Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Region
2.2. Estimates of GHG Emissions
2.3. Best Management Practices (BMPs) Scenarios
- -
- SC1: Restoration of 9% of the degraded pastures in the states of Rondônia and Mato Grosso, by adopting the “Plano ABC”. It is a realistic projection based on the available government funding for farmers and ranchers for adopting BMPs into the “Plano ABC” scope. In Rondônia and Mato Grosso states, degraded pasture area was estimated at 9.1 M ha in Amazon forest and in 6.7 M ha in Cerrado [28]. Thus, 9% of this area represents 793,900 ha in Amazon forest and in 584,000 ha in Cerrado. The soil C sequestration rate used for conversion from degraded pasture to improved pasture was 0.665 Mg ha−1 year−1 from Maia et al. [41].
- -
- SC2: Restoration of the total area (100%) under degraded pastures (i.e., 9.1 M ha in Amazon forest and 6.7 M ha in Cerrado). It estimates the maximum potential of C accumulation by adopting BMPs in degraded pastures of Rondônia and Mato Grosso. The soil C sequestration rate is the same as that used in SC1.
- -
- SC3: Conversion of the total area under degraded pasture to integrated crop-livestock (ICL) system. This scenario estimates the impacts of intensification of tropical agricultural lands incorporating low-productivity degraded pastures into productive integrated system that included a cropland phase (i.e., mainly soybean or corn cultivation) followed by a pasture phase (i.e., mainly tropical grasses (e.g., Urochloa spp. (syn. Brachiaria spp.) with moderate grazing intensity). The soil C sequestration rate used for conversion from degraded pasture to ICL was 0.47 Mg ha−1 year−1 (derived from Maia et al. [41]).
- -
- SC4: Conversion of the total area under conventional to no tillage system. Conventional tillage areas account for 378,400 ha in Amazon forest and 645,100 ha in Cerrado within Rondônia and Mato Grosso states, respectively. This scenario estimates the potential soil C sequestration by adopting NT system, using the C sequestration rate of 0.477 Mg ha−1 year−1 from Maia et al. [41].
- -
- SC5: Conversion of the total area under no tillage to integrated crop-livestock system. It estimates the potential soil C sequestration induced by intensification NT areas though ICL adoption. The total cultivated area under NT in Rondônia and Mato Grosso was estimated in 1.89 M ha in Amazon forest and 4.27 M ha in Cerrado. The soil C sequestration rate used for conversion of all area under NT to ICL was 0.278 Mg C ha−1 year−1 (derived from Maia et al. [41]).
- -
- SC6: Conversion of the total area under conventional tillage to integrated crop-livestock. For this scenario, the cultivation areas described in SC4 were considered. However, the soil C sequestration rate was 0.755 Mg C ha−1 year−1 (derived from Maia et al. [41]).
- -
- SC7: Conversion of the total area under conventional tillage to NT system and conversion the total area under NT to integrated crop-livestock system. It is a combination of the SC4 and SC5 scenarios. The calculations followed those described for the scenarios 4 and 5.
- -
- SC8: Conversion of the total area under NT and under conventional tillage to integrated crop-livestock systems. It is a combination of the SC5 and SC6 scenarios. The calculations followed those described for the scenarios 5 and 6.
2.4. C Footprint of Grain and Beef in Amazon Forest and Cerrado Areas
2.5. Food Security Benefits of BMPs Adoption
3. Results and Discussion
3.1. GHG Emissions
3.2. BMPs Scenarios
3.3. C Footprint of Grain and Beef
3.4. Food Security
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. 2017 The State of Food Security and Nutrition in the World: Building Resilience for Peace and Food Security; FAO: Rome, Italy, 2017; p. 132. [Google Scholar]
- World Food Programme. How Climate Drives Hunger: Food Security Climate Analyses, Methodologies & Lessons 2010–2016; WFP: Rome, Italy, 2017; p. 60. [Google Scholar]
- Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B 2008, 363, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change, Impacts, Adaptation and Vulnerability: Work Group II Contributions to the IPCC; IPCC: Cambridge, UK, 2007. [Google Scholar]
- Galford, G.; Mellilo, J.M.; Kicklighter, D.; Cronin, T.; Cerri, C.E.P.; Mustard, J.; Cerri, C.C. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 19649–19654. [Google Scholar] [CrossRef] [PubMed]
- Paustian, K.; Levine, E.; Post, W.M.; Ryzhova, I.M. The use of models to integrate information and understanding of soil C at the regional scale. Geoderma 1997, 79, 227–260. [Google Scholar] [CrossRef]
- Davidson, E.A.; Araujo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. The Amazon basin in transition. Nature 2012, 481, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Pires, J.M.; Prance, G.T. The vegetation types of the Brazilian Amazon. In Key Environments: Amazonia; Prance, G.T., Lovejoy, T.M., Eds.; Pergamon Press: Oxford, UK, 1985; pp. 109–145. [Google Scholar]
- Instituto Nacional de Pesquisas Espaciais. PRODES—Monitoramento da Floresta Amazônica Brasileira por Satélite. São José dos Campos, São Paulo, 2017. Available online: http://www.obt.inpe.br/prodes/dashboard/prodes-rates.html (accessed on 30 January 2018).
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Strassburg, B.B.N.; Latawiec, A.E.; Barioni, L.G.; Nobre, C.A.; da Silva, V.P.; Valentim, J.F.; Vianna, M.; Assad, E.D. When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Chang. 2014, 28, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, J.A., Jr.; Amaral, S.S.; Costa, M.A.M.; Soares Neto, T.G.; Veras, C.A.G.; Costa, F.S.; van Leeuwen, T.T.; Krieger Filho, G.; Tourigny, E.; Forti, M.C.; et al. CO2 and CO emission rates from three forest fire controlled experiments in Western Amazonia. Atmos. Environ. 2016, 135, 73–83. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Chang. Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Ogle, S.M.; Cerri, C.E.P.; Cerri, C.C. Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil Tillage Res. 2010, 160, 177–184. [Google Scholar] [CrossRef]
- Fujisaki, K.; Perrin, A.-S.; Desjardins, T.; Bernoux, M.; Balbino, L.C.; Brossard, M. From forest to cropland and pasture systems: A critical review of soil organic carbon stocks changes in Amazonia. Glob. Chang. Biol. 2015, 21, 2773–2786. [Google Scholar] [CrossRef] [PubMed]
- Durigan, M.R.; Cherubin, M.R.; de Camargo, P.B.; Ferreira, J.N.; Berenguer, E.; Gardner, T.A.; Barlow, J.; Dias, C.T.S.; Signor, D.; Oliveira Junior, R.C.; et al. Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon. Sustainability 2017, 9, 379. [Google Scholar] [CrossRef]
- Carvalho, J.L.N.; Raucci, G.S.; Frazão, L.A.; Cerri, C.E.P.; Bernoux, M.; Cerri, C.C. Crop-pasture rotation: A strategy to reduce soil greenhouse gas emissions in the Brazilian Cerrado. Agric. Ecosyst. Environ. 2014, 183, 167–175. [Google Scholar] [CrossRef]
- Franco, A.L.C.; Cherubin, M.R.; Pavinato, P.S.; Cerri, C.E.P.; Six, J.; Davies, C.A.; Cerri, C.C. Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil. Sci. Total Environ. 2015, 515, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Ministério de Ciência, Tecnologia e Inovação (MCTI). Estimativas Anuais das Emissões de Gases do Efeito Estufa no Brasil; Secretaria de Políticas e Programas de Pesquisa e Desenvolvimento (SEPED): Brasilia, Brazil, 2013; p. 81.
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Corbeels, M.; Marchão, R.L.; Siqueira Neto, M.; Ferreira, E.G.; Madari, B.E.; Scopel, E.; Brito, O.R. Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil. Sci. Rep. 2016, 6, 21450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC). Comunicação Nacional Inicial do Brasil à Convenção-Quadro das Nações Unidas sobre Mudança do Clima, Brasília, Brazil. 2004; p. 74. Available online: http://www.sirene.mcti.gov.br/publicações (accessed on 22 November 2017).
- Intergovernmental Panel on Climate Change (IPCC). IPCC Second Assessment Climate Change. A Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK, 1995; p. 73. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Agropecuário 2006. p. 777. Available online: https://biblioteca.ibge.gov.br/visualizacao/periodicos/51/agro_2006.pdf (accessed on 30 January 2018).
- Associação Nacional para Difusão de Adubos (ANDA). Estatísticas—Consumo de Fertilizantes No Brasil. 2018. Available online: http://www.anda.org.br/ (accessed on 30 January 2018).
- Associação Brasileira dos Produtores de Calcário Agrícola (ABRACAL). Calcário Agrícola Brasil: Consumo Aparente 1992 a 2016 e Produção por Estado 1987 a 2016. Available online: http://www.abracal.com.br/estatísticas (accessed on 30 January 2018).
- Maia, S.M.F.; Ogle, S.M.; Cerri, C.E.P.; Cerri, C.C. Soil organic carbon stock change due to land use activity along the agricultural frontier of the southwestern Amazon, Brazil, between 1970 and 2002. Glob. Chang. Biol. 2010, 16, 2775–2788. [Google Scholar] [CrossRef]
- Fearnside, P.M.; Righi, C.A.; Graça, P.M.L.A.; Keizer, E.W.H.; Cerri, C.C.; Nogueira, E.M.; Barbosa, R.I. Biomass and greenhouse-gas emissions from land-use change in Brazil’s Amazonian “arc of deforestation”: The states of Mato Grosso and Rondônia. For. Ecol. Manag. 2009, 258, 1968–1978. [Google Scholar] [CrossRef]
- Projeto de Conservação e Utilização Sustentável da Diversidade Biológica (PROBIO). Ministério do Meio Ambiente. 2004. Available online: http://www.mma.gov.br/biodiversidade/projetos-sobre-a-biodiveridade/item/486 (accessed on 30 January 2018).
- Laboratório de Processamento de Imagens e Geoprocessamento (LAPIG). Monitoramento de Mudanças na Cobertura Vegetal Remanescente do Bioma Cerrado. Universidade Federal de Goiás, Brazil. 2008. Available online: http://www.lapig.iesa.ufg.br/lapig/ (accessed on 30 January 2018).
- Ministério da Ciência e Tecnologia (MCT). O Balanço de Carbono. 2007. Available online: http://ecen.com/eee62/eee62p/balanco_de_carbono.htm (accessed on 30 January 2018).
- Smith, J.E.; Heath, L.S. Identifying influences on model uncertainty: An application using a Forest carbon budget model. Environ. Manag. 2001, 27, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Ogle, S.M.; Breidt, F.J.; Eve, M.; Paustian, K. Uncertainty in estimating land use and management impacts on SOC storage for US agricultural lands between 1982 and 1997. Glob. Chang. Biol. 2003, 9, 1521–1542. [Google Scholar] [CrossRef]
- Vandenbygaart, A.J.; Gregorich, E.G.; Angers, D.A.; Stoklas, U.F. Uncertainty analysis of soil carbon stock change in Canadian cropland from 1991 to 2001. Glob. Chang. Biol. 2004, 10, 983–994. [Google Scholar] [CrossRef]
- Righi, C.A.; Graça, P.M.L.A.; Cerri, C.C.; Feigl, B.J.; Fearnside, P.M. Biomass burning in Brazil’s Amazonian “arc of deforestation”: Burning efficiency and charcoal formation in a fire after mechanized clearing at Feliz Natal, Mato Grosso. For. Ecol. Manag. 2009, 258, 2535–2546. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Guidelines for National Greenhouse Gas Inventories—Agriculture, Forestry and Other Land Use. In Hayama: Intergovernmental Panel on Climate Change/Institute for Global Environmental Strategies; Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IPCC: Cambridge, UK, 2006; Volume 4. [Google Scholar]
- Andreae, M.O.; Merlet, P. Emissions of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
- Martius, C.; Fearnside, P.M.; Bandeira, A.G.; Wassmann, R. Deforestation and methane release from termites in Amazonia. Chemosphere 1996, 33, 517–536. [Google Scholar] [CrossRef]
- Ministério da Agricultura, Pecuária e Abastecimento. Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para A Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura: Plano ABC (Agricultura de Baixa Emissão de Carbono); MAPA/ACS: Brasília, Brazil, 2012; p. 173.
- Maia, S.M.F.; Carvalho, J.L.N.; Cerri, C.E.P.; Lal, R.; Bernoux, M.; Galdos, M.V.; Cerri, C.C. Contrasting Approaches for Estimating Soil Carbon Changes in Amazon and Cerrado Biomes. Soil Tillage Res. 2013, 133, 75–84. [Google Scholar] [CrossRef]
- Bruinsma, J. World Agriculture: Towards 2015/2030 an FAO Perspective; Earthscan Publications Ltd.: London, UK, 2003; p. 432. [Google Scholar]
- Kauffman, J.B.; Cummings, D.L.; Ward, D.E.; Babbitt, R. Fire in the Brazilian Amazon. 1. Biomass, nutrient pools, and losses in slashed primary forests. Oecologia 1995, 104, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Dias-Filho, M.B.; Davidson, E.A.; Carvalho, C.J.R. Linking biogeochemical cycles to cattle pasture management and sustainability in the Amazon basin. In Biogeochemistry of the Amazon Basin; McClain, M.E., Victoria, R.L., Richey, J.E., Eds.; Oxford University Press: New York, NY, USA, 2001; pp. 84–105. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.; Gibbs, H.K.; et al. Global Consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Power, A.G. Ecosystem services and agriculture: Trade-offs and synergies. Phil. Trans. R. Soc. B 2010, 365, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Nally, R.M.; Thomson, J.R.; Ferraz, S.F.D.B.; Louzada, J.; Oliveira, V.H.F.; et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016, 535, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Cherubin, M.R.; Karlen, D.L.; Cerri, C.E.P.; Franco, A.L.C.; Tormena, C.A.; Davies, C.A.; Cerri, C.C. Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil. PLoS ONE 2016, 11, e0150860. [Google Scholar] [CrossRef] [PubMed]
- Kichel, A.N.; Miranda, C.H.B.; Zimmer, A.H. Degradação de pastagens e produção de bovinos de corte com a integração agricultura x pecuária. In Simpósio De Produção De Gado De Corte; UFV: Viçosa, Brazil, 1999; pp. 201–234. [Google Scholar]
- Milne, E.; Cerri, C.E.P.; Carvalho, J.L.N. Agricultural expansion in the Brazilian state of Mato Grosso: implications for C stocks and greenhouse gas emissions. In Tropical Rainforests and Agroforests under Global Change: Ecological and Socio-Economic Valuations, 1st ed.; Springer: New York, NY, USA, 2010; pp. 447–460. [Google Scholar]
- De Oliveira Silva, R.; Barioni, L.G.; Hall, J.A.J.; Matsuura, M.F.; Albertini, T.Z.; Fernandes, F.A.; Moran, D. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nat. Clim. Chang. 2016, 6, 493–497. [Google Scholar] [CrossRef]
- DeRamus, H.A.; Clement, T.C.; Giampola, D.D.; Dickison, P.C. Methane Emissions of Beef Cattle on Forages: Efficiency of Grazing Management Systems. J. Environ. Qual. 2003, 32, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Barioni, L.G.; Lima, M.A.; Zen, S.; Guimarães Junior, R.; Ferreira, A.C. A baseline projection of methane emissions by the Brazilian beef sector: Preliminary results. In Proceedings of the Greenhouse Gases and Animal Agriculture Conference, Christchurch, New Zealand, 26–29 November 2007; pp. 32–33. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper No. 12-03; FAO: Rome, Italy, 2012; p. 147. [Google Scholar]
- United Nations Environment Programme (UNEP). Keeping Track of Our Changing Environment; UNEP: Nairobi, Kenya, 2011; p. 110. [Google Scholar]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; ESA/P/WP/248; United Nations: New York, NY, USA, 2017; p. 53. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Data: Land Use. 2015. Available online: http://www.fao.org/faostat/en/#data/RL (accessed on 30 January 2018).
Amazon Forest | Cerrado | Source | |
---|---|---|---|
Eq (%) | 50.8 ± 18.1 (35.7) | 70.7 ± 25.2 (35.7) 1 | [29,36] |
C (%) | 47.0 ± 1.99 (4.25) | [37] | |
EFQ—CO2 (Mg CO2) | 3.36 ± 0.19 (5.7) | 3.43 ± 0.20 (5.9) | [37,38] |
EFQ—CH4 (Mg CO2) | 0.368 ± 0.11 (29.4) | 0.122 ± 0.05 (39.1) | |
EFQ—N2O (Mg CO2) | 0.127 ± 0.06 (47.6) | 0.133 ± 0.06 (47.6) | |
FdA (%) | 47.0 ± 18.8 (40.0) 2 | 23.3 ± 9.32 (40.0) 2 | [29] |
EFDA—CO2 (Mg CO2) | 3.67 ± 1.46 (40.0) 3 | [39] | |
EFDA—CH4 (Mg CO2) | 0.003 ± 0.001 (40.0) 3 | ||
FdR (%) | 95.5 ± 38.2 (40.0) 4 | 79.5 ± 31.8 (40.0) 4 | |
EFDR—CO2 (Mg CO2) | 3.67 ± 1.47 (40.0) 5 | [39] |
Source | Amazon Forest | Cerrado | |||||
---|---|---|---|---|---|---|---|
Deforested Area (ha) | Tg C.eq | Relative Contribution (%) | Deforested Area (ha) | Tg C.eq | Relative Contribution (%) | ||
Pasture | SOC 1 | 20,736,682.0 | 67.3 ± 12.3 | 1.5 | 7,372,477.2 | 49.5 ± 10.3 | 12.3 |
Aboveground biomass | 2931.9 ± 1138.1 | 66.9 | 86.9 ± 59.9 | 21.6 | |||
Belowground biomass | 557.5 ± 387.4 | 12.7 | 102.1 ± 97.5 | 25.4 | |||
Livestock 2 | 195.1 ± 49.8 | 4.4 | 62.0 ± 15.8 | 15.4 | |||
Cropland | SOC | 3,652,803.9 | 13.2 ± 2.2 | 0.3 | 3,042,495.5 | 13.7 ± 2.9 | 3.4 |
N-Fertilizer (Urea) & Lime | 4.74 ± 1.2 | 0.1 | 1.5 ± 0.4 | 0.4 | |||
Aboveground biomass | 511.5 ± 198.6 | 11.7 | 35.9 ± 24.7 | 8.9 | |||
Belowground biomass | 97.2 ± 67.6 | 2.2 | 42.2 ± 40.2 | 10.5 | |||
Fossil fuel—NT | 1.44 ± 0.4 | 0.03 | 2.25 ± 0.6 | 0.6 | |||
Fossil fuel—CT | 4.41 ± 1.1 | 0.1 | 6.77 ± 1.7 | 1.7 | |||
Total | 4384.2 ± 1858.6 | 402.8 ± 254.1 |
Amazon Forest | Cerrado | |||||
---|---|---|---|---|---|---|
Land Use/Scenarios | Area (103 ha) | SOC Rate * (Mg C ha−1 year−1) | SOC Storage (Tg C in 20 year) | Area (103 ha) | SOC Rate (Mg C ha−1 year−1) | SOC Storage (Tg C in 20 year) |
Total pasture | 15,328.6 | - | - | 11,914.8 | - | - |
Degraded pasture | 9125.4 | - | - | 6712.9 | - | - |
SC1 | 793.9 | 0.665 | 10.6 | 584.0 | 0.665 | 7.8 |
SC2 | 9125.4 | 0.665 | 121.4 | 6712.9 | 0.665 | 89.3 |
SC3 | 9125.4 | 0.470 | 85.8 | 6712.9 | 0.470 | 63.1 |
No tillage | 1893.1 | - | - | 4271.9 | - | |
Conventional tillage | 378.4 | - | - | 645.1 | - | |
SC4 | 378.4 | 0.477 | 3,6 | 645.1 | 0.477 | 6.2 |
SC5 | 1893.1 | 0.278 | 10.5 | 4271.9 | 0.278 | 23.8 |
SC6 | 378.4 | 0.755 | 5.7 | 645.1 | 0.755 | 9.7 |
SC7 | 2271.5 | 14.1 | 4917.0 | 29.9 | ||
SC8 | 2271.5 | 16.2 | 4917.0 | 33.5 |
Agrosystem | Emissions | C Footprint | C Sequestration | People Feed | Avoided Deforested Area | Avoided Emission | |||
---|---|---|---|---|---|---|---|---|---|
Mg C ha−1 year−1 | kg C kg−1 Grain | kg C kg−1 Beef | Scenario | Tg C in 20 year | Beef (Million) | Grain (Million) | Mha | Tg C | |
Amazon forest | |||||||||
Pasture | 5.14 | - | 102.9 | SC1 | 10.55 | 0.96 | - | 0.79 | 135.1 |
Cropland | 4.91 | 2.0 | - | SC2 | 121.36 | 11.1 | - | 9.12 | 1553.2 |
SC3 | 85.77 | 11.1 | 67.38 | 18.2 | 3106.4 | ||||
SC4 | 3.61 | 0.0 | - | - | - | ||||
SC5 | 10.52 | 2.30 | - | 1.89 | 322.9 | ||||
SC6 | 5.71 | 0.46 | - | 0.37 | 64.5 | ||||
SC7 | 14.13 | 2.30 | - | 1.89 | 322.9 | ||||
SC8 | 16.24 | 2.76 | - | 2.27 | 387.4 | ||||
Cerrado | |||||||||
Pasture | 1.16 | - | 23.2 | SC1 | 7.76 | 0.71 | - | 0.58 | 18.6 |
Cropland | 0.95 | 0.32 | - | SC2 | 89.28 | 8.17 | - | 6.71 | 214.2 |
SC3 | 63.10 | 8.17 | 59.95 | 13.42 | 428.5 | ||||
SC4 | 6.15 | 0.0 | - | - | - | ||||
SC5 | 23.75 | 5.19 | - | 4.27 | 126.7 | ||||
SC6 | 9.74 | 0.78 | - | 0.64 | 19.1 | ||||
SC7 | 29.90 | 5.19 | - | 4.27 | 126.7 | ||||
SC8 | 33.49 | 5.98 | - | 4.91 | 145.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerri, C.E.P.; Cerri, C.C.; Maia, S.M.F.; Cherubin, M.R.; Feigl, B.J.; Lal, R. Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change. Sustainability 2018, 10, 989. https://doi.org/10.3390/su10040989
Cerri CEP, Cerri CC, Maia SMF, Cherubin MR, Feigl BJ, Lal R. Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change. Sustainability. 2018; 10(4):989. https://doi.org/10.3390/su10040989
Chicago/Turabian StyleCerri, Carlos Eduardo Pellegrino, Carlos Clemente Cerri, Stoécio Malta Ferreira Maia, Maurício Roberto Cherubin, Brigitte Josefine Feigl, and Rattan Lal. 2018. "Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change" Sustainability 10, no. 4: 989. https://doi.org/10.3390/su10040989
APA StyleCerri, C. E. P., Cerri, C. C., Maia, S. M. F., Cherubin, M. R., Feigl, B. J., & Lal, R. (2018). Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change. Sustainability, 10(4), 989. https://doi.org/10.3390/su10040989