Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Data Sources
2.2. Emergy Analysis
2.3. Emergy Indices
3. Results
3.1. Emergy Evaluation of Jeju Island in 2015
3.2. Comparison Emergy Evaluations in 2005, 2015, and 2030
3.3. Sustainability Evaluations of Jeju Island in 2005, 2015, and 2030
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Cho, J. National economic effects of electricity sector: Using input-output analysis. GRI Rev. 2011, 13, 115–132. [Google Scholar]
- Mo, S.; Kim, C. Dynamic causal relationships between energy consumption and economic growth. Environ. Resour. Econ. Rev. 2003, 12, 327–346. [Google Scholar]
- Statistics Korea. Korea Statistical Yearbook; Statistics Korea: Seoul, Korea, 2016; Available online: http://english.seoul.go.kr/online-publication-%EF%BD%A22016-seoul-statistical-yearbook%EF%BD%A3/ (accessed on 20 May 2018).
- Ministry of Trade, Industry and Energy. Yearbook of Regional Energy Statistics of Korea; Ministry of Trade, Industry and Energy: Seoul, Korea, 2016. [Google Scholar]
- Kim, N.; Chang, Y. A study on the estimation of environmental carrying capacity and sustainability in national land using the emergy synthesis. J. Environ. Impact Assess. 2016, 25, 141–154. [Google Scholar] [CrossRef]
- Pamungkas, P.; Sulistyono, A.; Siswanto, V.K. Poteran carrying capacity for small island development. Procedia-Soc. Behav. Sci. 2016, 227, 761–769. [Google Scholar] [CrossRef]
- Swiader, M.; Szewranski, S.; Kazak, J.K. Foodshed as an example of preliminary research for conducting environmental carrying capacity analysis. Sustainability 2018, 10, 882. [Google Scholar] [CrossRef]
- Wang, W.; Zeng, W. Optimizing the regional industrial structure based on the environmental carrying capacity: An inexact fuzzy multi-objective programming model. Sustainability 2013, 5, 5391–5415. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Li, Z.; Jia, S.; Zhang, F.; Li, Y. Eco-efficiency evaluation of regional circular economy: A case study in Zengcheng, Guangzhou. Sustainability 2018, 10, 453. [Google Scholar] [CrossRef]
- Pang, M.; Zhang, L.; Ulgiati, S.; Wang, C. Ecological impacts of small hydropower in china: Insights from an emergy analysis of a case plant. Energy Policy 2015, 76, 112–122. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Zhang, J.; Wang, Y.; Wang, C.; Wang, R.; Li, F. Quantifying the emergy flow of an urban complex and the ecological services of a satellite town: A case study of Zengcheng, China. J. Clean. Prod. 2017, 163, S267–S276. [Google Scholar] [CrossRef]
- Chen, W.; Zhong, S.; Geng, Y.; Chen, Y.; Cui, X.; Wu, Q.; Pan, H.; Wu, R.; Sun, L.; Tian, X. Emergy based sustainability evaluation for Yunnan province, china. J. Clean. Prod. 2017, 162, 1388–1397. [Google Scholar] [CrossRef]
- Hossaini, N.; Hewage, K. Emergy accounting for regional studies: Case study of Canada and its provinces. J. Environ. Manag. 2013, 118, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Jeju Special Self-Governing Provincial Government. Jeju Statistical Yearbook; Jeju Special Self-Governing Provincial Government: Jeju, Korea, 2016.
- Korea Energy Economics Institute (KEEI). Yearbook of Regional Energy Statistics; Korea Energy Economics Institute (KEEI): Seoul, Korea, 2016. [Google Scholar]
- Ministry of Oceans and Fisheries (MOF). The Statistical Yearbook of Maritime Affairs and Fisheries; Ministry of Oceans and Fisheries (MOF): Seoul, Korea, 2016. [Google Scholar]
- Korea International Trade Association (KITA), 2017. Available online: http://stat.kita.net/stat/kts/prod/ProdItemImpExpList.screen?s_prod_code=69&s_prod_name (accessed on 20 May 2018).
- Kang, D. Emergy evaluation of the Korean economy and environment: Implications for the valuation of marine ecosystem services. J. Korean Soc. Mar. Environ. Energy 2015, 18, 102–115. [Google Scholar] [CrossRef]
- Asamoah, E.F.; Zhang, L.X.; Liang, S.; Pang, M.Y.; Tang, S.J. Emergy perspectives on the environmental performance and sustainability of small-scale gold production systems in ghana. Sustainability 2017, 9, 2034. [Google Scholar] [CrossRef]
- Brown, M.T.; McClanahan, T.R. Emergy analysis perspectives of Thailand and Mekong River dam proposals. Ecol. Model. 1996, 91, 105–130. [Google Scholar] [CrossRef]
- Yang, L.; Kong, F.-L.; Xi, M.; Li, Y.; Wang, S. Environmental economic value calculation and sustainability assessment for constructed rapid infiltration system based on emergy analysis. J. Clean. Prod. 2017, 167, 582–588. [Google Scholar] [CrossRef]
- Zuo, P.; Wan, S.W.; Qin, P.; Du, J.; Wang, H. A comparison of the sustainability of original and constructed wetlands in Yancheng biosphere reserve, china: Implications from emergy evaluation. Environ. Sci. Policy 2004, 7, 329–343. [Google Scholar] [CrossRef]
- Odum, H.; Brown, M.; Brandt-Williams, S. Folio# 1: Introduction and global budget. In Handbook of Emergy Evaluation: A Compendium of Data for Emergy Computation Issued in a Series of Folios; Center for Environmental Policy, Univ. of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Buenfil, A.A. Emergy Evaluation of Water. PhD Thesis, Univ. of Florida, Gainesville, FL, USA, 2001; p. 248. [Google Scholar]
- Romitelli, M.S. Emergy analysis of the new Bolivia-Brazil gas pipeline. In Emergy Synthesis: Theory and Application of the Emergy Methodology; Brown, M.T., Ed.; Center of Environmental Policy, Univ. of Florida: Gainesville, FL, USA, 2000; pp. 53–69. [Google Scholar]
- Brown, M.T.; Ulgiati, S. Understanding the global economic crisis: A biophysical perspective. Ecol. Model. 2011, 223, 4–13. [Google Scholar] [CrossRef]
- Liu, G.Y.; Yang, Z.F.; Chen, B.; Ulgiati, S. Monitoring trends of urban development and environmental impact of Beijing, 1999–2006. Sci. Total Environ. 2011, 409, 3295–3308. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.J.; Sweeney, S.; Brown, M.T. Computing the unit emergy value of crustal elements. Emergy Synth. 2007, 4, 16.11–16.12. [Google Scholar]
- Ascione, M.; Campanella, L.; Cherubini, F.; Ulgiati, S. Environmental driving forces of urban growth and development: An emergy-based assessment of the city of Rome, Italy. Landsc. Urban Plan. 2009, 93, 238–249. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Cao, K.; Feng, X. Distribution of emergy indices and its application. Energy Fuels 2007, 21, 1717–1723. [Google Scholar] [CrossRef]
Emergy Category | Item |
---|---|
Renewable Energy (RE) | Sun, wind, rain (chemical potential), waves |
Indigenous Renewable Energy (IR) | Agricultural production, fishery production, water extraction, forest extraction, electricity use |
Nonrenewable Source use from within a System (NR) | Topsoil losses |
Imports (IM) | Fuels; food and agricultural products; livestock, meat, and fish; plastics and synthetic rubber; chemicals; finished products; machinery and transportation equipment; electricity use; tourism |
Exports (EX) | Food and agricultural products; livestock, meat, and fish; plastics and synthetic rubber; chemicals; finished products; machinery and transportation equipment |
No. | Item | Flow | Unit | UEV | UEV Source a | Emergy (sej/year) % c |
---|---|---|---|---|---|---|
Renewable energy | ||||||
1 | Sun | 1.33 × 1019 | J/year | 1 | 1 | 1.33 × 1019 |
2 | Wind | 1.55 × 1016 | J/year | 2.45 × 103 | 1 | 3.80 × 1019 |
3 | Rain, chemical potential | 1.93 × 1016 | J/year | 3.05 × 104 | 1 | 5.89 × 1020 |
4 | Wave | 4.76 × 1016 | J/year | 5.10 × 104 | 1 | 2.43 × 1021 |
max b | 2.43 × 1021 | |||||
Indigenous renewable energy | ||||||
5 | Fisheries production | 2.12 × 108 | J/year | 3.36 × 106 | 2 | 7.12 × 1014 (0.0001%) |
6 | Agricultural production | 8.99 × 109 | J/year | 3.36 × 105 | 2 | 3.02 × 1015 (0.0003%) |
7 | Water extraction | 7.69 × 1014 | J/year | varies d | 1, 3 | 1.84 × 1020 (17%) |
8 | Electricity use | 3.06 × 1015 | J/year | 2.86 × 105 | 4 | 8.76 × 1020 (81%) |
9 | Forest extraction | 9.82 × 1014 | J/year | 2.21 × 104 | 5 | 2.17 × 1019 (2%) |
sum | 1.08 × 1021 | |||||
Nonrenewable sources from within system | ||||||
10 | Topsoil losses | 1.61 × 1015 | J/year | 1.23 × 104 | 6 | 1.98 × 1019 (100%) |
sum | 1.98 × 1019 | |||||
Imports | ||||||
11 | Fuels | 1.62 × 1013 | J/year | 8.36 × 104 | 7 | 1.35 × 1018 (0.01%) |
12 | Food & agricultural products | 1.41 × 1015 | J/year | 1.52 × 105 | 8 | 2.14 × 1020 (1%) |
13 | Livestock, meat, fish | 3.02 × 1014 | J/year | 2.87 × 106 | 8 | 8.67 × 1020 (5%) |
14 | Plastics and synthetic rubber | 1.31 × 107 | g/year | 1.40 × 1010 | 8 | 1.84 × 1017 (0.001%) |
15 | Chemicals | 3.30 × 109 | mixed | 4.20 × 109 | 8 | 1.39 × 1019 (0.1%) |
16 | Finished products | 1.81 × 1010 | mixed | 3.89 × 109 | 8 | 7.03 × 1019 (0.4%) |
17 | Machinery and transp. equipment | 1.19 × 1010 | g/year | 2.22 × 1010 | 8 | 2.65 × 1020 (2%) |
18 | Electricity | 1.72 × 1015 | J/year | 2.86 × 105 | 4 | 4.93 × 1020 (3%) |
19 | Tourism | 4.10 × 109 | $/year | 3.81 × 1012 | 9 | 1.56 × 1022 (89%) |
sum | 1.75 × 1022 | |||||
Exports | ||||||
20 | Food and agricultural products | 8.56 × 1013 | J/year | 1.31 × 105 | 8 | 1.12 × 1019 (6%) |
21 | Livestock, meat, fish | 1.44 × 1013 | J/year | 8.71 × 106 | 8 | 1.25 × 1020 (71%) |
22 | Plastics and synthetic rubber | 1.20 × 109 | g/year | 1.29 × 1010 | 8 | 1.54 × 1019 (9%) |
23 | Chemicals | 7.50 × 107 | mixed | 4.71 × 109 | 8 | 3.53 × 1017 (0.2%) |
24 | Finished products | 1.38 × 109 | mixed | 7.75 × 109 | 8 | 1.07 × 1019 (6%) |
25 | Machinery and transp. equipment | 5.87 × 108 | g/year | 2.22 × 1010 | 5 | 1.30 × 1019 (7%) |
sum | 1.76 × 1020 |
Item | 2005 | 2015 | 2030 | 2015/2005 | 2030/2015 |
---|---|---|---|---|---|
Renewable energy | |||||
Sun | 1.46 × 1019 | 1.33 × 1019 | 1.16 × 1019 | 0.91 | 0.87 |
Wind | 6.47 × 1019 | 3.80 × 1019 | 1.77 × 1019 | 0.59 | 0.47 |
Rain, chemical potential | 4.30 × 1020 | 5.89 × 1020 | 9.56 × 1020 | 1.37 | 1.62 |
Wave | 2.43 × 1021 | 2.43 × 1021 | 2.43 × 1021 | 1.00 | 1.00 |
max | 2.43 × 1021 | 2.43 × 1021 | 2.43 × 1021 | 1.00 | 1.00 |
Indigenous renewable energy | |||||
Fisheries production | 5.91 × 1014 | 7.12 × 1014 | 9.46 × 1014 | 1.20 | 1.33 |
Agricultural production | 2.90 × 1015 | 3.02 × 1015 | 3.21 × 1015 | 1.04 | 1.06 |
Water extraction | 5.30 × 1019 | 1.84 × 1020 | 1.43 × 1021 | 3.47 | 7.77 |
Electricity use | 4.78 × 1020 | 8.76 × 1020 | 3.20 × 1021 | 1.83 | 3.65 |
Forest extraction | 2.01 × 1018 | 2.17 × 1019 | 1.38 × 1021 | 10.81 | 63.78 |
sum | 5.33 × 1020 | 1.08 × 1021 | 6.01 × 1021 | 2.03 | 5.56 |
Nonrenewable sources from within system | |||||
Topsoil losses | 1.91 × 1019 | 1.98 × 1019 | 2.09 × 1019 | 1.04 | 1.06 |
sum | 1.91 × 1019 | 1.98 × 1019 | 2.09 × 1019 | 1.04 | 1.06 |
Imports | |||||
Fuels | 2.88 × 1017 | 1.35 × 1018 | 1.80 × 1019 | 4.69 | 13.33 |
Food and agricultural products | 1.77 × 1020 | 2.14 × 1020 | 2.86 × 1020 | 1.21 | 1.34 |
Livestock, meat, fish | 5.02 × 1020 | 8.67 × 1020 | 2.04 × 1021 | 1.73 | 2.35 |
Plastics and synthetic rubber | 5.51 × 1018 | 1.84 × 1017 | 3.17 × 1015 | 0.03 | 0.02 |
Chemicals | 6.57 × 1018 | 1.39 × 1019 | 4.58 × 1019 | 2.21 | 3.29 |
Finished products | 3.82 × 1019 | 7.03 × 1019 | 1.84 × 1020 | 1.84 | 2.62 |
Machinery and transp. equipment | 5.09 × 1019 | 2.65 × 1020 | 4.28 × 1021 | 5.21 | 16.15 |
Electricity | 3.17 × 1020 | 4.93 × 1020 | 0 | 1.56 | 0 |
Tourism | 7.26 × 1021 | 1.56 × 1022 | 5.28 × 1022 | 2.15 | 3.38 |
sum | 8.36 × 1021 | 1.75 × 1022 | 5.96 × 1022 | 2.09 | 3.41 |
Exports | |||||
Food & agricultural products | 1.14 × 1019 | 1.12 × 1019 | 1.09 × 1019 | 0.98 | 0.97 |
Livestock, meat, fish | 1.36 × 1020 | 1.25 × 1020 | 1.10 × 1020 | 0.92 | 0.88 |
Plastics and synthetic rubber | 3.87 × 1017 | 1.54 × 1019 | 1.25 × 1022 | 39.79 | 811.69 |
Chemicals | 1.79 × 1017 | 3.53 × 1017 | 1.03 × 1018 | 1.97 | 2.92 |
Finished products | 3.71 × 1017 | 1.07 × 1019 | 4.60 × 1021 | 28.84 | 429.91 |
Machinery and transp. equipment | 1.56 × 1019 | 1.30 × 1019 | 9.93 × 1018 | 0.83 | 0.76 |
sum | 1.64 × 1020 | 1.76 × 1020 | 1.72 × 1022 | 1.07 | 97.73 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, C.; Kim, C.; Kim, S.; Suh, K. Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island. Sustainability 2018, 10, 1681. https://doi.org/10.3390/su10051681
Jung C, Kim C, Kim S, Suh K. Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island. Sustainability. 2018; 10(5):1681. https://doi.org/10.3390/su10051681
Chicago/Turabian StyleJung, Chanhoon, Chanwoo Kim, Solhee Kim, and Kyo Suh. 2018. "Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island" Sustainability 10, no. 5: 1681. https://doi.org/10.3390/su10051681
APA StyleJung, C., Kim, C., Kim, S., & Suh, K. (2018). Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island. Sustainability, 10(5), 1681. https://doi.org/10.3390/su10051681