Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Determinants of Bicycle-Transit Integration
2.2. Spatial Regression Modeling in the Transportation Field
3. Methodology
3.1. Multicollinearity
3.2. Spatial Autocorrelation
3.3. GWR and GWPR Models
4. Data
4.1. Dependent Variable
4.2. Explanatory Variables
5. Results and Analysis
5.1. Poisson Regression Model Result
5.2. GWPR Model Results
5.3. Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qiu, L.-Y.; He, L.-Y. Bike Sharing and the Economy, the Environment, and Health-Related Externalities. Sustainability 2018, 10, 1145. [Google Scholar] [CrossRef]
- Ma, T.; Liu, C.; Erdoğan, S. Bicycle Sharing and Public Transit: Does Capital Bikeshare Affect Metrorail Ridership in Washington, D.C.? Transp. Res. Rec. 2015, 2534, 1–9. [Google Scholar] [CrossRef]
- Maizlish, N.; Woodcock, J.; Co, S.; Ostro, B.; Fanai, A.; Fairley, D. Health cobenefits and transportation-related reductions in greenhouse gas emissions in the San Francisco Bay Area. Am. J. Public Health 2013, 103, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, X.; Wang, W.; Li, Z.; Zhao, J. Empirical Analysis of a Mode Shift to Using Public Bicycles to Access the Suburban Metro: Survey of Nanjing, China. J. Urban Plan. Dev. 2015, 142, 05015011. [Google Scholar] [CrossRef]
- Fishman, E.; Washington, S.; Haworth, N. Bike share’s impact on car use: Evidence from the United States, Great Britain, and Australia. Transp. Res. Part D 2014, 31, 13–20. [Google Scholar] [CrossRef]
- Pucher, J.; Buehler, R. Cycling towards a more sustainable transport future. Transp. Rev. 2017, 37, 689–694. [Google Scholar] [CrossRef]
- Yahya, B. Overall Bike Effectiveness as a Sustainability Metric for Bike Sharing Systems. Sustainability 2017, 9, 2070. [Google Scholar] [CrossRef]
- Shaheen, S.A. Hangzhou Public Bicycle: Understanding Early Adoption and Behavioral Response to Bikesharing in Hangzhou, China. Transp. Res. Board 2013, 2247, 34–41. [Google Scholar] [CrossRef]
- Ji, Y.; Fan, Y.; Ermagun, A.; Cao, X.; Wang, W.; Das, K. Public bicycle as a feeder mode to rail transit in China: The role of gender, age, income, trip purpose, and bicycle theft experience. Int. J. Sustain. Transp. 2017, 11, 308–317. [Google Scholar] [CrossRef]
- Midgley, P. Bicycle-Sharing Schemes: Enhancing Sustainable Mobility in Urban Areas. Commun. Sustain. Dev. 2011, 19, 1–12. [Google Scholar]
- Zhao, P.; Li, S. Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing. Transp. Res. Part A 2017, 99, 46–60. [Google Scholar] [CrossRef]
- Bike-Sharing World Map. 2017. Available online: bikesharingmap.com (accessed on 2 July 2017).
- Shaheen, S.; Martin, E.; Cohen, A. Public Bikesharing and Modal Shift Behavior: A Comparative Study of Early Bikesharing Systems in North America. Int. J. Transp. 2013, 1, 35–54. [Google Scholar] [CrossRef]
- Tang, Y.; Pan, H.; Shen, Q. Bike-Sharing Systems in Beijing, Shanghai and Hangzhou and Their Impact on Travel Behaviour; Department of Urban Planning, Tongji University: Shanghai, China, 2010. [Google Scholar]
- Fishman, E. Bikeshare: A Review of Recent Literature. Transp. Rev. 2015, 1647, 1–22. [Google Scholar] [CrossRef]
- Lan, J.; Ma, Y.; Zhu, D.; Mangalagiu, D.; Thornton, T.F. Enabling Value Co-Creation in the Sharing Economy: The Case of Mobike. Sustainability 2017, 9, 1504. [Google Scholar] [CrossRef]
- Shaheen, S.A.; Guzman, S.; Zhang, H. Bikesharing across the Globe. In City Cycling; The MIT Press: Cambridge, MA, USA, 2012; pp. 183–210. [Google Scholar]
- Yang, H.; Lu, X.; Cherry, C.; Liu, X.; Li, Y. Spatial variations in active mode trip volume at intersections: A local analysis utilizing geographically weighted regression. J. Transp. Geogr. 2017, 64, 184–194. [Google Scholar] [CrossRef]
- Bachand-Marleau, J.; Larsen, J.; El-Geneidy, A. Much-anticipated marriage of cycling and transit: How will it work? Transp. Res. Rec. 2011, 2247, 109–117. [Google Scholar] [CrossRef]
- Lee, J.; Choi, K.; Leem, Y. Bicycle-Based transit-oriented development as an Alternative to Overcome the Criticisms of the Conventional transit-oriented development. Int. J. Sustain. Transp. 2016, 10, 975–984. [Google Scholar] [CrossRef]
- Du, M.; Cheng, L. Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China. Sustainability 2018, 10, 1244. [Google Scholar] [CrossRef]
- Martens, K. The bicycle as a feedering mode: Experiences from three European countries. Transp. Res. Part D 2004, 9, 281–294. [Google Scholar] [CrossRef]
- Yang, R.; Long, R. Analysis of the Influencing Factors of the Public Willingness to Participate in Public Bicycle Projects and Intervention Strategies—A Case Study of Jiangsu Province, China. Sustainability 2016, 8, 349. [Google Scholar] [CrossRef]
- Martens, K. Promoting bike-and-ride: The Dutch experience. Transp. Res. Part A 2007, 41, 326–338. [Google Scholar] [CrossRef]
- Pan, H.; Shen, Q.; Xue, S. Intermodal Transfer between Bicycles and Rail Transit in Shanghai, China. Transp. Res. Rec. 2010, 2144, 181–188. [Google Scholar] [CrossRef]
- Fan, Y.; Guthrie, A.; Levinson, D. Waiting time perceptions at transit stops and stations: Effects of basic amenities, gender, and security. Transp. Res. Part A 2016, 88, 251–264. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Liu, K.C. Evaluating bicycle-transit users’ perceptions of intermodal inconvenience. Transp. Res. Part A 2012, 46, 1690–1706. [Google Scholar] [CrossRef]
- Li, Z.-C.; Yao, M.-Z.; Lam, W.H.K.; Sumalee, A.; Choi, K. Modeling the Effects of Public Bicycle Schemes in a Congested Multi-Modal Road Network. Int. J. Sustain. Transp. 2014, 9, 282–297. [Google Scholar] [CrossRef]
- Yang, M.; Zacharias, J. Potential for Revival of the Bicycle in Beijing. Int. J. Sustain. Transp. 2015, 10, 517–527. [Google Scholar] [CrossRef]
- Arbis, D.; Rashidi, T.H.; Dixit, V.V.; Vandebona, U. Analysis and Planning of Bicycle Parking for Public Transport Stations. Int. J. Sustain. Transp. 2016, 10, 495–504. [Google Scholar] [CrossRef]
- Chen, C.F.; Cheng, W.C. Sustainability SI: Exploring Heterogeneity in Cycle Tourists’ Preferences for an Integrated Bike-Rail Transport Service. Netw. Spat. Econ. 2016, 16, 83–97. [Google Scholar] [CrossRef]
- Griffin, G.P.; Sener, I.N. Planning for Bike Share Connectivity to Rail Transit. J. Public Transp. 2016, 19, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Hochmair, H.H. Assessment of Bicycle Service Areas around Transit Stations. Int. J. Sustain. Transp. 2014, 9, 15–29. [Google Scholar] [CrossRef]
- Iacono, M.; Krizek, K.J.; El-Geneidy, A. Measuring non-motorized accessibility: Issues, alternatives, and execution. J. Transp. Geogr. 2010, 18, 133–140. [Google Scholar] [CrossRef]
- Mohanty, S.; Bansal, S.; Bairwa, K. Effect of integration of bicyclists and pedestrians with transit in New Delhi. Transp. Policy 2017, 57, 31–40. [Google Scholar] [CrossRef]
- Sun, Y.; Mobasheri, A.; Hu, X.; Wang, W. Investigating Impacts of Environmental Factors on the Cycling Behavior of Bicycle-Sharing Users. Sustainability 2017, 9, 1060. [Google Scholar] [CrossRef]
- Saghapour, T.; Moridpour, S.; Thompson, R.G. Measuring cycling accessibility in metropolitan areas. Int. J. Sustain. Transp. 2017, 11, 381–394. [Google Scholar] [CrossRef]
- Chen, L.; Pel, A.J.; Chen, X.; Sparing, D.; Hansen, I.A. Determinants of Bicycle Transfer Demand at Metro Stations: An Analysis of Stations in Nanjing, China. Transp. Res. Rec. 2012, 2276, 131–137. [Google Scholar] [CrossRef]
- Mohanty, S.; Blanchard, D.S. Complete Transit: Evaluating Walking and Biking to Transit Using a Mixed Logit Mode Choice Model. In Proceedings of the 95th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 10–14 January 2016; p. 21. [Google Scholar]
- Puello, L.L.P.; Geurs, K. Modelling observed and unobserved factors in cycling to railway stations: Application to transit-oriented-developments in the Netherlands. Eur. J. Transp. Infrastruct. Res. 2015, 15, 27–50. [Google Scholar]
- Martin, E.W.; Shaheen, S.A. Evaluating public transit modal shift dynamics in response to bikesharing: A tale of two U.S. cities. J. Transp. Geogr. 2014, 41, 315–324. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Eluru, N. Examining the impact of sample size in the analysis of bicycle-sharing systems. Transp. A Transp. Sci. 2017, 13, 139–161. [Google Scholar] [CrossRef]
- Chiou, Y.C.; Jou, R.C.; Yang, C.H. Factors affecting public transportation usage rate: Geographically weighted regression. Transp. Res. Part A 2015, 78, 161–177. [Google Scholar] [CrossRef]
- Bao, J.; Liu, P.; Yu, H.; Xu, C. Incorporating twitter-based human activity information in spatial analysis of crashes in urban areas. Accid. Anal. Prev. 2017, 106, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Ukkusuri, S.V. Spatial variation of the urban taxi ridership using GPS data. Appl. Geogr. 2015, 59, 31–42. [Google Scholar] [CrossRef]
- Yang, W.; Chen, B.Y.; Cao, X.; Li, T.; Li, P. The spatial characteristics and influencing factors of modal accessibility gaps: A case study for Guangzhou, China. J. Transp. Geogr. 2017, 60, 21–32. [Google Scholar] [CrossRef]
- Vandenbulcke, G.; Dujardin, C.; Thomas, I.; de Geus, B.; Degraeuwe, B.; Meeusen, R.; Panis, L.I. Cycle commuting in Belgium: Spatial determinants and “re-cycling” strategies. Transp. Res. Part A 2011, 45, 118–137. [Google Scholar] [CrossRef]
- Wang, C.H.; Chen, N. A geographically weighted regression approach to investigating the spatially varied built-environment effects on community opportunity. J. Transp. Geogr. 2017, 62, 136–147. [Google Scholar] [CrossRef]
- Kerkman, K.; Martens, K.; Meurs, H. A multilevel spatial interaction model of transit flows incorporating spatial and network autocorrelation. J. Transp. Geogr. 2017, 60, 155–166. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, S.; Deng, Z.; Cheng, S. Transit premium and rent segmentation: A spatial quantile hedonic analysis of Shanghai Metro. Transp. Policy 2016, 51, 61–69. [Google Scholar] [CrossRef]
- Liu, X.; Roberts, M.C.; Sioshansi, R. Spatial effects on hybrid electric vehicle adoption. Transp. Res. Part D 2017, 52, 85–97. [Google Scholar] [CrossRef]
- Akar, G.; Chen, N.; Gordon, S.I. Influence of neighborhood types on trip distances: Spatial error models for Central Ohio. Int. J. Sustain. Transp. 2016, 10, 284–293. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.; Neter, J. Applied Linear Regression Models, 4th ed.; McGraw-Hill/Irwin Education: New York, NY, USA, 2005. [Google Scholar]
- Alexander, N. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. J. R. Stat. Soc. 2011, 174, 512–513. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environ. Plan. A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Faghihimani, A.; Eluru, N. Analysing Destination Choice Preferences in Bicycle Sharing Systems: An Investigation of Chicago’s Divvy System. In Proceedings of the 94th Annual Meeting on Compendium of Transportation Research Board, Washington, DC, USA, 11–15 January 2015. [Google Scholar]
- Nanjing Urban Planning Bureau. Planning Standards for Public Facilities; Nanjing Urban Planning Bureau: Nanjing, China, 2015.
- LianJia Housing Price Report. Available online: https://nj.lianjia.com/fangjia/ (accessed on 25 April 2018).
- Pucher, J.; Buehler, R. Integrating Bicycling and Public Transport in North America. J. Public Transp. 2009, 12, 79–104. [Google Scholar] [CrossRef]
- Brons, M.; Givoni, M.; Rietveld, P. Access to railway stations and its potential in increasing rail use. Transp. Res. Part A 2009, 43, 136–149. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.; Deng, W. Exploring bikesharing travel time and trip chain by gender and day of the week. Transp. Res. Part C 2015, 58, 251–264. [Google Scholar] [CrossRef]
- El-Assi, W.; Mahmoud, M.S.; Habib, K.N. Effects of built environment and weather on bike sharing demand: A station level analysis of commercial bike sharing in Toronto. Transportation 2017, 44, 589–613. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Eluru, N.; El-Geneidy, A.M.; Rabbat, M.; Haq, U. How land-use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal. J. Transp. Geogr. 2014, 41, 306–314. [Google Scholar] [CrossRef]
Studies | Independent Variables | Data and Methodology | |||||||
---|---|---|---|---|---|---|---|---|---|
Demographic | Socioeconomic | Built Environment | Travel Related | Land Use (POIs) | Data Type | Target Variable | Model | Goodness-of-Fit/Spatial Autocorrelation Test | |
Chiou et al. [43] | √ | √ | Survey data | Usage rates | GWR | R2, Moran’s I | |||
Bao et al. [44] | √ | √ | √ | √ | Survey & social media data | Crash counts | GWR | R2, AICc, Moran’s I | |
Qian et al. [45] | √ | √ | √ | GPS data | Ridership | GWR | R2, AICc, Moran’s I | ||
Yang et al. [46] | √ | GPS data | Modal accessibility gap | SLM, SEM, SAM, SDM | Log-likelihood, AIC, Moran’s I | ||||
Vandenbulcke et al. [47] | √ | √ | √ | Survey data | Usage rates | SLM, SEM | Log-likelihood, AIC, SIC, Moran’s I | ||
Wang et al. [48] | √ | √ | √ | √ | Survey data | Community opportunity index | GWR | Adj. R2, AICc/AIC, Moran’s I | |
Kerkman et al. [49] | √ | √ | √ | √ | Survey data | Ridership | SLM, SIM | AIC, Moran’s I | |
Yang et al. [18] | √ | √ | √ | Survey data | Travel volume | GWR, mixed GWR | R2, Adj. R2, AICc | ||
Wang et al. [50] | √ | Online survey data | Rent | Linear hedonic SLM | R2, F-test, Chi-squared test | ||||
Liu et al. [51] | √ | √ | Survey data | HEV penetration | SAM, SEM, GWR | Log-likelihood, AIC, SBC, Moran’s I, LM^error | |||
Akar et al. [52] | √ | √ | √ | √ | Survey data | Trip distance | SEM | R2, Adj. R2, AICc, LM^error |
Transaction Date | Member ID | Trip Type | Transaction Time | Metro Station ID | Bikeshare Station ID | Station Longitude | Station Latitude |
---|---|---|---|---|---|---|---|
2016-03-09 | 97007007 **** | Metro | 08:42:58 | 24 | - | 118.7619 | 32.04468 |
2016-03-09 | 97007007 **** | Bikeshare | 08:46:06 | - | 11001 | 118.7744 | 32.04895 |
Transaction Date | Member ID | Trip Type | Transaction Time | Metro Station ID | Bikeshare Station ID | Station Longitude | Station Latitude |
---|---|---|---|---|---|---|---|
2016-03-09 | 97007007 **** | Bikeshare | 09:15:55 | - | 11001 | 118.7744 | 32.04895 |
2016-03-09 | 97007007 **** | Metro | 09:16:59 | 24 | - | 118.7619 | 32.04468 |
Transfer Distance (Meters) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | ||
Transfer Time (min) | 2 | 2% | 2% | 2% | 2% | 2% | 2% | 2% | 2% | 2% | 2% |
4 | 43% | 65% | 70% | 70% | 70% | 70% | 70% | 70% | 70% | 70% | |
6 | 49% | 74% | 80% | 81% | 82% | 82% | 82% | 82% | 82% | 82% | |
8 | 50% | 78% | 86% | 88% | 90% | 90% | 90% | 91% | 91% | 91% | |
10 | 51% | 79% | 91% | 91% | 93% | 94% | 94% | 94% | 94% | 94% | |
12 | 52% | 80% | 93% | 94% | 95% | 97% | 97% | 97% | 97% | 97% | |
14 | 52% | 80% | 93% | 94% | 95% | 97% | 98% | 98% | 98% | 98% | |
16 | 52% | 80% | 93% | 94% | 95% | 98% | 99% | 99% | 99% | 99% | |
18 | 52% | 80% | 93% | 94% | 95% | 99% | 99% | 100% | 100% | 100% | |
20 | 52% | 80% | 93% | 94% | 95% | 99% | 99% | 100% | 100% | 100% |
Transfer Distance (Meters) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | ||
Transfer Time (min) | 2 | 49% | 74% | 79% | 79% | 79% | 79% | 79% | 79% | 79% | 79% |
4 | 51% | 81% | 83% | 90% | 90% | 91% | 91% | 91% | 91% | 91% | |
6 | 52% | 83% | 88% | 95% | 95% | 95% | 95% | 95% | 95% | 95% | |
8 | 52% | 83% | 91% | 95% | 95% | 95% | 95% | 96% | 96% | 96% | |
10 | 52% | 83% | 91% | 95% | 95% | 96% | 96% | 96% | 96% | 96% | |
12 | 53% | 84% | 92% | 96% | 96% | 97% | 97% | 98% | 98% | 98% | |
14 | 53% | 84% | 93% | 96% | 96% | 98% | 98% | 98% | 98% | 98% | |
16 | 53% | 84% | 93% | 96% | 97% | 98% | 99% | 99% | 99% | 99% | |
18 | 53% | 84% | 93% | 97% | 98% | 99% | 99% | 100% | 100% | 100% | |
20 | 53% | 84% | 93% | 97% | 98% | 99% | 99% | 100% | 100% | 100% |
Independent Variables | Unit | Min | Max | Mean | S.D. |
---|---|---|---|---|---|
Demographic and socioeconomic variables | |||||
Proportion of male (POM) | Percentage | 0.3 | 0.89 | 0.57 | 0.12 |
Proportion of local residents (POLR) | Percentage | 0.14 | 0.68 | 0.53 | 0.11 |
Proportion of users under 18 years old (AGE1) | Percentage | 0 | 0.12 | 0.02 | 0.02 |
Proportion of users between 18 and 35 years old (AGE2) | Percentage | 0.27 | 0.79 | 0.51 | 0.11 |
Proportion of users between 35 and 45 years old (AGE3) | Percentage | 0.04 | 0.5 | 0.22 | 0.08 |
Proportion of users between 45 years and retirement age (AGE4) | Percentage | 0 | 0.45 | 0.17 | 0.08 |
Proportion of users above retirement age (AGE5) | Percentage | 0 | 0.39 | 0.09 | 0.07 |
Travel-related variables | |||||
Travel distance on metro (TDM) | km | 6.18 | 13.52 | 9.77 | 1.60 |
Travel distance on bikeshare (TDB) | km | 0.49 | 1.94 | 0.90 | 0.35 |
Ridership of metro (ROM) | Thousands per day | 3.31 | 177.37 | 32.69 | 28.69 |
Ridership of bikeshare (ROB) | Thousands per day | 0.05 | 3.54 | 0.86 | 0.89 |
Built environment variables | |||||
Docks at bikeshare station (Docks) | Numbers | 40 | 201 | 86.62 | 41.56 |
Density of bus stations (BusD) | Numbers/km2 | 9.24 | 38.46 | 22.43 | 8.85 |
Density of metro stations (MetroD) | Numbers/km2 | 0 | 0.72 | 0.273 | 0.157 |
Density of bike stations (BikeD) | Numbers/km2 | 1.19 | 8.28 | 4.22 | 2.03 |
Density of road networks (RoadD) | km/km2 | 3.6 | 123.05 | 21.61 | 22.74 |
Population density (PD) | Numbers/km2 | 0.17 | 2.35 | 1.18 | 0.84 |
Job density (JD) | Numbers/km2 | 0.05 | 0.52 | 0.26 | 0.18 |
Governmental (POI) | Percentage | 0 | 0.13 | 0.03 | 0.02 |
Commercial/Industrial (POI) | Percentage | 0.04 | 0.35 | 0.17 | 0.08 |
Educational (POI) | Percentage | 0 | 0.17 | 0.05 | 0.03 |
Hospital (POI) | Percentage | 0 | 0.08 | 0.03 | 0.02 |
Entertainment (POI) | Percentage | 0.13 | 0.68 | 0.41 | 0.12 |
Residential (POI) | Percentage | 0.01 | 0.10 | 0.04 | 0.02 |
Tourist attraction (POI) | Percentage | 0 | 0.23 | 0.03 | 0.04 |
Variables | VIF | Covariates |
---|---|---|
POM | 2.3 | / |
POLR | 1.94 | / |
AGE1 | 1.73 | / |
AGE2 | 25.85 | AGE3, AGE4, AGE5 |
AGE3 | 13.62 | AGE2, AGE4, AGE5 |
AGE4 | 16.03 | AGE2, AGE3, AGE5 |
AGE5 | 12.42 | AGE2, AGE3, AGE4 |
TDM | 1.61 | / |
TDB | 3.04 | / |
ROM | 2.44 | / |
ROB | 4.22 | / |
DOCKS | 2.5 | / |
BUSD | 8.15 | / |
BIKED | 2.46 | / |
METROD | 7.54 | / |
ROADD | 1.75 | / |
PD | 14.23 | JD |
JD | 17.79 | PD |
Governmental | 1.66 | / |
Commercial/Industrial | 1.82 | / |
Educational | 1.87 | / |
Entertainment | 2.19 | / |
Hospital | 1.56 | / |
Residential | 2.07 | / |
Tourist attraction | 2.99 | / |
Variables | Estimate | S.E. | P-Value |
---|---|---|---|
Intercept | 2.27 | 0.21 | 0.000 |
POM | −1.21 | 0.29 | 0.009 |
POLR | 0.76 | 0.95 | 0.009 |
AGE5 | −3.64 | 0.01 | 0.000 |
TDM | 0.10 | 0.06 | 0.000 |
TDB | −0.96 | 0.00 | 0.000 |
ROM | 0.03 | 0.03 | 0.000 |
ROB | 0.90 | 0.00 | 0.000 |
Docks | 0.01 | 0.00 | 0.000 |
BusD | −0.02 | 0.14 | 0.000 |
MetroD | −3.78 | 0.02 | 0.000 |
BikeD | 0.18 | 0.00 | 0.005 |
PD | 0.35 | 0.73 | 0.000 |
Governmental | 4.03 | 0.36 | 0.000 |
Commercial/Industrial | 4.69 | 0.73 | 0.000 |
Educational | −10.23 | 0.24 | 0.000 |
Entertainment | 2.96 | 0.68 | 0.000 |
Tourist attraction | 9.56 | 0.32 | 0.000 |
Variables | Moran’s I | Expected Index | Z-Score | P-Value |
---|---|---|---|---|
POM | −0.045 | −0.026 | −0.280 | 0.780 |
POLR | 0.306 | −0.026 | 5.006 | 0.000 |
AGE5 | 0.022 | −0.026 | 0.765 | 0.444 |
TDM | −0.005 | −0.026 | 0.303 | 0.762 |
TDB | 0.280 | −0.026 | 4.456 | 0.000 |
ROM | 0.151 | −0.026 | 3.199 | 0.001 |
ROB | 0.336 | −0.026 | 5.384 | 0.000 |
Docks | 0.051 | −0.026 | 1.123 | 0.261 |
BusD | 0.767 | −0.026 | 11.237 | 0.000 |
MetroD | 0.505 | −0.026 | 7.692 | 0.000 |
BikeD | 0.563 | −0.026 | 8.363 | 0.000 |
PD | 0.098 | −0.026 | 1.785 | 0.074 |
Governmental | −0.054 | −0.026 | −0.449 | 0.654 |
Commercial/industrial | 0.105 | −0.026 | 1.872 | 0.061 |
Educational | 0.121 | −0.026 | 2.236 | 0.025 |
Entertainment | 0.295 | −0.026 | 4.614 | 0.000 |
Tourist attraction | −0.039 | −0.026 | −0.244 | 0.807 |
Local Terms | Mean | STD | Min | Lower Quartile | Median | Upper Quartile | Max |
---|---|---|---|---|---|---|---|
Intercept | 3.750 | 0.065 | 3.540 | 3.713 | 3.744 | 3.806 | 3.845 |
POLR | −1.103 | 0.177 | −1.392 | −1.255 | −1.076 | −0.976 | −0.664 |
TDB | −1.038 | 0.009 | −1.070 | −1.044 | −1.037 | −1.033 | −1.023 |
ROM | 0.018 | 0.000 | 0.017 | 0.017 | 0.018 | 0.018 | 0.019 |
ROB | 0.844 | 0.007 | 0.826 | 0.842 | 0.844 | 0.848 | 0.857 |
BUSD | −0.003 | 0.000 | −0.004 | −0.003 | −0.003 | −0.003 | −0.002 |
METROD | −1.424 | 0.198 | −1.879 | −1.568 | −1.379 | −1.237 | −1.172 |
BIKED | 0.149 | 0.005 | 0.137 | 0.145 | 0.148 | 0.153 | 0.160 |
ENTERTAINMENT | 3.716 | 0.080 | 3.584 | 3.635 | 3.740 | 3.777 | 3.839 |
Indicators | GWPR | Poisson Model |
---|---|---|
AICc | 2059.31 | 2176.31 |
AIC | 2050.65 | 2170.10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Ma, X.; Yang, M.; Jin, Y.; Gao, L. Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach. Sustainability 2018, 10, 1526. https://doi.org/10.3390/su10051526
Ji Y, Ma X, Yang M, Jin Y, Gao L. Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach. Sustainability. 2018; 10(5):1526. https://doi.org/10.3390/su10051526
Chicago/Turabian StyleJi, Yanjie, Xinwei Ma, Mingyuan Yang, Yuchuan Jin, and Liangpeng Gao. 2018. "Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach" Sustainability 10, no. 5: 1526. https://doi.org/10.3390/su10051526
APA StyleJi, Y., Ma, X., Yang, M., Jin, Y., & Gao, L. (2018). Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach. Sustainability, 10(5), 1526. https://doi.org/10.3390/su10051526