Anthropogenic Impact on Erosion Intensity: Case Study of Rural Areas of Pirot and Dimitrovgrad Municipalities, Serbia
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results and Discussion
4.1. Spatial-Temporal Distribution of Erosion Coefficient (Z) and Specific Annual Gross Erosion (W0)
4.2. Transformation of Rural Settlements Toward Sustainable Rural Development
4.3. Determination of Controlling Factors
4.4. Effects of Anthropogenic Impact on Change of Erosion Rate
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Karlen, D.L.; Rice, C.W. Soil Degradation: Will Humankind Ever Learn? Sustainability 2015, 7, 12490–12501. [Google Scholar] [CrossRef] [Green Version]
- Kohnke, H.; Bertrand, A.R. Soil Conservation; Mc. Graw Hill Book Company: New York, NY, USA, 1959; pp. 1–219. [Google Scholar]
- Hurni, H.; Tato, K.; Zeleke, G. The Implications of Changes in Population, Land Use, and Land Management for Surface Runoff in the Upper Nile Basin Area of Ethiopia. Mt. Res. Dev. 2005, 25, 147–154. [Google Scholar] [CrossRef]
- Piccarreta, M.; Capolongo, D.; Boenzi, F.; Bentivenga, M. Implications of decadal changes in precipitation and land use policy to soil erosion in Basilicata, Italy. Catena 2006, 65, 138–151. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Zarei, A.R.; Mokarram, M. Assessment of soil erosion and sediment yield changes using erosion potential model: Case study of Sangcharak catchment in Fars, Iran. Int. J. Agric. Resour. Gov. Ecol. 2016, 12, 344–356. [Google Scholar]
- Erskine, W.D.; Peacock, C.T. Late Holocene flood plain development following a cataclysmic flood. In The Structure, Function and Management Implications of Fluvial Sedimentary Systems, Proceedings of the International Symposium, Alice Springs, Australia, 2–6 September 2002; Dyer, F.J., Thoms, M.C., Olley, J.M., Eds.; IAHS Publication: Oxfordshire, UK, 2002; pp. 177–184. [Google Scholar]
- Ananda, J.; Herath, G. Soil erosion in developing countries: A socio-economic appraisal. J. Environ. Manag. 2003, 68, 343–353. [Google Scholar] [CrossRef]
- Walling, D. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Dragićević, S.; Stepić, M. Changes of the erosion intensity in the Ljig River basin—The influence of the antropogenic factor. Bull. Serbian Geogr. Soc. 2006, 85, 37–44. [Google Scholar] [CrossRef]
- Dragićević, S.; Milevski, I. Human Impact on the Landscape—Examples from Serbia and Macedonia. In Global Change—Challenges for Soil Management; Zlatic, M., Ed.; Advances in Geoecology; Catena Verlag: Reiskirchen, Germany, 2010; Volume 41, pp. 298–309. ISBN 978-3-923381-57-9. [Google Scholar]
- Dragićević, S.; Martinović, M.; Sibinović, M.; Novković, I.; Tošić, I.; Babović, S. Recent Change of the Erosion Intensity caused by socio-demographic and land use changes in Knjaževac Municipality, Serbia. In Chalenges: Sustainable Land Management—Climatic Change; Zlatić, M., Kostadinov, S., Eds.; Advance in Geoecology; Catena Verlag: Reiskirchen, Germany, 2014; Volume 43, pp. 271–286. ISBN 9783923381616. [Google Scholar]
- Perović, V.; Djordjević, A.; Životić, L.; Nikolić, N.; Kadović, R.; Belanović, S. Soil Erosion Modelling in the complex terrain of Pirot Municipality. Carpath. J. Earth Environ. Sci. 2012, 7, 93–100. [Google Scholar]
- Manojlović, S.; Antić, M.; Sibinović, M.; Dragićević, S.; Novković, I. Soil erosion response to demographic and land use changes in the Nišava River basin, Serbia. Fresenius Environ. Bull. 2017, 26, 7547–7560. [Google Scholar]
- Spasovski, M.; Šantić, D. Population perspectives of the mountain areas in Serbia-trends and perspectives. In Proceedings of the International Scientific Symposium, Macedonian Geographical Society, Ohrid, Macedonia, 12–15 September 2013; pp. 267–275. [Google Scholar]
- Spasovski, M.; Šantić, D.; Radovanović, O. Historical stages in transition of natural replacement of the Serbian population. Bull. Serbian Geogr. Soc. 2012, 92, 23–60. [Google Scholar] [CrossRef]
- Šabić, D.; Vujadinović, S.; Milinčić, M.; Golić, R.; Stojković, S.; Joksimović, M.; Filipović, D.; Šećerov, V. The Impact of FDI on the Transitional Economy in Serbia—Changes and Challenges. Acta Polytech. Hung. 2012, 9, 65–84. [Google Scholar]
- Martinović, M.; Ratkaj, I. Sustainable Rural Development in Serbia: Towards a Quantitative Typology of Rural Areas. Carpath. J. Earth Environ. Sci. 2015, 10, 37–48. [Google Scholar]
- Bajat, B.; Blagojevic, D.; Kilibarda, M.; Tosic, I. Spatial analysis of the temperature trends in Serbia during the period 1961–2010. Theor. Appl. Climatol. 2013, 121, 289–301. [Google Scholar] [CrossRef]
- Milovanović, B. Climate of the Mountain StaraPlanina; Geografical Institute “Jovan Cvijic” SASA: Belgrade, Serbia, 2010; pp. 1–135. ISBN 978-86-80029-45-0. [Google Scholar]
- Milovanović, B.; Schuster, P.; Radovanović, M.; VakanjacRistić, V.; Schneider, C. Spatial and temporal variability of precipitation in Serbia for the period 1961–2010. Theor. Appl. Climatol. 2017, 130, 687–700. [Google Scholar] [CrossRef]
- Kräutner, H.G.; Krstić, B.P. Geological Map of the Carpatho-Balkanides between Mehadia, Oravita, Niš and Sofia; Geoinstitut: Belgrade, Serbia, 2003. [Google Scholar]
- Karamata, S.; Kräutner, H.G.; Krstić, B. Terranes of Serbia and neighbouring areas. In Terranes of Serbia. The Formation of the Geologic Framework of Serbia and the Adjacent Regions; Knežević-Djordjević, V., Kräutner, H.G., Krstić, B.P., Eds.; University of Belgrade, Faculty of Mining and Geology: Belgrade, Serbia, 1996; pp. 25–40. [Google Scholar]
- Dragićević, S.; Novković, I.; Carević, I.; Živković, N.; Tošić, R. GeohazardAssessmenth in the Eastern Serbia. Forum Geogr. 2011, 10, 10–19. [Google Scholar] [CrossRef]
- Gavrilović, S. Engineering of Torrents and Erosion; Journal of Construction: Belgrade, Serbia, 1972; pp. 1–292. [Google Scholar]
- Mustafić, S.; Kostadinov, S.; Manojlović, P. Risk of artificial lake “Zavoj” to processes of erosion—Methodological, knowing and protecting aspect. Bull. Serbian Geogr. Soc. 2008, 88, 29–42. [Google Scholar] [CrossRef]
- Kostadinov, S.; Zlatić, M.; Dragićević, S.; Novković, I.; Košanin, O.; Borisavljević, A.; Lakićević, M.; Mladjan, D. Anthropogenic influence on erosion intensity changes in the Rasina river watershed—Central Serbia. Fresenius Environ. Bull. 2014, 23, 254–263. [Google Scholar]
- Milanović, M.; Tomić, M.; Perović, V.; Radovanović, M.; Mukherjee, S.; Jakšić, D.; Petrović, M.; Radovanović, A. Land degradation analysis of mine-impacted zone of Kolubarain Serbia. Environ. Earth Sci. 2017, 76, 580. [Google Scholar] [CrossRef]
- Tošić, R.; Dragićević, S.; Lovrić, N. Assessment of Soil Erosion and Sediment Yield Changes Using Erosion Potential Model—Case Study: Republic of Srpska (BiH). Carpath. J. Earth Environ. Sci. 2012, 7, 147–154. [Google Scholar]
- Blinkov, I. An Approach for Conversion of Erosion Data Produced by EPM Method in Weight Measure. In Challenges: Sustainable Land Management—Climate Change; Zlatić, M., Kostadinov, S., Eds.; Advance in Geoecology; Catena Verlag: Reiskirchen, Germany, 2014; Volume 43, pp. 109–119. ISBN 9783923381616. [Google Scholar]
- De Vente, J.; Poesen, J. Predicting soil erosion and sediment yield at the basin scale: Scale issue and semi-quantitative models. Earth Sci. Rev. 2005, 71, 95–125. [Google Scholar] [CrossRef]
- Tazioli, A. Evaluation of erosion in equipped basins: Preliminary results of a comparison between the Gavrilovic model and direct measurements of sediment transport. Environ. Geol. 2009, 565, 825–831. [Google Scholar] [CrossRef]
- Amini, S.; Rafiei, B.; Khodabakhsh, S.; Heydari, M. Estimation of erosion and sediment yield of Ekbatan Dam drainage basin with EPM, using GIS. Iran. J. Earth Sci. 2010, 2, 173–180. [Google Scholar]
- Efthimiou, N.; Lykoudi, E.; Panagoulia, D.; Karavitis, C. Assessment of soil susceptibility to erosion using the EPM and RUSLE MODELS: The case of Venetikos River Catchment. Glob. Nest J. 2016, 18, 164–179. [Google Scholar]
- Lazarević, R. The Erosion Map of Serbia. Scale 1:500000; Institute of Forestry: Belgrade, Serbia, 1983. [Google Scholar]
- Irwin, E.; Geoghegan, J. Theory, data, methods: Developing spatially explicit economic models of land use change. Agric. Ecosyst. Environ. 2001, 85, 7–23. [Google Scholar] [CrossRef]
- Ashby, D.L. Geographical Redistribution of Employment: An Examination of the Elements of Change. Surv. Curr. Bus. 1964, 44, 13–20. [Google Scholar]
- Barff, R.; Knight, P. Dynamic shift share analysis. Growth Chang. 1988, 19, 1–10. [Google Scholar] [CrossRef]
- Zaccomer, G.P. Shift-Share Analysis with Spatial Structure: An Application to Italian Industrial Districts. Transit. Stud. Rev. 2006, 13, 213–227. [Google Scholar] [CrossRef]
- Huaxiong, Z.; Fang, Y. Research on regional economy and industrial structure based on Dynamic Shift-share analysis: An empirical analysis of Six Provinces in central China. In Proceedings of the International Conference on Business Computing and Global Informatization (BCGIn), Shanghai, China, 29–31 July 2011; pp. 62–66. [Google Scholar]
- Zelinsky, W.A. Method for Measuring Change in the Distribution of Manufacturing Activity: The United States, 1939–1947. Econ. Geogr. 1958, 34, 95–126. [Google Scholar] [CrossRef]
- Curtis, C.W. Shift-Share Analysis as a Technique in Rural Development Research. Am. J. Agric. Econ. 1972, 52, 267–270. [Google Scholar] [CrossRef]
- Esteban-Marquillas, J.M. A Reinterpretation of Shift-Share Analysis. Reg. Urban Econ. 1972, 2, 249–261. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Martinez Saldivar, M.L. Pattern of agricultural growth in Mexican states, 1960–71: A shift and share analysis. Reg. Stud. 1979, 13, 161–179. [Google Scholar] [CrossRef]
- Darryl, R.H.; Alasdair, G.M.; Swales, J.K. Shift-share analysis of regional growth and policy: A critique. Oxf. Bull. Econ. Stat. 2009, 51, 15–34. [Google Scholar]
- Franklin, R.; Plane, D. A shift-share method for the analysis of regional fertility change: An application to the decline in childbearing in Italy, 1952–1991. Geogr. Anal. 2004, 36, 1–21. [Google Scholar] [CrossRef]
- Franklin, R. An Examination of the Geography of Population Composition and Change in the United States, 2000–2010—Insights from Geographical Indices and a Shift-Share Analysis. Popul. Space Place 2014, 20, 18–36. [Google Scholar] [CrossRef] [PubMed]
- Göler, D.; Grčić, M.; Ratkaj, I. Tendenzen der jüngerenindustriellenEntwicklung in Serbien und ihreregionaleDifferenzierung—UntersuchtmiteinemquantitativenAnalyseansatz (Recent development and spatial differentiation of industry in Serbia—A quantitative analysis). Mitt. ÖsterreichischenGeogr. Ges. 2007, 149, 109–132. [Google Scholar]
- Sibinović, М. Structural changes in the rural planting areas of Belgrade region. Bull. Serbian Geogr. Soc. 2012, 92, 111–132. [Google Scholar] [CrossRef]
- Sibinović, M.; Winkler, A.; Grčić, M. Agriculture in a Transitional Crisis Period: Crop Production in the Administrative Region of Belgrade from 1991 to 2002. Mitt. Österreichischen Geogr. Ges. 2014, 156, 293–310. [Google Scholar] [CrossRef]
- Martinović, М. Types of population dynamics in settlements of Zaplanje area. Bull. Serbian Geogr. Soc. 2012, 92, 133–152. [Google Scholar] [CrossRef]
- Martinović, M.; Ratkaj, I. Types of changing in demographic development of setlements on mountain Suva Planina and possibilities for revitalization. In Proceedings of the Scientific Conference with International Participation, Plan and Normative Protection of the Environment, Palić, Serbia, 4–6 April 2013; pp. 139–145. [Google Scholar]
- Antić, M.; Šantić, D.; Kasanin-Grubin, M.; Malić, A. Sustainable rural development in Serbia—Relationship between population dynamics and environment. J. Environ. Prot. Ecol. 2017, 18, 323–331. [Google Scholar]
- Vojković, G.; Stojanović, B. Golija: Population development and perspectives. Population 2006, 44, 35–64. [Google Scholar] [CrossRef]
- Ivković, М.; Todorić, Ј. Hypsometric Distribution of the Population in the Settlements of Pirot District; Collection of Papers—Faculty of Geography; University of Belgrade: Beograd, Serbia, 2013; pp. 151–178. [Google Scholar]
- Spasovski, M.; Šantić, D. Trends in the distribution and concentration of the population of Serbia—First-class demographic challenges at the beginning of the 21st century. In Proceedings of the Scientific Conference with International participation, Problems and Challenges of Contemporary Geographical Science and Teaching, Kopaonik, Serbia, 8–10 December 2011; pp. 57–72. [Google Scholar]
- Anđelković, G.; Pavlović, S.; Đurđić, S.; Belij, M.; Stojković, S. Tourism climate comfort index (TCCI)—An attempt to evaluate the climate comfort for tourism purposes: The example of Serbia. Glob. Nest J. 2016, 18, 482–493. [Google Scholar]
- García-Ruiz, J.M.; Nadal-Romero, E.; Lana-Renault, N.; Begueria, S. Erosion in Mediterraneanl and scapes: Changes and future challenges. Geomorphology 2013, 198, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, R.; Bjelac, Ž.; Miljković, O.; Terzić, A. Spatial analysis and mapping of fire risk zones and vulnerability assessment—Case study Mt. Staraplanina. J. Geogr. Inst. Jovan Cvijić Prev. Educ. Nat. Disasters 2013, 63, 213–226. [Google Scholar]
- Radovanović, M.; Gomes, J.F.P. Solar Activity and Forest Fire; Geographical Institute “Jovan Cvijić” SASA: Belgrade, Serbia, 2008; pp. 1–171. ISBN 978-86-80029-40-5. [Google Scholar]
- Ristić, R.; Košanin-Grubin, M.; Radić, B.; Nikić, Z.; Vasiljević, N. Land Degradation at the StaraPlanina Ski Resort. Environ. Manag. 2012, 49, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Spatial Plan of Nature Park Area and Tourist Region Staraplanina. Available online: https://translate.google.cn/#auto/en/Prostorni%20plan%20podru%C4%8Dja%20Parka%20prirode%20i%20turisti%C4%8Dke%20regije%20Stara%20planina (accessed on 14 March 2018).
Coefficient of Soil Resistance | Y |
---|---|
Fine sediments and soils without erosion resistance | 0.80–1.00 |
Sediments, moraines, clays, and other rocks with little resistance | 0.60–0.80 |
Weak rock, schistose, stabilized | 0.50–0.60 |
Rock with moderate erosion resistance | 0.30–0.50 |
Hard rock, erosion resistant | 0.10–0.30 |
Coefficient of soil protection | X |
Areas without vegetal cover | 0.08–1.00 |
Damaged pasture and cultivated land | 0.06–0.80 |
Damaged forest and bushes, pasture | 0.04–0.06 |
Coniferous forest with little grove, scarce bushes, bushy prairie | 0.20–0.40 |
Thin forest with grove | 0.05–0.20 |
Mixed and dense forest | 0.05–0.20 |
Coefficient of erosion and stream network development | |
Whole watershed affected by erosion | 0.90–1.00 |
50–80% of catchment area affected by surface erosion and landslides | 0.80–0.90 |
Erosion in rivers, gullies, and alluvial deposits, karstic erosion | 0.60–0.70 |
Erosion in waterways on 20–50% of the catchment area | 0.30–0.50 |
Little erosion on watershed | 0.10–0.20 |
Erosion Category | Erosion Intensity | Range of Z | Range of W0 (m3/km2/year) |
---|---|---|---|
I | Excessive erosion | >1.01 | ˃3000 |
II | Intensive erosion | 0.71–1.00 | 1200–3000 |
III | Medium erosion | 0.41–0.70 | 800–1200 |
IV | Weak erosion | 0.21–0.40 | 400–800 |
V | Very weak erosion | 0.01–0.20 | 100–400 |
Variables | H | P | A | Pp | Ps | Pr | Ap | As | Ar | Z |
---|---|---|---|---|---|---|---|---|---|---|
h | 1 | −0.855 | −0.927 | −0.775 | −0.830 | −0.944 | −0.775 | −0.872 | −0.529 | −0.983 |
P | −0.855 | 1 | 0.958 | 0.990 | 0.997 | 0.686 | 0.990 | 0.993 | 0.256 | 0.844 |
A | −0.927 | 0.958 | 1 | 0.919 | 0.934 | 0.847 | 0.919 | 0.939 | 0.520 | 0.877 |
Pp | −0.775 | 0.990 | 0.919 | 1 | 0.994 | 0.583 | 1.000 | 0.978 | 0.165 | 0.767 |
Ps | −0.830 | 0.997 | 0.934 | 0.994 | 1 | 0.640 | 0.994 | 0.995 | 0.183 | 0.831 |
Pr | −0.944 | 0.686 | 0.847 | 0.583 | 0.640 | 1 | 0.583 | 0.686 | 0.767 | 0.882 |
Ap | −0.775 | 0.990 | 0.919 | 1.000 | 0.994 | 0.583 | 1 | 0.978 | 0.165 | 0.767 |
As | −0.872 | 0.993 | 0.939 | 0.978 | 0.995 | 0.686 | 0.978 | 1 | 0.198 | 0.881 |
Ar | −0.529 | 0.256 | 0.520 | 0.165 | 0.183 | 0.767 | 0.165 | 0.198 | 1 | 0.378 |
Z | −0.983 | 0.844 | 0.877 | 0.767 | 0.831 | 0.882 | 0.767 | 0.881 | 0.378 | 1 |
Elevation Zone (m) | F(km2) | F(%) | Very Weak Erosion (%) | Weak Erosion (%) | Medium Erosion (%) | Intensive Erosion (%) | Excessive Erosion (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1971 | 2011 | 1971 | 2011 | 1971 | 2011 | 1971 | 2011 | 1971 | 2011 | |||
300–500 | 254 | 100 | 0.7 | 4.9 | 2.2 | 14.8 | 22.6 | 41.6 | 41.4 | 22.0 | 10.4 | 0.5 |
500–700 | 360 | 100 | 21.7 | 25.9 | 24.7 | 34.5 | 28.3 | 29.8 | 16.5 | 8.2 | 7.9 | 0.6 |
700–900 | 453 | 100 | 23.0 | 27.5 | 35.8 | 41.1 | 31.3 | 27.9 | 7.4 | 3.2 | 2.5 | 0.3 |
900–1100 | 294 | 100 | 34.6 | 38.5 | 32.9 | 36.1 | 21.7 | 23.1 | 8.7 | 2.0 | 2.1 | 0.3 |
>1100 | 354 | 100 | 37.6 | 47.8 | 37.8 | 38.7 | 18.1 | 12.9 | 6.1 | 0.6 | 0.4 | 0.1 |
Elevaton Zone (m) | Population 1961 | Population 2011 | ||||||
---|---|---|---|---|---|---|---|---|
Pp | Ps | Pr | Total | Pp | Ps | Pr | Total | |
300–500 | 3789 | 12,985 | 8509 | 25,283 | 8027 | 7477 | 2524 | 18,028 |
500–700 | 2112 | 15,016 | 17,128 | 844 | 2133 | 2977 | ||
700–900 | 19,274 | 19,274 | 1660 | 1660 | ||||
900–1100 | 1942 | 1942 | 158 | 158 | ||||
Total | 3789 | 15,097 | 44,741 | 63,627 | 8027 | 8321 | 6475 | 22,823 |
Elevaton Zone (m) | Arable Land (ha) 1961 | Arable Land (ha) 2012 | ||||||
---|---|---|---|---|---|---|---|---|
Pp | Ps | Pr | Total | Pp | Ps | Pr | Total | |
300–500 | 1578 | 5620 | 3865 | 11,063 | 1091 | 3030 | 1406 | 5527 |
500–700 | 896 | 7340 | 8236 | 640 | 1336 | 1975 | ||
700–900 | 10,963 | 10,963 | 2000 | 2000 | ||||
900–1100 | 987 | 987 | 83 | 83 | ||||
Total | 1578 | 6516 | 23,155 | 31,249 | 1091 | 3670 | 4825 | 9586 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manojlović, S.; Antić, M.; Šantić, D.; Sibinović, M.; Carević, I.; Srejić, T. Anthropogenic Impact on Erosion Intensity: Case Study of Rural Areas of Pirot and Dimitrovgrad Municipalities, Serbia. Sustainability 2018, 10, 826. https://doi.org/10.3390/su10030826
Manojlović S, Antić M, Šantić D, Sibinović M, Carević I, Srejić T. Anthropogenic Impact on Erosion Intensity: Case Study of Rural Areas of Pirot and Dimitrovgrad Municipalities, Serbia. Sustainability. 2018; 10(3):826. https://doi.org/10.3390/su10030826
Chicago/Turabian StyleManojlović, Sanja, Marija Antić, Danica Šantić, Mikica Sibinović, Ivana Carević, and Tanja Srejić. 2018. "Anthropogenic Impact on Erosion Intensity: Case Study of Rural Areas of Pirot and Dimitrovgrad Municipalities, Serbia" Sustainability 10, no. 3: 826. https://doi.org/10.3390/su10030826
APA StyleManojlović, S., Antić, M., Šantić, D., Sibinović, M., Carević, I., & Srejić, T. (2018). Anthropogenic Impact on Erosion Intensity: Case Study of Rural Areas of Pirot and Dimitrovgrad Municipalities, Serbia. Sustainability, 10(3), 826. https://doi.org/10.3390/su10030826