Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. LCA Assessment Methodology
2.2. LCC Assessment Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huttmanová, E. Selected Aspects and Problems of Evaluation of Sustainable Development. 2017. Available online: https://lnk.sk/bjqZ (accessed on 2 October 2017).
- Mederly, P. Environmentálne Indikátory Trvalo Udržateľného Rozvoja. Ph.D. Thesis, Fakulta prírodných vied UKF v Nitre, Nitra, Slovakia, 2009. [Google Scholar]
- Tambouratzis, T. Analysing the construction of the environmental sustainability index 2005. Int. J. Environ. Sci. Technol. 2016, 13, 2817–2836. [Google Scholar] [CrossRef]
- Klemeš, J.J. Assessing and measuring environmental impact and sustainability. Clean Technol. Environ. 2015, 17, 577–578. [Google Scholar] [CrossRef]
- Pintarič, Z.N.; Varbanov, P.S.; Klemeš, J.J.; Kravanja, Z. Evaluating the Economic Efficiency of the Technologies for Greenhouse Gas Footprint Reduction. Chem. Eng. Trans. 2015, 45, 535–540. [Google Scholar] [CrossRef]
- Yong, J.Y.; Klemeš, J.J.; Varbanov, P.S.; Huisingh, D. Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. J. Clean. Prod. 2016, 111, 1–16. [Google Scholar] [CrossRef]
- Ylmaz, M.; Bakis, A. Sustainability in construction. Procedia Soc. Behav. Sci. 2015, 195, 2253–2262. [Google Scholar] [CrossRef]
- European Council for an Energy Efficient Economy (ECEEE). Products Covered and Their Status in the EuP Process; ECEEE: Stockholm, Sweden, 2013. [Google Scholar]
- European Union (EU). Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC; Directives; Office Journal of the EU: Brussels, Belgium, 2012. [Google Scholar]
- International Energy Agency (IEA). Technology Roadmap—Energy Efficient Building Envelopes; OECD: Paris, France, 2013. [Google Scholar]
- Smith, R.E.; Timberlake, J. Prefab Architecture: A Guide to Modular Design and Construction; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-0-470-27561-0. [Google Scholar]
- Chen, Y.; Okudan, G.E.; Riley, D.R. Sustainable performance criteria for construction method selection in concrete buildings. Autom. Constr. 2010, 19, 235–244. [Google Scholar] [CrossRef]
- Burwood, S.; Jess, P. Modern Methods of Construction Evolution or Revolution? A BURA Steering and Development Forum Report; American Research Institute for Policy Development: New York, NY, USA, 2005; Available online: https://pdfs.semanticscholar.org/d7de/2b7518554ae5eef659877c43fa4558b62b3d.pdf (accessed on 1 October 2017).
- Bragança, L.; Mateus, R.; Koukkari, H. Building Sustainability Assessment. Sustainability 2010, 2, 2010–2023. [Google Scholar] [CrossRef]
- Pifko, H. NEED—Navrhovanie Energeticky Efektívnych Domov; Vydavateľstvo Eurostav: Bratislava, Slovakia, 2017. [Google Scholar]
- Farr, D. Sustainable Urbanism: Urban Design with Nature; Wiley: Chicago, IL, USA, 2008; ISBN 047 177751X. [Google Scholar]
- World Wide Fund for Nature (WWF). 2018. Available online: https://www.wwf.org.uk/what-we-do/area-of-work/promoting-sustainable-living (accessed on 6 February 2018).
- Ministry of Environment of the Slovak Republic. 2018. Available online: http://www.minzp.sk/en/ (accessed on 8 February 2018).
- Klincko, A. Bývanie v 21. Storočí v Košiciach Stratégia Rozvoja Bývania. 2003. Available online: https://www.kosice.sk/static/akcny_plan_byvania.rtf (accessed on 5 February 2018).
- Cholujová, M. Ev. č.: Rekt-13369-10618. In Prieskum Záujmu o Domy na Báze Dreva v Banskobystrickom Regióne; Technická Univerzita vo Zvolene: Zvolen, Slovakia, 2011. [Google Scholar]
- Pošiváková, T.; Hromada, R.; Veszelits Laktičová, K.; Vargová, M.; Pošivák, J.; Molnár, L. Selected Aspects of Integrated Environmental Management. Ann. Agric. Environ. Med. 2018. [Google Scholar] [CrossRef]
- Katunsky, D.; Katunska, J.; Toth, S. Possibility of choices industrial hall object reconstruction. In Proceedings of the 15th International Multidisciplinary Scientific Geoconference SGEM, Albena, Bulgaria, 18–24 June 2015; pp. 389–396. [Google Scholar] [CrossRef]
- Bholah, R.; Subratty, A.H. Indoor biological contaminants and symptoms of sick building syndrome in office buildings in Mauritius. Int. J. Environ. Health Res. 2002, 12, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Olaide, O.; Osman, S.B.; Yusof, F. Hygrothermal performance of building envelopes in the tropics under operative conditions: Condensation and mould growth risk appraisal. J. Teknol. 2016, 78, 271–279. [Google Scholar] [CrossRef]
- Rajničová, L. Analýza možností využitia LCA v rozhodovacom procese v odpadovom hospodárstve. Novus. Sci. 2007, 1, 489–493. [Google Scholar]
- Korytárová, J.; Hromádka, V.; Dufek, Z. Large city circle road Brno. Org. Technol. Manag. Constr. Int. J. 2012, 3, 584–592. [Google Scholar] [CrossRef]
- Napolano, L.; Menna, C.; Asprone, D.; Prota, A.; Manfredi, G. LCA-based study on structural retrofit options for masonry buildings. Int. J. Life Cycle Assess. 2015, 20, 23–35. [Google Scholar] [CrossRef]
- Napoli, C.; Marcotrigiano, V.; Montagna, M.T. Air sampling procedures to evaluate microbial contamination: A comparison between active and passive methods in operating theatres. BMC Public Health 2012, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Tywoniak, J.; Novák, J. Strategie Nízkoenergetického Stavění, Udržitelný Rozvoj Dřevostavby. 2017. Available online: http://stavba.tzb-info.cz/t.py?t=2&i=1029 (accessed on 5 September 2017).
- Strauss, A.; Frangopol, D.M.; Bergmeister, K. Life-Cycle and Sustainability of Civil Infrastructure Systems; CRC: London, UK, 2013. [Google Scholar]
- Schau, E.M.; Traverso, M.; Lehmann, A.; Finkbeiner, M. Life Cycle Costing in Sustainability Assessment-A Case Study of Remanufactured Alternators. Sustainability 2011, 3, 2268–2288. [Google Scholar] [CrossRef]
- Ding, G.K.C. Sustainable construction-The role of environmental assessment tools. J. Environ. Manag. 2008, 86, 451–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, K. Generation of a Tropically Adapted Energy Performance Certificate for Residential Buildings. Sustainability 2014, 6, 8415–8431. [Google Scholar] [CrossRef]
- Vinodh, S.; Jayakrishna, K.; Kumar, V.; Dutta, R. Development of Decision Support System for Sustainability Evaluation: A Case Study. Clean Technol. Environ. Policy 2014, 16, 163–174. [Google Scholar] [CrossRef]
- European Union (EU). Sustainability of Construction. Assessment of the Environmental Performance of Buildings. Calculation Methods; EN 15978; NSAI: Dublin, Ireland, 2012. [Google Scholar]
- Tsai, C.-Y.; Chang, A.-S. Framework for Developing Construction Sustainability Items: The Example of Highway Design. J. Clean. Prod. 2012, 20, 127–136. [Google Scholar] [CrossRef]
- Ali, H.H.; Al Nsairat, S.F. Developing a green building assessment tool for developing countries-Case of Jordan. Build. Environ. 2009, 44, 1053–1064. [Google Scholar] [CrossRef]
- Siva, V.; Hoppe, T.; Jain, M. Green Buildings in Singapore; Analyzing a Frontrunner’s Sectoral Innovation System. Sustainability 2017, 9, 919. [Google Scholar] [CrossRef]
- Hauschild, M.; Jeswiet, J.; Alting, L. From life cycle assessment to sustainable production: Status and perspectives. CIRP Ann. Manuf. Technol. 2005, 54, 1–21. [Google Scholar] [CrossRef]
- Lichtenvort, K.; Rebitzer, G.; Huppes, G.; Ciroth, A.; Seuring, S.; Schmidt, W.-P.; Günther, E.; Hoppe, H.; Swarr, T.; Hunkeler, D. Introduction—History of life cycle costing, its categorization, and its basic framework. In Environmental Life Cycle Costing; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Rebitzer, G.; Nakamura, S. Environmental Life Cycle Costing; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- ISO. Environmental Management-Life Cycle Assessment-Principles and Framework, 2nd ed.; ISO 14040; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Environmental Management-Life Cycle Assessment-Requirements and Guidelines; ISO 14044; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Kelly, J.; Hunter, K. Life Cycle Costing of Sustainable Design; RICS Research: London, UK, 2009. [Google Scholar]
- ISO. Buildings and Constructed Assets—Service Life Planning, Part 5: Life Cycle Costing; ISO 15686-5; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Faber, A.; Hoppe, T. Co-constructing a sustainable built environment in the Netherlands-Dynamics and opportunities in an environmental sectoral innovation system. Energy Policy 2012, 52, 628–638. [Google Scholar] [CrossRef]
- Xie, X.; Lu, Y.; Gou, Z. Green Building Pro-Environment Behaviors: Are Green Users Also Green Buyers? Sustainability 2017, 9, 1703. [Google Scholar] [CrossRef]
- Azman, M.N.A.; Ahamad, M.S.S.; Hilmi, N.D. The perspective view of Malaysian industrialized building system (IBS) under IBS precast manufacturing. In Proceedings of the 4th International Engineering Conference-Towards Engineering of 21st Century, Gaza City, Gaza Strip, 15–16 October 2012. [Google Scholar]
- Lovell, H.; Smith, S.J. Agencement in housing markets, the case of the UK construction industry. Geoforum 2010, 41, 457–468. [Google Scholar] [CrossRef]
- Arif, M.; Egbu, C. Making a case for offsite construction in China. Eng. Constr. Archit. Manag. 2010, 17, 536–548. [Google Scholar] [CrossRef]
- Report by the National Audit Office (RNAO). Using Modern Methods of Construction to Build Homes more Quickly and Efficiently; RNAO: London, UK, 2005. [Google Scholar]
- Slovak Federation for Processors of Wood (SFPW). 2017. Available online: http://www.zsdsr.sk/en/home (accessed on 4 September 2017).
- Nässén, J.; Hedenus, F.; Karlsson, S.; Holmberg, J. Concrete vs. wood in buildings-An energy system approach. Build. Environ. 2012, 51, 361–369. [Google Scholar] [CrossRef]
- Zgutova, K.; Decky, M.; Sramek, J.; Dreveny, I. Using of Alternative Methods at Earthworks Quality Control. Procedia Earth Planet. Sci. 2015, 15, 263–270. [Google Scholar] [CrossRef]
- Olsova, J.; Gašparik, J.; Stefunkova, Z.; Briatka, P. Interaction of the asphalt layers reinforced by glass-fiber mesh. In Proceedings of the 2nd International Conference on Engineering Sciences and Technologies, High Tatras Mountains, Tatranské Matliare, Slovak, 29 June–1 July 2016; pp. 803–808. [Google Scholar]
- Gašparik, J.; Gašparík, M. Automated quality excellence evaluation. Gerontechnology 2012, 11, 84. [Google Scholar] [CrossRef]
- Sebok, T.; Vondruska, M.; Kulisek, K. Influence of MSFC-type dispersant composition on the performance of soluble anhydrite binders. Cem. Concr. Res. 2001, 31, 1593–1599. [Google Scholar] [CrossRef]
- Lupisek, A.; Nehasilova, M.; Mancik, S.; Zelezna, J.; Ruzicka, J.; Fiala, C.; Tywoniak, J.; Hajek, P. Desighn strategies of building with low embodied energy. Proc. Inst. Civ. Eng.-Eng. Sustain. 2017, 170, 65–80. [Google Scholar] [CrossRef]
- Minarovičová, K.; Antošová, N. Sustainability of ETICS maintenance technologies. Appl. Mech. Mater. Adv. Archit. Des. Constr. 2016, 820, 194–199. [Google Scholar] [CrossRef]
- Woloszyn, M.; Kalamees, T.; Abadie, M.O.; Steeman, M.; Kalagasidis, A.S. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Build. Environ. 2009, 44, 515–524. [Google Scholar] [CrossRef]
- Takano, A.; Hughes, M.; Winter, S. A multidisciplinary approach to sustainable building material selection: A case study in a Finnish context. Build. Environ. 2014, 82, 526–535. [Google Scholar] [CrossRef]
- Mesároš, P.; Mandičák, T.; Selín, J. Modern methods for cost management in construction enterprises, Journal of Civil Engineering. Sel. Sci. Pap. 2015, 10, 111–120. [Google Scholar]
- Hulinova, Z.; Funtik, T.; Madova, J.; Bistak, A. Effectiveness of costs incurred for labor protection. In Advances and Trends in Engineering Sciences and Technologies II; CRC Press: Boca Raton, FL, USA, 2017; pp. 425–431. [Google Scholar]
- European Union (EU). Sustainability of Construction Works-Assessment of Buildings-Part 3: Framework for the Assessment of Social Performance; Prepared by CEN/TC 350/WG 5; EN 15643-3; NSAI: Dublin, Ireland, 2012. [Google Scholar]
- European Union (EU). Sustainability of Construction Works-Assessment of Buildings-Part 4: Framework for the Assessment of Economic Performance; Prepared by CEN/TC 350/WG 4; EN 15643-4; NSAI: Dublin, Ireland, 2012. [Google Scholar]
- Haas Fertigbau, Slovakia. 2018. Available online: https://www.haas-fertigbau.sk/ (accessed on 5 February 2018).
- Majumdar, D.; Majhi, B.J.; Dutta, A.; Mandal, R.; Jash, T. Study on possible economic and environmental impacts of electric vehicle infrastructure in public road transport in Kolkata. Clean Technol. Environ. 2015, 17, 1093–1101. [Google Scholar] [CrossRef]
- Panepinto, D.; Brizio, E.; Genon, G. Atmospheric pollutants and air quality effects: Limitation costs and environmental advantages (a cost-benefit approach). Clean Technol. Environ. 2014, 16, 1805–1813. [Google Scholar] [CrossRef]
- ISO. Buildings and Constructed Assets—Service Life Planning, Part 1: General Principles and Framework; ISO 15686-1; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- Gustavsson, L.; Sathre, R. Variability in energy and carbon dioxide balances of wood and concrete building materials. Build. Environ. 2006, 41, 940–951. [Google Scholar] [CrossRef]
- Bhochhibhoya, S.; Pizzol, M.; Achten, W.M.J.; Maskey, R.K.; Zanetti, M.; Cavalli, R. Comparative life cycle assessment and life cycle costing of lodging in the Himalaya. Int. J. Life Cycle Assess. 2017, 22, 1851–1863. [Google Scholar] [CrossRef]
- Santi, S.; Pierobon, F.; Corradini, G.; Cavalli, R.; Zanetti, M. Massive wood material for sustainable building design: the Massiv-Holz-Mauer wall system. J. Wood Sci. 2016, 62, 416–428. [Google Scholar] [CrossRef]
- Ximenes, A.F.; Grant, T. Quantifying the greenhouse benefits of the use of wood products in two popular house designs in Sydney, Australia. Int. J. Life Cycle Assess. 2013, 18, 891–908. [Google Scholar] [CrossRef]
- Silvestre, J.D.; Brito, J.; Pinheiro, M.D. From the new European standards to an environmental, energy and economic assessment of building assemblies from cradle-to-cradle(3E-C2C). Energy Build. 2013, 64, 199–208. [Google Scholar] [CrossRef]
- Morel, J.C.; Mesbah, A.; Oggero, M.; Walker, P. Building houses with local materials: Means to drastically reduce the environmental impact of construction. Build. Environ. 2001, 36, 1119–1126. [Google Scholar] [CrossRef]
- Blengini, G.A.; Di Carlo, T. The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energy Build. 2010, 42, 869–880. [Google Scholar] [CrossRef]
- Pajchrowski, G.; Noskowiak, A.; Lewandowska, A.; Strykowski, W. Wood as a building material in the light of environmental assessment of full life cycle of four buildings. Constr. Build. Mater. 2014, 52, 428–436. [Google Scholar] [CrossRef]
- Upton, B.; Miner, R.; Spinney, M.; Heath, L.S. The greenhouse gas and energy impacts of using wood instead of alternatives in residential construction in the United States. Biomass Bioenergy 2008, 32, 1–10. [Google Scholar] [CrossRef]
- Almusaed, A.; Almssad, A. Building materials in eco-energy houses from Iraq and Iran. Case Stud. Constr. Mater. 2015, 2, 42–54. [Google Scholar] [CrossRef]
- Glasare, G.; Haglund, P. Climate Impacts of Wood vs. Non Wood Buildings; Sveriges Kommuner och Landsting: Stockholm, Sweden, 2016; ISBN 978-91-7585-377-2. [Google Scholar]
- Russell-Smith, S.V.; Lepech, M.D. Cradle-to-gate sustainable target value design: Integrating life cycle assessment and construction management for buildings. JCP 2015, 100, 107–115. [Google Scholar] [CrossRef]
- Goldstein, B.; Eriksson, A.H. Livscykelkostnader-Till Vilken Nytta för Miljön och Plånboken? Nordiska Ministerrådet: Köpenhamn, Denmark, 2010. [Google Scholar]
- Afshari, A.; Nikolopoulou, C.; Martin, M. Life-Cycle Analysis of Building Retrofits at the Urban Scale—A Case Study in United Arab Emirates. Sustainability 2014, 6, 453–473. [Google Scholar] [CrossRef]
- Toosi, H.A.; Balador, Z.; Gjerde, M.; Vakili-Ardebili, A. A life Cycle Cost Analysis and Environmental Assessment on the Photovoltaic System in Buildings: Two Case Studies in Iran. J. Clean Energy Technol. 2018, 6, 134–138. [Google Scholar] [CrossRef]
- Alama, M.; Singhb, H. A combined life cycle cost and energy analysis of Vacuum insulation Panels (VIPs) in building applications. In Proceedings of the 13th International Vacuum Insulation Symposium (IVIS), Paris, France, 20–21 September 2017. [Google Scholar]
- Dwaikata, L.N.; Ali, K.N. Green Buildings Life Cycle Cost Analysis and Life Cycle Budget Development: Practical Applications. J. Build. Eng. 2018, 18, 303–311. [Google Scholar] [CrossRef]
- Marszal, A.J.; Heiselberg, P. Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark. Energy 2011, 36, 5600–5609. [Google Scholar] [CrossRef]
- Carter, T.; Keeler, A. Life-cycle cost–benefit analysis of extensive vegetated roof systems. J. Environ. Manag. 2008, 87, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A. Optimizing insulation thickness for buildings using life cycle cost. Appl. Energy 1999, 63, 115–124. [Google Scholar] [CrossRef]
- Schade, J. Life cycle cost calculation models for buildings. In Proceedings of the 4th Nordic Conference on Construction Economics and Organisation: Development Processes in Construction Mangement, Luleå Tekniska Universitet, Luleå, Sweden, 14–15 June 2007. [Google Scholar]
Panel Wood Construction | Masonry Construction | |||
---|---|---|---|---|
Foundations |
|
| ||
Vertical structures |
|
| ||
Horizontal structures |
|
| ||
Roofing |
|
Panel Wood Construction | Masonry Construction | |
---|---|---|
Foundations |
| |
Vertical and horizontal structures |
|
|
Roofing |
| |
Surfacing and completions |
|
|
Transported Quantities (t) | Number of Rides | Transport Distance (km) | Average Emissions CO2 of Vehiclesk g/km | Emissions of CO2 (kg) | ||||
---|---|---|---|---|---|---|---|---|
PWC | MC | PWC | MC | PWC | MC | |||
Concrete | 147.6 (61.5m3) | 354.24 (147.6 m3) | 11 | 25 | 20 | 0.8 | 176 | 400 |
Reinforcement | 2.46 | 12 | 1 | 1 | 20 | 16 | 16 | |
Formwork system | - | 16.23 (202.9 m2) | 0 | 1 | 20 | 0 | 16 | |
Panels of wood construction | 46.12 | - | 2 | 0 | 20 (50, 100) * | 32 (80, 160) * | 0 | |
Masonry material | - | 173.4 | 0 | 9 | 20 | 0 | 144 | |
Timber | 8.61 | 8.61 | 1 | 1 | 20 | 16 | 16 | |
Sum | 204.79 | 564.48 | 14 | 37 | 240 (288, 368) * | 592 |
Masonry Construction | Panel Wood Construction | ||||
---|---|---|---|---|---|
Lifecycle Phase | Phase | Costs (EUR) | Costs (EUR) | ||
Construction | Costs of building design | 2994 | 2371 | ||
Costs for the production of materials and components | 149,205 | 118,584 | |||
Transport costs of materials and components * | 2361 (transport-distance 20 km) 2415 (fixed costs) | 4776 | 984 (transport-distance 20 km) 2004 (fixed costs) | 2988 | |
Construction costs ** | 28,782 (foundations ) 100,162 (vertical and horizontal structures) 25,894 (roofing) 83,025 (surfacing and completions) | 237,863 | 19,800 (foundations) 93,654 (vertical and horizontal structures) 25,252 (roofing) 56,316 (surfacing and completions) | 195,022 | |
Operation | Operating costs | 680 (average annual cost of heating, water heating and cooling) 192 (average annual cost of lighting and electrical equipment) 72 (average annual cost of property tax and land) | 47,200 | 680 (average annual cost of heating, water heating and cooling) 192 (average annual cost of lighting and electrical equipment) 72 (average annual cost of property tax and land) | 47,200 |
Maintenance | Maintenance and repair costs *** | 611 (average annual cost—repairs fund) | 30,550 | 518.4 (average annual cost—repairs fund) | 30,550 |
End-of-Life | Costs of demolition and disposal | 5991 (demolition) 10,516 (transport and disposal) | 16,507 | 3012 (demolition) 3685 (transport and disposal) | 6697 |
Sum | 335,114 | Sum | 281,840 |
Masonry Construction | Panel Wood Construction | ||||
---|---|---|---|---|---|
Lifecycle Phase | Time (Weeks) | Time (Weeks) | |||
Construction | Time for building design | 4 | 4 | ||
Time of transport of materials and components * | Calculated at construction time | 28.5 | Calculated at construction time | 15 | |
Construction time ** | 5 weeks (foundations) 8.5 weeks (vertical and horizontal structures) 1.5 weeks (roofing) 13.5 weeks (surfacing and completions) | 5 weeks (foundations) 1.5 weeks (vertical and horizontal structures) 1.5 weeks (roofing) 7 weeks (surfacing and completions) | |||
Operation | Duration of use | 50 years (duration of use in years) | 50 years (duration of use in years) | ||
Maintenance | Maintenance and repair time | 50 years (duration of use in years) | 50 years (duration of use in years) | ||
End-of-Life | Time for demolition and disposal | 6 weeks (demolition) 5 weeks (transport and disposal) | 11 | 2.5 weeks (demolition) 2.5 weeks (transport and disposal) | 5 |
Sum (except for the period of use) | 43.5 | Sum (except for the period of use) | 24 |
Lifecycle Phase | Year in which Cost Occurs (Year) | Expected Yearly Cost (EUR) | Discount Factors * for 1% | NPV 1% | Discount Factors * for 3% | NPV 3% | Discount Factors * for 5% | NPV 5% |
---|---|---|---|---|---|---|---|---|
Operation and Maintenance | 1 | 1555 | 0.990 | 1539 | 0.97 | 1508 | 0.95 | 1477 |
10 | 13,995 | 0.905 | 12,665.4 | 0.74 | 10,356.3 | 0.61 | 8536.9 | |
20 | 15,550 | 0.820 | 12,751 | 0.55 | 8552 | 0.38 | 5909 | |
30 | 15,550 | 0.74 | 11,507 | 0.41 | 6375.5 | 0.23 | 3576.5 | |
40 | 15,550 | 0.67 | 10,418.5 | 0.31 | 4820.5 | 0.14 | 2177 | |
49 | 15,550 | 0.61 | 9485.5 | 0.23 | 3576.5 | 0.09 | 1399.5 | |
End-of-Life | 50 (Demolition) | 16,507 | 0.61 | 10,069.2 | 0.23 | 3796.6 | 0.09 | 1485.6 |
Sum | 94,257 | 68,436 | 38,986.2 | 24,561.7 |
Lifecycle Phase | Year in which Cost Occurs (Year) | Expected Yearly Cost (EUR) | Discount Factors * for 1% | NPV 1% | Discount Factors * for 3% | NPV 3% | Discount Factors * for 5% | NPV 5% |
---|---|---|---|---|---|---|---|---|
Operation and Maintenance | 1 | 1555 | 0.990 | 1539 | 0.97 | 1508 | 0.95 | 1477.2 |
10 | 13,995 | 0.905 | 12,665 | 0.74 | 10,356 | 0.61 | 8536.9 | |
20 | 15,550 | 0.820 | 12,751 | 0.55 | 8552.5 | 0.38 | 5909 | |
30 | 15,550 | 0.74 | 11 507 | 0.41 | 6375.5 | 0.23 | 3576.5 | |
40 | 15,550 | 0.67 | 10,418.5 | 0.31 | 4820.5 | 0.14 | 2177 | |
49 | 15,550 | 0.61 | 9485.5 | 0.23 | 3576.5 | 0.09 | 1399.5 | |
End-of-Life | 50 (Demolition) | 6697 | 0.61 | 4085.17 | 0.23 | 1540.3 | 0.09 | 602.7 |
Sum | 84,447 | 62,451.9 | 36,729.9 | 23,678.8 |
Masonry Construction | Panel Wood Construction | ||||||
---|---|---|---|---|---|---|---|
NPV | Construction | Operation, Maintenance and End-of-Life | Sum | Construction | Operation, Maintenance and End-of-Life | Sum | |
1% | Cost ratio (EUR) | 240,857 | 68,436 | 309,293 | 197,393 | 62,451 | 259,844 |
Percentage ratio (%) | 77.8 | 22.2 | 100 | 75.5 | 24.5 | 100 | |
3% | Cost ratio (EUR) | 240,857 | 38,986 | 279,843 | 197,393 | 36,729 | 234,122 |
Percentage ratio (%) | 85.9 | 14.1 | 100 | 84.3 | 15.7 | 100 | |
5% | Cost ratio (EUR) | 240,857 | 24,561 | 265,418 | 197,393 | 23,678 | 221,071 |
Percentage ratio (%) | 90.7 | 9.3 | 100 | 89.5 | 10.5 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Švajlenka, J.; Kozlovská, M. Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study. Sustainability 2018, 10, 1502. https://doi.org/10.3390/su10051502
Švajlenka J, Kozlovská M. Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study. Sustainability. 2018; 10(5):1502. https://doi.org/10.3390/su10051502
Chicago/Turabian StyleŠvajlenka, Jozef, and Mária Kozlovská. 2018. "Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study" Sustainability 10, no. 5: 1502. https://doi.org/10.3390/su10051502
APA StyleŠvajlenka, J., & Kozlovská, M. (2018). Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study. Sustainability, 10(5), 1502. https://doi.org/10.3390/su10051502