The Effect of Co-Additives (Biochar and FGD Gypsum) on Ammonia Volatilization during the Composting of Livestock Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Preparation and Experimental Setup
2.2. Physicochemical Parameter Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. The Effect on Temperature, pH, and EC
3.2. The Effect on Ammonia Volatilization
3.3. The Effects on Organic Matter, TKN, C/N, , ,
3.4. The Effects on Macro-, Micronutrients and Maturity Indices
3.5. The Effect on Germination and Respiration Rate
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed]
- Franke-whittle, I.H.; Insam, H. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review. Crit. Rev. Microbiol. 2013, 39, 139–151. [Google Scholar] [CrossRef] [PubMed]
- ten Hoeve, M.; Hutchings, N.J.; Peters, G.M.; Svanström, M.; Jensen, L.S.; Bruun, S. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark. J. Environ. Manag. 2014, 132, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Gamroth, M. Composting: An Alternative for Livestock Manure Management and Disposal of Dead Animals; Oregon State University Extension: Corvallis, OR, USA, 2012. [Google Scholar]
- Sivakumar, K.; Saravana Kumar, V.R.; Jagatheesan, P.N.R.; Viswanathan, K.; Chandrasekaran, D. Seasonal variations in composting process of dead poultry birds. Bioresour. Technol. 2008, 99, 3708–3713. [Google Scholar] [CrossRef] [PubMed]
- Bharathy, N.; Sakthivadivu, R.; Sivakumar, K.; Saravanakumar, V.R. Disposal and utilization of broiler slaughter waste by composting. Vet. World 2012, 5, 359–361. [Google Scholar] [CrossRef]
- Pan, I.; Dam, B.; Sen, S.K. Composting of common organic wastes using microbial inoculants. 3 Biotech 2012, 2, 127–134. [Google Scholar] [CrossRef]
- Blazy, V.; de Guardia, A.; Benoist, J.C.; Daumoin, M.; Lemasle, M.; Wolbert, D.; Barrington, S. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge. Waste Manag. 2014, 34, 1125–1138. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Lu, P.; Jiang, T.; Schuchardt, F.; Li, G. Influence of bulking agents on CH4, N2O, and NH3 emissions during rapid composting of pig manure from the Chinese Ganqinfen system. J. Zhejiang Univ. Sci. B 2014, 15, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Colón, J.; Martínez-blanco, J.; Gabarrell, X.; Artola, A.; Sánchez, A.; Rieradevall, J.; Font, X. Environmental assessment of home composting. Resour. Conserv. Recycl. 2010, 54, 893–904. [Google Scholar] [CrossRef]
- Beck-Friis, B.; Smårs, S.; Jönsson, H.; Kirchmann, H. SE—Structures and Environment: Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J. Agric. Eng. Res. 2001, 78, 423–430. [Google Scholar] [CrossRef]
- Martins, O.; Dewes, T. Loss of Nitrogenous Compounds during Composting of Animal Wastes. Bioresour. Technol. 1992, 42, 103–111. [Google Scholar] [CrossRef]
- Kithome, M.; Paul, J.W.; Bomke, A.A. Reducing nitrogen losses during simulated composting of poultry manure using adsorbents or chemical amendments. J. Environ. Qual. 1999, 28, 194–201. [Google Scholar] [CrossRef]
- Zeng, Y.; Guardia, A.D.; Daumoin, M.; Benoist, J. Characterizing the transformation and transfer of nitrogen during the aerobic treatment of organic wastes and digestates. Waste Manag. 2012, 32, 2239–2247. [Google Scholar] [CrossRef] [PubMed]
- Barrington, S.; Choini, D.; Trigui, M.; Knight, W. Effect of carbon source on compost nitrogen and carbon losses. Bioresour. Technol. 2002, 83, 189–194. [Google Scholar] [CrossRef]
- Gabhane, J.; Prince, S.P.M.; Bidyadhar, R.; Bhilawe, P.; Anand, D.; Vaidya, A.N.; Wate, S.R. Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresour. Technol. 2012, 114, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.R.; Lepp, N.W.; Edwards, R. Synthetic zeolites as amendments for sewage sludge-based compost. Chemosphere 2000, 41, 265–269. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Zhang, Z.; Shen, F.; Zhang, G.; Qin, R.; Li, X.; Xiao, R. Nutrient transformations during composting of pig manure with bentonite. Bioresour. Technol. 2012, 121, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.F.; Wu, Q.T.; Wong, J.W.C.; Nagar, B.B. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresour. Technol. 2006, 97, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Luo, L.; Gao, J.; Peng, Q.; Huang, H.; Chen, A. Ammonia-oxidizing bacterial communities and shaping factors with di ff erent Phanerochaete chrysosporium inoculation regimes during. RSC Adv. 2016, 6, 61473–61481. [Google Scholar] [CrossRef]
- Malińska, K.; Zabochnicka-Świątek, M.; Dach, J. Effects of biochar amendment on ammonia emission during composting of sewage sludge. Ecol. Eng. 2014, 71, 474–478. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Sinicco, T.; D’Hose, T.; Vanden Nest, T.; Mondini, C. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. J. Environ. Manag. 2016, 168, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-D.; Xue, D. Effects of bamboo biochar addition on temperature rising, dehydration and nitrogen loss during pig manure composting. Chin. J. Appl. Ecol. 2014, 25, 1057–1062. [Google Scholar]
- Sánchez-García, M.; Alburquerque, J.A.; Sánchez-Monedero, M.A.; Roig, A.; Cayuela, M.L. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresour. Technol. 2015, 192, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, S.; Tanaka, S.; Ohata, M.; Mineki, S.; Goto, S.; Fujioka, K.; Kokubun, T. Promotion effect of various charcoals on the proliferation of composting microorganisms. Tanso 2006, 224, 261–265. [Google Scholar] [CrossRef]
- Jindo, K.; Suto, K.; Matsumoto, K.; García, C.; Sonoki, T.; Sanchez-Monedero, M.A. Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour. Technol. 2012, 110, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Mayer, P.; Hilber, I.; Gouliarmou, V.; Hale, S.E.; Cornelissen, G.; Bucheli, T.D. How to Determine the Environmental Exposure of PAHs Originating from Biochar. Environ. Sci. Technol. 2016, 50, 1941–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Lu, Y.; Li, Q. Effect of adding flue gas desulphurization gypsum on the transformation and fate of nitrogen during composting. Compost Sci. Util. 2016, 24, 230–237. [Google Scholar] [CrossRef]
- Tubail, K.; Chen, L.; Michel, F.C.; Keener, H.M.; Rigot, J.F.; Klingman, M.; Kost, D.; Dick, W.A. Gypsum Additions Reduce Ammonia Nitrogen Losses During Composting of Dairy Manure and Biosolids. Compost Sci. Util. 2008, 16, 285–293. [Google Scholar] [CrossRef]
- Guo, X.; Huang, J.; Lu, Y.; Shan, G.; Li, Q. The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during co-composting of dairy manure and sugarcane pressmud. Bioresour. Technol. 2016, 219, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, S.; Li, Y.; Zhang, N.; Zhao, B.; Zhuo, Y.; Chen, C. Influence of Flue Gas Desulfurization Gypsum Amendments on Heavy Metal Distribution in Reclaimed Sodic Soils. Environ. Eng. Sci. 2015, 32, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Presley, D. Effects of Flue Gas Desulfurization Gypsum on Crop Yield and Soil Properties in Kansas. Kansas Agric. Exp. Stn. Res. Rep. 2016, 2. [Google Scholar] [CrossRef]
- Ahn, H.K.; Richard, T.L.; Choi, H.L. Mass and thermal balance during composting of a poultry manure—Wood shavings mixture at different aeration rates. Process Biochem. 2007, 42, 215–223. [Google Scholar] [CrossRef]
- Lu, S.G.; Imai, T.; Li, H.F.; Ukita, M.; Sekine, M.; Higuchi, T. Effect of enforced aeration on in-vessel food waste composting. Environ. Technol. 2001, 22, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 9th ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Thompson, W.H.; Millner, P.D.; Watson, M.E.; Leege, P.B. Test Methods for the Examination of Composting and Compost (TMECC); USCC (United States Composting Council): Holbrook, NY, USA, 2002. [Google Scholar]
- Bremmer, J.M.; Sparks, D.L.; Page, A.L.; Helmke, P.A.; Leoppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Nitrogen-Total. In Methods of Soil Analysis, Part 3—Chemical Methods; Bigham, J.M., Ed.; SSSA Book Series 5; ASA: Madison, WI, USA, 1996. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Ed.; SSSA Book Series5; ASA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Ren, L.; Schuchardt, F.; Shen, Y.; Li, G.; Li, C. Impact of struvite crystallization on nitrogen losses during composting of pig manure and cornstalk. Waste Manag. 2010, 30, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Sellami, F.; Hachicha, S.; Chtourou, M.; Medhioub, K.; Ammar, E. Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresour. Technol. 2008, 99, 6900–6907. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.A.; Paredes, C.; Marhuenda-Egea, F.C.; Pérez-Espinosa, A.; Bernal, M.P.; Moral, R. Co-composting of distillery wastes with animal manures: Carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere 2008, 72, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Li, B.; Yu, A.; Liang, F.; Yang, L.; Sun, Y. The effect of aeration rate on forced-aeration composting of chicken manure and sawdust. Bioresour. Technol. 2010, 101, 1899–1903. [Google Scholar] [CrossRef] [PubMed]
- Tiquia, S.M.; Wan, H.C.; Tam, N.F.Y. Microbial population dynamics and enzyme activities during composting. Compost Sci. Util. 2002, 10, 150–161. [Google Scholar] [CrossRef]
- Jiang, T.; Schuchardt, F.; Li, G.; Guo, R.; Zhao, Y. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. J. Environ. Sci. 2011, 23, 1754–1760. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment (CCME). CCME Guidelines for Compost Quality; CCME: Ottawa, ON, Canada, 2005; ISBN 1-896997-60-0. [Google Scholar]
- López-Cano, I.; Roig, A.; Cayuela, M.L.; Alburquerque, J.A.; Sánchez-Monedero, M.A. Biochar improves N cycling during composting of olive mill wastes and sheep manure. Waste Manag. 2016, 49, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huo, R.; Xu, J.; Liang, S.; Li, J.; Zhao, T.; Wang, S. Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Bioresour. Technol. 2017, 235, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Chen, X.; Hou, M. Study on the desalination process and improvement effect of FGD-gypsum improving coastal saline-soil. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 59, pp. 1–7. [Google Scholar]
- Tiquia, S.M.; Tam, N.F.Y. Fate of nitrogen during composting of chicken litter. Environ. Pollut. 2000, 110, 535–541. [Google Scholar] [CrossRef]
- Pagans, E.; Barrena, R.; Font, X.; Sánchez, A. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature. Chemosphere 2006, 62, 1534–1542. [Google Scholar] [CrossRef] [PubMed]
- Koenig, R.T.; Palmer, M.D.; Miner, F.D.; Miller, B.E.; Harrison, J.D. Chemical Amendments and Process Controls To Reduce Ammonia Volatilization During In-House Composting. Compost Sci. Util. 2005, 13, 141–149. [Google Scholar] [CrossRef]
- Jeong, Y.K.; Kim, J.S. A new method for conservation of nitrogen in aerobic composting processes. Bioresour. Technol. 2001, 79, 129–133. [Google Scholar] [CrossRef]
- Khan, N.; Clark, I.; Sánchez-Monedero, M.A.; Shea, S.; Meier, S.; Bolan, N. Maturity indices in co-composting of chicken manure and sawdust with biochar. Bioresour. Technol. 2014, 168, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Schomberg, H.H.; Gaskin, J.W.; Harris, K.; Das, K.C.; Novak, J.M.; Busscher, W.J.; Watts, D.W.; Woodroof, R.H.; Lima, I.M.; Ahmedna, M.; et al. Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil. J. Environ. Qual. 2012, 41, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Thangarajan, R.; Bolan, N.S.; Sarkar, B.; Khan, N.; Ok, Y.S.; Naidu, R. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere 2016, 142, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.S.; Saggar, S.; Luo, J.; Bhandral, R.; Singh, J. Gaseous emissions of nitrogen from grazed pastures: Processes, measurements and modelling, environmental implications, and mitigation. Adv. Agron. 2004, 84. [Google Scholar] [CrossRef]
- Liang, Y.; Leonard, J.J.; Feddes, J.J.R.; McGill, W.B. Influence of carbon and buffer amendment on ammonia volatilization in composting. Bioresour. Technol. 2006, 97, 748–761. [Google Scholar] [CrossRef] [PubMed]
- Canfield, D.E.; Glazer, A.N.; Falkowski, P.G. The evolution and future of earth’s nitrogen cycle. Science 2010, 330, 192–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Guardia, A.; Mallard, P.; Teglia, C.; Marin, A.; Le Pape, C.; Launay, M.; Benoist, J.C.; Petiot, C. Comparison of five organic wastes regarding their behaviour during composting: Part 2, nitrogen dynamic. Waste Manag. 2010, 30, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.R.; Phillips, I.R.; Condron, L.M.; Goloran, J.; Xu, Z.H.; Chan, K.Y. Impacts of greenwaste biochar on ammonia volatilisation from bauxite processing residue sand. Plant Soil 2013, 367, 301–312. [Google Scholar] [CrossRef]
- Hu, Z.; Lane, R.; Wen, Z. Composting clam processing wastes in a laboratory- and pilot-scale in-vessel system. Waste Manag. 2009, 29, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Hogg, D.; Barth, J.; Favoino, E.; Centemero, M.; Caimi, V.; Amlinger, F.; Devliegher, W.; Brinton, W.; Antler, S. Comparison of Compost Standards Within the EU, North America and Australasia; The Waste and Resources Action Programme: Banbury, Oxon, UK, 2002; ISBN 1844050033. [Google Scholar]
- Careces, R.; Flotats, X.; Marfa, O. Changes in the chemical and physicochemical properties of the solid fraction of cattle slurry during composting using different aeration strategies. Waste Manag. 2006, 26, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Price, G.W. Evaluation of three composting systems for the management of spent coffee grounds. Bioresour. Technol. 2011, 102, 7966–7974. [Google Scholar] [CrossRef] [PubMed]
- Gopinathan, M.; Thirumurthy, M. Evaluation of Phytotoxicity for Compost from Organic Fraction of Municipal Solid Waste and Paper & Pulp Mill Sludge. Environ. Res. Eng. Manag. 2012, 1, 47–51. [Google Scholar]
- Wang, P.; Changa, C.M.; Watson, M.E.; Dick, W.A.; Chen, Y.; Hoitink, H.A.J. Maturity indices for composted dairy and pig manures. Soil Biol. Biochem. 2004, 36, 767–776. [Google Scholar] [CrossRef]
Swine Slurry | Slaughter Waste | Sawdust | Biochar | FGD Gypsum | |
---|---|---|---|---|---|
pH | 8.09 | 6.23 | 7.59 | 10.99 | 8.54 |
EC (µS/cm) | 22.25 | 6.85 | 0.15 | 0.73 | 2.69 |
BD (g/L) | 1059.75 | 1133.92 | 243.57 | 515.29 | 703.33 |
TS (%) | 6.27 | 26.11 | 81.49 | 90.35 | 77.75 |
VS (%TS) | 72.15 | 94.91 | 98.99 | 65.90 | 3.04 |
Ash (%) | 27.85 | 5.09 | 0.94 | 34.10 | 96.06 |
TOC (%TS) | 41.85 | 55.05 | 57.42 | 38.23 | 2.41 |
TKN (%TS) | 6.74 | 6.26 | 0.37 | 0.36 | n.d |
C/N | 6.21 | 8.79 | 155.18 | 105.02 | n.d |
Treatment | Feedstock Ratio (% Wet Weight) | Additive (% Raw Feedstock on Wet Weight) | Aeration | |||
---|---|---|---|---|---|---|
Slaughter Waste (%) | Swine Slurry (%) | Sawdust (%) | FGD Gypsum (%) | Biochar (%) | ||
CC | 41.7 | 16.7 | 41.6 | - | - | continuous |
BC | 41.7 | 16.7 | 41.6 | - | 10 | continuous |
FG | 41.7 | 16.7 | 41.6 | 10 | - | continuous |
FB | 41.7 | 16.7 | 41.6 | 5 | 5 | continuous |
CC-I | 41.7 | 16.7 | 41.6 | - | - | intermittent |
BC-I | 41.7 | 16.7 | 41.6 | - | 10 | intermittent |
FG-I | 41.7 | 16.7 | 41.6 | 10 | - | intermittent |
FB-I | 41.7 | 16.7 | 41.6 | 5 | 5 | intermittent |
Treatment | P | K | Na | Ca | Mg |
---|---|---|---|---|---|
(mg/kg) | |||||
CC | 494.99 ± 1.27 | 3125.03 ± 38.09 | 429.66 ± 5.40 | 3853.11 ± 7.22 | 269.12 ± 3.55 |
BC | 434.28 ± 1.11 | 3203.257 ± 7.78 | 321.92 ± 1.51 | 11,075.89 ± 19.03 | 443.36 ± 2.94 |
FG | 470.12 ± 0.85 | 2939.59 ± 13.09 | 302.94 ± 2.60 | 26,624.35 ± 71.91 | 694.01 ± 7.79 |
FB | 513.54 ± 0.68 | 3634.01 ± 22.32 | 399.04 ± 1.73 | 26,113.85 ± 86.57 | 602.85 ± 3.47 |
CC-I | 651.69 ± 0.64 | 1674.51 ± 19.13 | 251.23 ± 2.71 | 2261.39 ± 3.62 | 301.69 ± 1.79 |
BC-I | 461.12 ± 0.61b | 1991.08 ± 12.28 | 244.98 ± 1.06 | 6685.14 ± 22.16 | 306.98 ± 1.76 |
FG-I | 386.95 ± 35.66 | 1787.36 ± 9.07 | 381.61 ± 8.14 | 14,448.42 ± 209.08 | 434.25 ± 2.50 |
FB-I | 650.15 ± 0.79 | 1679.82 ± 10.42 | 313.78 ± 1.36 | 11,123.09 ± 36.87 | 328.59 ± 0.82 |
Treatment | Fe | Mn | Cu | Zn | S |
---|---|---|---|---|---|
(mg/kg) | |||||
CC | 225.37 ± 0.55 | 53.07 ± 1.54 | 21.16 ± 0.27 | 51.98 ± 0.17 | 973.46 ± 2.91 |
BC | 628.39 ± 0.57 | 147.24 ± 3.34 | 19.37 ± 0.09 | 36.67 ± 0.07 | 1580.28 ± 3.41 |
FG | 460.48 ± 1.79 | 46.57 ± 1.90 | 15.01 ± 0.15 | 38.09 ± 0.06 | 14,420.03 ± 36.23 |
FB | 629.88 ± 1.01 | 119.09 ± 4.32 | 19.45 ± 0.11 | 52.73 ± 0.10 | 11,325.19 ± 36.23 |
CC-I | 135.77 ± 0.27 | 27.23 ± 0.77 | 14.65 ± 0.13 | 105.88 ± 0.17 | 1500.77 ± 1.46 |
BC-I | 401.44 ± 0.65 | 86.61 ± 3.14 | 13.70 ± 0.08 | 71.41 ± 0.13 | 1638.19 ± 5.24 |
FG-I | 192.48 ± 2.09 | 21.56 ± 1.04 | 8.68 ± 0.12 | 69.96 ± 2.64 | 10,752.07 ± 88.65 |
FB-I | 330.02 ± 0.53 | 54.72 ± 1.98 | 13.45 ± 0.08 | 120.91 ± 0.22 | 6828.30 ± 21.69 |
Treatment | pH | Electrical Conductivity (µS/cm) | C/N Ratio | Germination Index (%) |
---|---|---|---|---|
CC | 7.05 ± 0.05 | 610 ± 31.11 | 22.47 ± 0.22 | 104.56 ± 6.88 |
BC | 8.25 ± 0.03 | 354 ± 47.38 | 23.64 ± 0.13 | 109.02 ± 6.30 |
FG | 6.06 ± 0.04 | 1295 ± 176.78 | 27.08 ± 3.14 | 139.43 ± 9.14 |
FB | 7.03 ± 0.11 | 1405 ± 190.92 | 27.69 ± 3.95 | 125.89 ± 2.51 |
CC-I | 6.64 ± 0.13 | 553 ± 90.19 | 27.76 ± 1.04 | 117.42 ± 6.91 |
BC-I | 8.69 ± 0.15 | 570 ± 28.28 | 26.68 ± 0.49 | 104.07 ± 9.28 |
FG-I | 5.5 ± 0.05 | 1330 ± 183.85 | 25.40 ± 0.95 | 129.92 ± 0.99 |
FB-I | 5.98 ± 0.12 | 1769 ± 82.73 | 25.23 ± 0.98 | 131.64 ± 39.22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Febrisiantosa, A.; Ravindran, B.; Choi, H.L. The Effect of Co-Additives (Biochar and FGD Gypsum) on Ammonia Volatilization during the Composting of Livestock Waste. Sustainability 2018, 10, 795. https://doi.org/10.3390/su10030795
Febrisiantosa A, Ravindran B, Choi HL. The Effect of Co-Additives (Biochar and FGD Gypsum) on Ammonia Volatilization during the Composting of Livestock Waste. Sustainability. 2018; 10(3):795. https://doi.org/10.3390/su10030795
Chicago/Turabian StyleFebrisiantosa, Andi, Balasubramani Ravindran, and Hong L. Choi. 2018. "The Effect of Co-Additives (Biochar and FGD Gypsum) on Ammonia Volatilization during the Composting of Livestock Waste" Sustainability 10, no. 3: 795. https://doi.org/10.3390/su10030795
APA StyleFebrisiantosa, A., Ravindran, B., & Choi, H. L. (2018). The Effect of Co-Additives (Biochar and FGD Gypsum) on Ammonia Volatilization during the Composting of Livestock Waste. Sustainability, 10(3), 795. https://doi.org/10.3390/su10030795