Health Risk Assessment of Heavy Metals in Surface Water near a Uranium Tailing Pond in Jiangxi Province, South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites and Analytical Methods
2.3. Health Risk Assessment
3. Results and Discussion
3.1. Water Characteristics
3.2. Influences of Uranium Tailing Pond on the Speciation of Heavy Metals
3.3. Speciation of Heavy Metals in the River Water
3.4. Health Risk Assessment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Sample ID | K+ | Na+ | Ca2+ | Mg2+ | NH4+ | Cl- | SO42- | HCO3- | NO3- | F- | Ionic Strength | pH | pE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg/L | Mol/L | ||||||||||||
1 | 1.45 | 2.73 | 1.31 | 1.12 | 0.46 | 0.86 | 0 | 31.7 | 2.15 | 0.04 | 1.08 | 5 | 14.94 |
2 | 1.64 | 2.45 | 1.49 | 1.1 | 0.38 | 0.83 | 11.3 | 29.71 | 18.76 | 1.55 | 1.87 | 5 | 13.57 |
3 | 5.52 | 2.79 | 4.83 | 1.85 | 0.45 | 0.88 | 0 | 37.64 | 1.89 | 0 | 1.75 | 5 | 17.15 |
4 | 5.99 | 4.93 | 9.25 | 2.8 | 0.59 | 0.78 | 6.65 | 47.54 | 4.22 | 0.1 | 2.94 | 7.54 | 6.88 |
5 | 4.13 | 3.9 | 4.5 | 1.69 | 0.37 | 0.2 | 0 | 39.62 | 2.57 | 0 | 1.72 | 7.44 | 6.95 |
6 | 2.6 | 3.83 | 10.7 | 2.62 | 1.55 | 0.09 | 0 | 61.41 | 2.34 | 0 | 2.87 | 6.7 | 6.79 |
7 | 4.29 | 4.18 | 4.95 | 1.97 | 0.33 | 7.11 | 5.96 | 41.6 | 5.18 | 0.11 | 2.35 | 6 | 13.03 |
8 | 3.43 | 4.79 | 4.07 | 1.68 | 0.4 | 5.67 | 6.19 | 36.45 | 2.83 | 0.14 | 2.07 | 6.03 | 14.47 |
9 | 3.54 | 2.99 | 4.2 | 1.46 | 0.54 | 0.33 | 0 | 21 | 1.79 | 0 | 1.30 | 6.02 | 12.44 |
10 | 2.05 | 4.35 | 2.94 | 1.49 | 0.43 | 4.48 | 6.07 | 35.66 | 5.12 | 0 | 1.85 | 5 | 13.15 |
11 | 3.49 | 5.74 | 3.35 | 1.57 | 0.38 | 5.49 | 11.89 | 28.53 | 3.13 | 0.13 | 2.13 | 6.01 | 15.01 |
12 | 3.44 | 5.73 | 3.28 | 1.52 | 0.31 | 5.17 | 10.6 | 27.73 | 2.95 | 0.14 | 2.03 | 6 | 14.20 |
13 | 3.67 | 7.88 | 3.72 | 1.73 | 0.36 | 7.33 | 18.82 | 33.68 | 3.6 | 0.14 | 2.73 | 6 | 14.38 |
References and Note
- Chen, W.Y. Environmental externalities of urban river pollution and restoration: A hedonic analysis in Guangzhou (China). Lands. Urban Plann. 2017, 157, 170–179. [Google Scholar] [CrossRef]
- Li, Z.; Mao, X.Z.; Li, T.S.; Zhang, S.Y. Estimation of river pollution source using the space-time radial basis collocation method. Adv. Water Resour. 2016, 88, 68–79. [Google Scholar] [CrossRef]
- Lu, Y.; Song, S.; Wang, R.; Liu, Z.; Meng, J.; Sweetman, A.J.; Jenkins, A.; Ferrier, R.C.; Li, H.; Luo, W.; et al. Impacts of soil and water pollution on food safety and health risks in China. Environ. Int. 2015, 77, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Wang, J.; Da, L.; Song, K.; Li, B.L. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China. Environ. Pollut. 2008, 152, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Borges, R.C.; dos Santos, F.V.; Caldas, V.G.; Lapa, C.M.F. Use of geographic information system (GIS) in the characterization of the Cunha Canal, Rio de Janeiro, Brazil: Effects of the urbanization on water quality. Environ. Earth Sci. 2014, 73, 1345–1356. [Google Scholar] [CrossRef]
- Türkdoğan, M.K.; Kilicel, F.; Kara, K.; Tuncer, I.; Uygan, I. Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environ. Toxicol. Pharmacol. 2003, 13, 175–179. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Tian, L.W. The health impacts of coal use in China. Int. Geol. Rev. 2017, 1–11. [Google Scholar] [CrossRef]
- Zhou, M.; Liao, B.; Shu, W.S.; Yang, B.; Lan, C.Y. Pollution Assessment and Potential Sources of Heavy Metals in Agricultural Soils around Four Pb/Zn Mines of Shaoguan City, China. Soil Sediment Contam. Int. J. 2014, 24, 76–89. [Google Scholar] [CrossRef]
- Packey, D.J.; Kingsnorth, D. The impact of unregulated ionic clay rare earth mining in China. Resour. Policy 2016, 48, 112–116. [Google Scholar] [CrossRef]
- Imperato, M.; Adamo, P.; Naimo, D.; Arienzo, M.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 2003, 124, 247–256. [Google Scholar] [CrossRef]
- Valko, M.M.H.C.M.; Morris, H.; Cronin, M.T.D. Metals, Toxicity and Oxidative Stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Gao, B.; Wang, P.; Zhou, H.; Lu, J. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 112, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Kang, Y.; Pan, W.; Zeng, L.; Zhang, Q.; Luo, J. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Sci. Total Environ. 2015, 521–522, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Wang, C.; Xu, X.; Zhang, S.; Bao, S.; Li, Y. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China. Ecotoxicol. Environ. Saf. 2016, 130, 185–192. [Google Scholar]
- Ma, Y.; Egodawatta, P.; McGree, J.; Liu, A.; Goonetilleke, A. Human health risk assessment of heavy metals in urban stormwater. Sci. Total Environ. 2016, 557–558, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Shah, M.T.; Khan, S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem. J. 2011, 98, 334–343. [Google Scholar] [CrossRef]
- Cherfi, A.; Achour, M.; Cherfi, M.; Otmani, S.; Morsli, A. Health risk assessment of heavy metals through consumption of vegetables irrigated with reclaimed urban wastewater in Algeria. Process Saf. Environ. Prot. 2015, 98, 245–252. [Google Scholar] [CrossRef]
- Noli, F.; Tsamos, P. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Sci. Total Environ. 2016, 563–564, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, Y.; Yang, J.; Zhu, L.; Zhong, W. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. J. Environ. Sci. 2017, 62, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Abdelouas, A. Uranium Mill Tailings: Geochemistry, Mineralogy, and Environmental Impact. Elements 2006, 2, 335–341. [Google Scholar] [CrossRef]
- Lechat, M.F. Disasters and public health. Bull. WHO 1979, 57, 11. [Google Scholar] [PubMed]
- Teng, Y.; Li, J.; Wu, J.; Lu, S.; Wang, Y.; Chen, H. Environmental distribution and associated human health risk due to trace elements and organic compounds in soil in Jiangxi province, China. Ecotoxicol. Environ. Saf. 2015, 122, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Liu, P.H.; Yang, Y.Y. Contamination characteristics and health risk assessment of radionuclide uranium in rice of a uranium mine in east china. Resour. Environ. Yangtze Basin 2017, 26, 419–427. [Google Scholar]
- Ding, X.Y.; Zhang, C.Y.; Gao, B.; Liu, Y.Y.; Jiang, Y.F. Distribution Characteristics and Evaluation of Radioactivity in Linshui River. Nonferr. Met. (Extr. Metall.) 2017, 2, 59–64. [Google Scholar]
- Yang, S.Y.; Jiang, S.Y.; Jiang, Y.H.; Zhao, K.D.; Fan, H.H. Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China. Sci. China Earth Sci. 2010, 53, 1411–1426. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, X.Q.; Zou, S.R.; Zuo, J.L.; Liu, Z.H.; Pan, Q.; Liu, C.X.; Pan, H.; Ma, G.S. Water intake of adults in four cities in China in summer. Chin. J. Prev. Med. 2011, 45, 677–682. [Google Scholar]
- National Health Commission of the People’s Republic of China. Chinese Citizen Chronic Diseases Survey; National Health Commission of the People’s Republic of China: Beijing, China, 2015. [Google Scholar]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Douglas, G.B. Geochemical behavior of antimony, arsenic, cadmium and thallium: Eh-ph diagrams for 25 °C, 1-bar pressure. Chem. Geol. 1986, 54, 271–278. [Google Scholar]
- Krishna, R.R; Charlie, Y.X; Chinthamreddy, S. Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis. J. Hazard. Mater. 2001, B84, 279–296. [Google Scholar]
- Geoffrey, M.G.; Alan, J.G. Microorganisms and Heavy Metal Toxicity. Microb. Ecol. 1978, 4, 303–317. [Google Scholar]
- Kumar, A.; Mishra, P.; Ghosh, S.; Sharma, P.; Ali, M.; Pandey, B.N.; Mishra, K.P. Thorium-induced oxidative stress mediated toxicity in mice and its abrogation by diethylenetriamine pentaacetate. Int. J. Radiat. Biol. 2008, 84, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.J.; Yu, Z.G.; Jiang, X.Y.; Xu, B.C. Behavior and budget of dissolved uranium in the lower reaches of the Yellow (Huanghe) River: Impact of Water–Sediment Regulation Scheme. Appl. Geochem. 2015, 61, 1–9. [Google Scholar] [CrossRef]
- Robinson, R.A.; Stokes, R.H. Electrolyte Solutions; Courier Corporation: North Chelmsford, MA, USA, 2002. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Fargašová, A.; Bumbálová, A.; Havránek, E. Ecotoxicological effects and uptake of metals (Cu+, Cu2+, Mn2+, Mo6+, Ni2+, V5+) in freshwater alga scenedesmus quadricauda. Chemosphere 1999, 38, 1165–1173. [Google Scholar] [CrossRef]
- Gerber, U.; Zirnstein, I.; Krawczyk-Barsch, E.; Lunsdorf, H.; Arnold, T.; Merroun, M.L. Combined use of flow cytometry and microscopy to study the interactions between the gram-negative betaproteobacterium Acidovorax facilis and uranium(VI). J. Hazard. Mater. 2016, 317, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhao, D.Y.; Jia, H.Y.; Zhang, Y.; Zhang, X.X.; Cheng, S.P. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bull. Environ. Contam. Toxicol. 2009, 82, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ. Geochem. Health 2014, 36, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Kavcar, P.; Sofuoglu, A.; Sofuoglu, S.C. A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int. J. Hyg. Environ. Health 2009, 212, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Singh, A.K. Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environ. Monit. Assess. 2015, 187, 63. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Park, H.S.; Kim, J.Y.; Park, S.K.; Cho, B.W.; Sung, I.H.; Shin, D.C. Health risk assessment for uranium in Korean groundwater. J. Environ. Radioact. 2004, 77, 77–85. [Google Scholar] [CrossRef] [PubMed]
Element | SFi (kg·d·mg−1) | RfDi (mg·kg−1·d−1) | gg (Sv·Bq−1) |
---|---|---|---|
As | 15 | - | - |
Cr | 41 | - | - |
Cu | - | 5.00 × 10−3 | - |
U | - | - | 6.50 × 10−8 |
Th | - | - | 2.00 × 10−7 |
Sample ID | U | Th | As | Cr | Cu |
---|---|---|---|---|---|
1 | 0.206 | 0.196 | 1.88 | 0 | 21.2 |
2 | 0.93 | 0.165 | 1.76 | 4.6 | 22.8 |
3 | 0.116 | 0.2 | 2.06 | 4.7 | 20.8 |
4 | 0.006 | 0.11 | 2.28 | 4.8 | 28.2 |
5 | 3.75 | 0.219 | 2.62 | 5.3 | 20.1 |
6 | 2.55 | 0.09 | 6.97 | 7.3 | 27.6 |
7 | 0.892 | 0.095 | 2.95 | 4.8 | 21.5 |
8 | 0.727 | 0.09 | 1.79 | 0 | 22.3 |
9 | 0.535 | 0.074 | 2.12 | 4.6 | 22 |
10 | 0.146 | 0.135 | 1.87 | 4.1 | 21.4 |
11 | 0.505 | 0.159 | 2.26 | 0 | 22 |
12 | 0.392 | 0.136 | 2.55 | 0 | 23.1 |
13 | 0.824 | 0.316 | 2.84 | 4.7 | 23.7 |
Max | 3.75 | 0.316 | 6.97 | 7.3 | 28.2 |
Min | 0.006 | 0.09 | 1.76 | 0 | 20.1 |
Average | 0.89 | 0.15 | 2.61 | 3.45 | 22.82 |
Surface water quality standard III | 50 | 100 | 50 | 50 | 100 |
Standards for irrigation water quality | 50 | 100 | 100 |
Heavy Metals | Species | Percentage Contents (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ||
As(V) | H2AsO4- | 95 | 12 | 97 | 8 | 10 | 34 | 72 | 69 | 75 | 97 | 71 | 71 | 71 |
HAsO3F- | - | 69 | - | - | - | - | - | - | - | - | - | - | - | |
AsO3F2- | - | 19 | - | - | - | - | - | 6 | - | - | - | - | - | |
HAsO42- | - | - | - | 88 | 90 | 66 | 24 | 23 | 25 | - | 24 | 23 | 25 | |
Cr(VI) | HCrO4- | - | 71 | 53 | 5 | 6 | - | 54 | - | 54 | 73 | - | - | 53 |
Cr2O72- | - | 12 | 22 | - | 94 | - | 7 | - | 7 | 12 | - | - | 7 | |
CrO42- | - | - | - | 95 | - | - | 32 | - | 33 | - | - | - | 33 | |
Cu(II) | Cu2+ | 97 | 79 | 99 | 90 | - | 9 | 38 | 39 | 62 | 86 | 44 | 45 | 40 |
CuSO4 | - | 19 | - | - | - | - | - | 7 | - | 11 | 14 | 13 | 18 | |
CuCO3 | - | - | - | - | 92 | 88 | 54 | 52 | 36 | - | 41 | 40 | 41 | |
Th | Th(OH)4 | 35 | 22 | 25 | 100 | 100 | 100 | 98 | 98 | 98 | 35 | 98 | 98 | 98 |
Th(OH)22+ | 7 | - | 49 | - | - | - | - | - | - | 7 | - | - | - | |
Th(OH)3+ | 6 | - | 14 | - | - | - | - | - | - | 26 | - | - | - | |
Th(SO4)2 | - | 59 | - | - | - | - | - | 2 | 2 | - | 2 | 2 | 2 | |
U(VI) | UO2CO3 | 59 | 38 | 73 | - | - | - | - | 5 | 8 | 60 | 6 | 7 | - |
UO2(CO3)22- | 15 | 10 | 8 | 7 | 15 | 18 | 60 | 64 | 47 | 18 | 64 | 67 | 56 | |
(UO2)2CO3(OH)3- | 9 | 18 | - | - | - | - | - | - | 19 | - | 7 | 7 | - | |
UO22+ | 5 | - | 16 | - | - | - | - | - | - | - | - | - | - | |
UO2(CO3)34- | - | - | - | 93 | 77 | 66 | 14 | 11 | - | - | 9 | 9 | 12 |
Sample ID | Chemical Carcinogens (HI) | Chemical Non-Carcinogens (RI) | Total Chemical Risk | Radionuclide Carcinogen (AI) | Total Radionuclide Risk | Total Risk | ||
---|---|---|---|---|---|---|---|---|
As | Cr | Cu | U | Th | ||||
1 | 8.88 × 10−6 | 0 | 1.34 × 10−9 | 8.88 × 10−6 | 1.12 × 10−9 | 3.29 × 10−9 | 4.41 × 10−9 | 8.89 × 10−6 |
2 | 8.31 × 10−6 | 5.93 × 10−5 | 1.44 × 10−9 | 6.76 × 10−5 | 5.07 × 10−9 | 2.77 × 10−9 | 7.84 × 10−9 | 6.76 × 10−5 |
3 | 9.73 × 10−6 | 6.06 × 10−5 | 1.31 × 10−9 | 7.03 × 10−5 | 6.32 × 10−9 | 3.35 × 10−9 | 9.68 × 10−9 | 7.03 × 10−5 |
4 | 1.08 × 10−5 | 6.18 × 10−5 | 1.78 × 10−9 | 7.26 × 10−5 | 3.27 × 10−11 | 1.84 × 10−9 | 1.88 × 10−9 | 7.26 × 10−5 |
5 | 1.24 × 10−5 | 6.83 × 10−5 | 1.27 × 10−9 | 8.06 × 10−5 | 2.04 × 10−8 | 3.67 × 10−9 | 2.41 × 10−8 | 8.07 × 10−5 |
6 | 3.29 × 10−5 | 9.39 × 10−5 | 1.74 × 10−9 | 1.27 × 10−4 | 1.39 × 10−8 | 1.51 × 10−9 | 1.54 × 10−8 | 1.27 × 10−4 |
7 | 1.39 × 10−5 | 6.18 × 10−5 | 1.35 × 10−9 | 7.58 × 10−5 | 4.86 × 10−9 | 1.59 × 10−9 | 6.45 × 10−9 | 7.58 × 10−5 |
8 | 8.46 × 10−5 | 0 | 1.41 × 10−9 | 8.46 × 10−6 | 3.96 × 10−9 | 1.51 × 10−9 | 5.47 × 10−9 | 8.46 × 10−6 |
9 | 1.00 × 10−5 | 5.93 × 10−5 | 1.39 × 10−9 | 6.93 × 10−5 | 2.92 × 10−9 | 1.24 × 10−9 | 4.16 × 10−9 | 6.93 × 10−5 |
10 | 8.83 × 10−6 | 5.28 × 10−5 | 1.35 × 10−9 | 6.17 × 10−5 | 7.96 × 10−10 | 2.26 × 10−9 | 3.06 × 10−9 | 6.17 × 10−5 |
11 | 1.07 × 10−5 | 0 | 1.39 × 10−9 | 1.07 × 10−5 | 2.75 × 10−9 | 2.67 × 10−9 | 5.42 × 10−9 | 1.07 × 10−5 |
12 | 1.20 × 10−5 | 0 | 1.46 × 10−9 | 1.20 × 10−5 | 2.14 × 10−9 | 2.28 × 10−9 | 4.42 × 10−9 | 1.20 × 10−5 |
13 | 1.34 × 10−5 | 6.06 × 10−5 | 1.49 × 10−9 | 7.40 × 10−5 | 4.49 × 10−9 | 5.30 × 10−9 | 9.79 × 10−9 | 7.40 × 10−5 |
Max | 3.29 × 10−5 | 9.39 × 10−5 | 1.78 × 10−9 | 1.27 × 10−4 | 2.04 × 10−8 | 5.30 × 10−9 | 2.42 × 10−8 | 1.27 × 10−4 |
Min | 8.31 × 10−6 | 0 | 1.27 × 10−9 | 8.46 × 10−6 | 3.27 × 10−11 | 1.24 × 10−9 | 1.88 × 10−9 | 8.46 × 10−6 |
Average | 1.20 × 10−5 | 4.45 × 10−5 | 1.44 × 10−9 | 5.68 × 10−5 | 5.29 × 10−9 | 2.56 × 10−9 | 7.85 × 10−9 | 5.68 × 10−5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Gao, B.; Luo, X.; Jiao, J.; Qin, H.; Zhang, C.; Dong, Y. Health Risk Assessment of Heavy Metals in Surface Water near a Uranium Tailing Pond in Jiangxi Province, South China. Sustainability 2018, 10, 1113. https://doi.org/10.3390/su10041113
He L, Gao B, Luo X, Jiao J, Qin H, Zhang C, Dong Y. Health Risk Assessment of Heavy Metals in Surface Water near a Uranium Tailing Pond in Jiangxi Province, South China. Sustainability. 2018; 10(4):1113. https://doi.org/10.3390/su10041113
Chicago/Turabian StyleHe, Liu, Bai Gao, Xin Luo, Jimmy Jiao, Huanhuan Qin, Chunyan Zhang, and Yihui Dong. 2018. "Health Risk Assessment of Heavy Metals in Surface Water near a Uranium Tailing Pond in Jiangxi Province, South China" Sustainability 10, no. 4: 1113. https://doi.org/10.3390/su10041113
APA StyleHe, L., Gao, B., Luo, X., Jiao, J., Qin, H., Zhang, C., & Dong, Y. (2018). Health Risk Assessment of Heavy Metals in Surface Water near a Uranium Tailing Pond in Jiangxi Province, South China. Sustainability, 10(4), 1113. https://doi.org/10.3390/su10041113