A.; Aagaard, T.; Holman, R.A.; et al. Application of remote sensing video systems for coastline management problems. Coast. Eng. 2007, 54, 493–505. [Google Scholar] [CrossRef]
- Cahoon, D.R.; Hensel, P.F.; Spencer, T.; Reed, D.J.; McKee, K.L.; Saintilan, N. Coastal wetland vulnerability to relative sea-level rise: Wetland elevation trends and process controls. In Wetlands and Natural Resource Management; Springer: Berlin/Heidelberg, Germany, 2006; pp. 271–292. [Google Scholar]
- Church, J.A.; White, N.J. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Nicholls, R.; Mimura, N. Regional issues raised by sea-level rise and their policy implications. Clim. Res. 1998, 11, 5–18. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 2009, 90, 1095–1107. [Google Scholar] [CrossRef]
- Oreskes, N. The scientific consensus on climate change. Science 2004, 306, 1686. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.B.; Prizomwala, S.P.; Ukey, V.; Bhatt, N.; Chamyal, L.S. Coastal geomorphology and tsunami hazard scenario along the Kachchh Coast, Western India. Indian J. Geo-Mar. Sci. 2010, 39, 549–556. [Google Scholar]
Minimum Values (m) | Maximum Values (m) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Scenarios | X0A | X1A | X1B | X2 | X3 | X0A | X1A | X1B | X2 | X3 | Extreme Value |
Swell | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 4.1 | 4.1 | 4.1 | 4.1 | 4.1 | |
Rise Sea level | 0.03 | 0.12 | −0.19 | 0.6 | 1.2 | 0.0375 | 0.15 | 0.92 | 0.75 | 1.5 | |
Mareal Range | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | |
Neotectonic | 0.00 | 0.00 | 0.00 | 0.02 | 0.04 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | |
Weather Event | 0.00 | 0.00 | 0.00 | 0.02 | 0.04 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | +2 m |
Tsunami | 0.00 | 0.00 | 0.00 | 0.02 | 0.04 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | +8 m |
Total | +4.53 | +4.53 | +4.22 | +5.03 | +5.65 | +4.929 | +4.92 | 5.69 | +5.55 | +6.34 |
Component | 1972–2008 (mm/year) | 1993–2008 (mm/year) |
---|---|---|
Gauges (Total) | 1.83 ± 0.18 | 2.61 ± 0.55 |
Gauges and altimeters (Total) | 2.10 ± 0.16 | 3.22 ± 0.41 |
1. Thermal expansion | 0.80 ± 0.15 | 0.88 ± 0.33 |
2. Glaciers and ice sheets | 0.67 ± 0.03 | 0.99 ± 0.04 |
3. Ice of Greenland | 0.12 ± 0.17 | 0.31 ± 0.17 |
4. Antarctic ice | 0.30 ± 0.20 | 0.43 ± 0.20 |
5. Land storage | −0.11 ± 0.19 | −0.08 ± 0.19 |
Sum of components (1 + 2 + 3 + 4 + 5) | 1.78 ± 0.36 | 2.54 ± 0.46 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Graña, A.; Gómez, D.; Santos-Francés, F.; Bardají, T.; Goy, J.L.; Zazo, C. Analysis of Flood Risk Due to Sea Level Rise in the Menor Sea (Murcia, Spain). Sustainability 2018, 10, 780. https://doi.org/10.3390/su10030780
Martínez-Graña A, Gómez D, Santos-Francés F, Bardají T, Goy JL, Zazo C. Analysis of Flood Risk Due to Sea Level Rise in the Menor Sea (Murcia, Spain). Sustainability. 2018; 10(3):780. https://doi.org/10.3390/su10030780
Chicago/Turabian StyleMartínez-Graña, Antonio, Diego Gómez, Fernando Santos-Francés, Teresa Bardají, José Luis Goy, and Caridad Zazo. 2018. "Analysis of Flood Risk Due to Sea Level Rise in the Menor Sea (Murcia, Spain)" Sustainability 10, no. 3: 780. https://doi.org/10.3390/su10030780
APA StyleMartínez-Graña, A., Gómez, D., Santos-Francés, F., Bardají, T., Goy, J. L., & Zazo, C. (2018). Analysis of Flood Risk Due to Sea Level Rise in the Menor Sea (Murcia, Spain). Sustainability, 10(3), 780. https://doi.org/10.3390/su10030780