Adsorption and Desorption of Phosphorus in Biochar-Amended Black Soil as Affected by Freeze-Thaw Cycles in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.2.1. Soil Sampling and Analysis
2.2.2. Biochar Production and Amendment
2.2.3. Freeze and Thaw Experiment
2.2.4. Isothermal Adsorption and Desorption
2.3. Data Analysis
2.3.1. Phosphorus Adsorption and Desorption
2.3.2. Statistical Analysis
3. Results and Discussion
3.1. Soil and Biochar Properties
3.2. Phosphorus Adsorption
3.3. Phosphorus Desorption
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef]
- Raghothama, K.G.; Karthikeyan, A.S. Phosphate acquisition. Plant Soil 2005, 274, 37. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol. Biochem. 2016, 103, 1–15. [Google Scholar] [CrossRef]
- Debicka, M.; Kocowicz, A.; Weber, J.; Jamroz, E. Organic matter effects on phosphorus sorption in sandy soils. Arch. Agron. Soil Sci. 2016, 62, 840–855. [Google Scholar] [CrossRef]
- Xia, Y.; Lou, Y.; Yang, C.; Liang, Y. Characteristics of phosphate adsorption and desorption in Paddy soils. Sci. Agric. Sin. 2002, 35, 1369–1374. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus dynamics: From soil to plant. Plant Physiol. 2001, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zheng, F.; Wilson, G.V.; He, C.; Lu, J.; Bian, F. Comparison of runoff and soil loss in different tillage systems in the Mollisol region of Northeast China. Soil Tillage Res. 2018, 177, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Burras, C.L.; Kravchenko, Y.S.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.; Cruse, R.M.; Yuan, X. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Z.; Liang, Y.; Zhang, L.; Li, W. Effects and their mechanisms of temperature and moisture on phosphorous transformation in black soil manured with different fertilizers. Plant Nutr. Fert. Sci. 2009, 15, 1295–1302. [Google Scholar] [CrossRef]
- Xu, G.; Wei, L.L.; Sun, J.N.; Shao, H.B.; Chang, S.X. What is more important for enhancing nutrient bioavailability with biochar application into a sandy soil: Direct or indirect mechanism? Ecol. Eng. 2013, 52, 119–124. [Google Scholar] [CrossRef]
- Trazzi, P.A.; Leahy, J.J.; Hayes, M.H.B.; Kwapinski, W. Adsorption and desorption of phosphate on biochars. J. Environ. Chem. Eng. 2016, 4, 37–46. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Dong, X.; Li, G.; Lin, Q.; Zhao, X. Quantity and quality changes of biochar aged for 5 years in soil under field conditions. Catena 2017, 159, 136–143. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Gundale, M.J.; MacKenzie, M.D.; Jones, D.L. Biochar effects on soil nutrient transformations. In Biochar for Environmental Management: Science, Technology and Implementation; Lehmann, J., Joseph, S., Eds.; Routledge: New York, NY, USA, 2015; Volume 2, pp. 421–454. ISBN 978-0415704151. [Google Scholar]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits frombiochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient leaching in a Colombian savanna Oxisol amended with biochar. J. Environ. Qual. 2012, 41, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zou, Y.; Jiang, M.; Lu, X.; Wang, G. Response of soil constituents to freeze-thaw cycles in wetland soil solution. Soil Biol. Biochem. 2011, 43, 1308–1320. [Google Scholar] [CrossRef]
- Soinne, H.; Hovi, J.; Tammeorg, P.; Turtola, E. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 2014, 219, 162–167. [Google Scholar] [CrossRef]
- Arthur, E.; Tuller, M.; Moldrup, P.; de Jonge, L.W. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil. Geoderma 2015, 243, 175–182. [Google Scholar] [CrossRef]
- Matzner, E.; Borken, W. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur. J. Soil Sci. 2008, 59, 274–284. [Google Scholar] [CrossRef]
- Wang, E.; Cruse, R.M.; Chen, X.; Daigh, A. Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability. Can. J. Soil Sci. 2012, 92, 529–536. [Google Scholar] [CrossRef]
- White, E.M. Water-leachable nutrients from frozen or dried prairie vegetation 1. J. Environ. Qual. 1973, 2, 104–107. [Google Scholar] [CrossRef]
- Vaz, M.D.R.; Edwards, A.C.; Shand, C.A.; Cresser, M.S. Changes in the chemistry of soil solution and acetic acid extractable P following different types of freeze/thaw episodes. Eur. J. Soil Sci. 1994, 45, 353–359. [Google Scholar] [CrossRef]
- Bechmann, M.E.; Kleinman, P.J.A.; Sharpley, A.N.; Saporito, L.S. Freeze–thaw effects on phosphorus loss in runoff from manured and catch-cropped soils. J. Environ. Qual. 2005, 34, 2301–2309. [Google Scholar] [CrossRef] [PubMed]
- Henry, H.A.L. Soil freeze–thaw cycle experiments: Trends, methodological weaknesses and suggested improvements. Soil Biol. Biochem. 2007, 39, 977–986. [Google Scholar] [CrossRef]
- Wang, G.P.; Liu, J.S.; Zhao, H.Y.; Wang, J.D.; Yu, J.B. Phosphorus sorption by freeze–thaw treated wetland soils derived from a winter-cold zone (Sanjiang Plain, Northeast China). Geoderma 2007, 138, 153–161. [Google Scholar] [CrossRef]
- Qian, D.; Fan, H.M.; Zhou, L.L.; Wu, M.; Guo, P. Effect of freeze-thaw cycles on phosphorus adsorption and desorption characteristic in brown Earth. J. Soil Water Conserv. 2012, 26, 279–283. [Google Scholar] [CrossRef]
- Fan, H.; Huang, D.; Zhou, L.; Jia, Y. Effects of freeze-thaw cycles on phosphorus adsorption and desorption in the black soil of northeastern China. Acta Agric. Scand. Sect. B Soil Plant Sci 2014, 64, 24–32. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, E.; Cruse, R.M.; Chen, X. Characterization of seasonal freeze-thaw and potential impacts on soil erosion in northeast China. Can. J. Soil Sci. 2012, 92, 567–571. [Google Scholar] [CrossRef]
- China Meteorological Data Service Center. Available online: http://data.cma.cn/site/index.html (accessed on 7 April 2018).
- Jiang, X.; Wang, E.; Chen, X.; Xia, X.; Shi, C. Field study on macropore flow in typical black soils of northeast China. Can. J. Soil Sci. 2012, 92, 559–566. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical Methods of Soil Agrochemistry; Chinese Agriculture Science and Technology: Beijing, China, 1999; ISBN 7801199251. [Google Scholar]
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for determination of nitrogen and mineral nutrients in biologicalmaterial. Commun. Soil Sci. Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Yao, Q.; Liu, J.; Yu, Z.; Li, Y.; Jin, J.; Liu, X.; Wang, G. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol. Biochem. 2017, 110, 56–67. [Google Scholar] [CrossRef]
- Lair, G.J.; Zehetner, F.; Khan, Z.H.; Gerzabek, M.H. Phosphorus sorption-desorption in alluvial soils of a young weathering sequence at the Danube River. Geoderma 2009, 149, 39–44. [Google Scholar] [CrossRef]
- Sun, F.; Lu, S. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 2014, 177, 26–33. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Burlington, NJ, USA, 2010; Volume 105, pp. 47–82. ISBN 978-0-12-381023-6. [Google Scholar]
- Sharpley, A.N.; Ahuja, L.R.; Yamamoto, M.; Menzel, R.G. The kinetics of phosphorus desorption from soil. Soil Sci. Soc. Am. J. 1981, 45, 493–496. [Google Scholar] [CrossRef]
- Xu, G.; Sun, J.N.; Shao, H.B.; Chang, S.X. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng. 2014, 62, 54–60. [Google Scholar] [CrossRef]
- Morales, M.M.; Comerford, N.; Guerrini, I.A.; Falcão, N.P.S.; Reeves, J.B. Sorption and desorption of phosphate on biochar and biochar-soil mixtures. Soil Use Manag. 2013, 29, 306–314. [Google Scholar] [CrossRef]
- Peltovuori, T.; Soinne, H. Phosphorus solubility and sorption in frozen, air-dried and field-moist soil. Eur. J. Soil Sci. 2005, 56, 821–826. [Google Scholar] [CrossRef]
- Shukla, S.S.; Syers, J.K.; Williams, J.D.H.; Armstrong, D.E.; Harris, R.F. Sorption of Inorganic Phosphate by Lake Sediments 1. Soil Sci. Soc. Am. J. 1971, 35, 244–249. [Google Scholar] [CrossRef]
- Jugsujinda, A.; Krairapanond, A.; Patrick, W.H. Influence of extractable iron, aluminium, and manganese on P-sorption in flooded acid sulfate soils. Biol. Fert. Soils 1995, 20, 118–124. [Google Scholar] [CrossRef]
- Haynes, R.J. Effects of liming on phosphate availability in acid soils. Plant Soil 1982, 68, 289–308. [Google Scholar] [CrossRef]
- Mamo, M.; Ginting, D.; Renken, R.; Eghball, B. Stability of ion exchange resin under freeze-thaw or dry-wet environment. Soil Sci. Soc. Am. J. 2004, 68, 677–681. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, S.; He, J.; Gan, F.; Ho, Y.S. Adsorption characteristic studies of phosphorus onto laterite. Desalin. Water Treat. 2011, 25, 98–105. [Google Scholar] [CrossRef]
- Cui, H.J.; Wang, M.K.; Fu, M.L.; Ci, E. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. Soil Sediments 2011, 11, 1135–1141. [Google Scholar] [CrossRef]
- Lehrsch, G.A.; Sojka, R.E.; Carter, D.L.; Jolley, P.M. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Sci. Soc. Am. J. 1991, 55, 1401–1406. [Google Scholar] [CrossRef]
- Koponen, H.T.; Martikainen, P.J. Soil water content and freezing temperature affect freeze–thaw related N2O production in organic soil. Nutr. Cycl. Agroecosys. 2004, 69, 213–219. [Google Scholar] [CrossRef]
- Christensen, S.; Tiedje, J.M. Brief and vigorous N2O production by soil at spring thaw. Eur. J. Soil Sci. 1990, 41, 1–4. [Google Scholar] [CrossRef]
- Kastelan-Macan, M.; Petrovic, M. The role of fulvic acids in phosphorus sorption and release from mineral particles. Water Sci. Technol. 1996, 34, 259–265. [Google Scholar] [CrossRef]
Sample (n = 4) | pH (1:2.5 H2O) | SOC (g·kg−1) | TP (g·kg−1) | AP (mg·kg−1) | TN (g·kg−1) | AN (mg·kg−1) |
---|---|---|---|---|---|---|
Soil (n = 4) | 5.77 ± 0.09c | 51.03 ± 1.08c | 0.86 ± 0.02b | 43.05 ± 1.29c | 3.01 ± 0.01c | 120.25 ± 11.12b |
Biochar (n = 4) | 7.82 ± 0.07a | 169.11 ± 3.92a | 1.47 ± 0.13a | 78.96 ± 5.95a | 6.44 ± 0.30a | 156.43 ± 13.89a |
Biochar-amended soil (n = 4) | 6.89 ± 0.11b | 65.81 ± 1.85b | 0.95 ± 0.04ab | 62.79 ± 5.23b | 4.17 ± 0.31b | 132.79 ± 15.52ab |
Sample (n = 4) | Moisture Content | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
Qm (mg·kg−1) | KL (L·mg−1) | MBC (L·kg−1) | R2 | KF (L·mg−1) | 1/n | R2 | ||
Soil (n = 4) | MC1 | 847.74 ± 67.53cA | 0.032 ± 0.006aA | 27.23 ± 3.32bA | 0.75 | 131.02 ± 18.19bA | 0.34 ± 0.03aB | 0.70 |
MC2 | 1051.29 ± 20.98bA | 0.038 ± 0.002aA | 39.96 ± 1.37aA | 0.83 | 208.66 ± 11.36aA | 0.29 ± 0.01bB | 0.75 | |
MC3 | 1152.32 ± 65.98aA | 0.034 ± 0.003aA | 39.13 ± 2.25abA | 0.83 | 190.95 ± 9.53aA | 0.33 ± 0.02aA | 0.82 | |
Biochar-amended soil (n = 4) | MC1 | 817.82 ± 19.10bA | 0.020 ± 0.001aB | 16.47 ± 0.41bB | 0.65 | 79.35 ± 8.59bB | 0.41 ± 0.03aA | 0.74 |
MC2 | 979.21 ± 30.94aB | 0.026 ± 0.002bB | 25.12 ± 1.92aB | 0.77 | 133.31 ± 6.98aB | 0.35 ± 0.01bA | 0.80 | |
MC3 | 943.44 ± 63.36aB | 0.028 ± 0.003bB | 26.69 ± 1.21aB | 0.79 | 135.73 ± 9.01aB | 0.35 ± 0.02bA | 0.78 |
Source | df | Langmuir | Freundlich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Qm (mg·kg−1) | KL (L·mg−1) | MBC (L·kg−1) | KF (L·mg−1) | 1/n | |||||||
F | Sig. | F | Sig. | F | Sig. | F | Sig. | F | Sig. | ||
MC | 2 | 42.62 | 0 | 33.09 | 0 | 167.12 | 0 | 130.91 | 0 | 33.75 | 0 |
TrT | 1 | 99.97 | 0 | 84.65 | 0 | 448.50 | 0 | 285.28 | 0 | 42.93 | 0 |
FTCs | 4 | 1.43 | 0.23 | 1.38 | 0.25 | 0.90 | 0.47 | 1.01 | 0.41 | 2.17 | 0.08 |
MC × TrT | 2 | 4.99 | 0.01 | 0.30 | 0.74 | 12.23 | 0 | 9.49 | 0 | 0.03 | 0.97 |
MC × FTCs | 8 | 5.50 | 0 | 3.14 | 0.004 | 3.31 | 0.002 | 3.16 | 0.003 | 3.61 | 0.001 |
TrT × FTCs | 4 | 0.57 | 0.69 | 0.85 | 0.50 | 1.10 | 0.36 | 1.78 | 0.14 | 1.65 | 0.17 |
MC × TrT × FTCs | 8 | 4 | 0 | 2.03 | 0.05 | 2.25 | 0.03 | 1.26 | 0.28 | 1.15 | 0.34 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Choi, B.; Chen, X. Adsorption and Desorption of Phosphorus in Biochar-Amended Black Soil as Affected by Freeze-Thaw Cycles in Northeast China. Sustainability 2018, 10, 1574. https://doi.org/10.3390/su10051574
Han Y, Choi B, Chen X. Adsorption and Desorption of Phosphorus in Biochar-Amended Black Soil as Affected by Freeze-Thaw Cycles in Northeast China. Sustainability. 2018; 10(5):1574. https://doi.org/10.3390/su10051574
Chicago/Turabian StyleHan, Ying, Byoungkoo Choi, and Xiangwei Chen. 2018. "Adsorption and Desorption of Phosphorus in Biochar-Amended Black Soil as Affected by Freeze-Thaw Cycles in Northeast China" Sustainability 10, no. 5: 1574. https://doi.org/10.3390/su10051574
APA StyleHan, Y., Choi, B., & Chen, X. (2018). Adsorption and Desorption of Phosphorus in Biochar-Amended Black Soil as Affected by Freeze-Thaw Cycles in Northeast China. Sustainability, 10(5), 1574. https://doi.org/10.3390/su10051574