Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Emergy Approach
2.3.1. Emergy Theory
2.3.2. Emergy Indices
- (1)
- Aggregate Indices
- (2)
- Efficiency Indices
- (3)
- Stress Indices
- (4)
- Comprehensive Indices
2.4. Index Decomposition
3. Results
3.1. Emergy Stream Analysis
3.2. Emergy Index Analysis
3.3. Driving Factor Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Supplementary File 1Author Contributions
Acknowledgments
Conflicts of Interest
References
- Decker, E.H.; Elliott, S.; Smith, F.A. Energy and material flow through the urban ecosystem. Annu. Rev. Energy Environ. 2000, 25, 685–740. [Google Scholar] [CrossRef]
- Hawkins, T.; Hendrickson, C.; Higgins, C. A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis. Environ. Sci. Technol. 2007, 41, 1024. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.P.; Hyman, B. Energy and material flow models for the US steel industry. Energy 2014, 26, 137–159. [Google Scholar] [CrossRef]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098. [Google Scholar] [CrossRef] [PubMed]
- Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2014, 31, 55–71. [Google Scholar] [CrossRef]
- Valente, C.; Spinelli, R.; Hillring, B.G. LCA of environmental and socio-economic impacts related to wood energy production in alpine conditions: Valle di Fiemme (Italy). J. Clean. Prod. 2011, 19, 1931–1938. [Google Scholar] [CrossRef] [Green Version]
- Szigeti, C.; Toth, G.; Szabo, D.R. Decoupling—Shifts in ecological footprint intensity of nations in the last decade. Ecol. Indic. 2017, 72, 111–117. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.; Yang, J. The ecological footprint evaluation of low carbon campuses based on life cycle assessment: A case study of Tianjin, China. J. Clean. Prod. 2017, 144. [Google Scholar] [CrossRef]
- Wiedmann, T.; Barrett, J. A Review of the Ecological Footprint Indicator—Perceptions and Methods. Sustainability 2010, 2, 1645–1693. [Google Scholar] [CrossRef] [Green Version]
- Odum, H.T. Self-organization, transformity, and information. Science 1988, 242, 1132. [Google Scholar] [CrossRef] [PubMed]
- Scienceman, D.M. Energy and emergy. In Enviromental Economics; Pollet, G., Murota, T., Eds.; Roland Leimgruber: Geneva, Switzerland, 1987; pp. 257–276. [Google Scholar]
- Brown, M.T.; Buranakarn, V. Emergy indices and ratios for sustainable material cycles and recycle options. Resour. Conserv. Recycl. 2003, 38, 1–22. [Google Scholar] [CrossRef]
- Brown, M.T.; Herendeen, R.A. Embodied energy analysis and EMERGY analysis: A comparative view. Ecol. Econ. 19, 219–235. [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecol. Eng. 1997, 9, 51–69. [Google Scholar] [CrossRef]
- Brown, M.T.; Ulgiati, S. Emergy evaluations and environmental loading of electricity production systems. J. Clean. Prod. 2002, 10, 321–334. [Google Scholar] [CrossRef]
- Hau, J.L.; Bakshi, B.R. Promise and problems of emergy analysis. Ecol. Model. 2004, 178, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Odum, H.T. Environmental Accounting: Emergy and Decision Making; John Wiley: New York, NY, USA, 1996. [Google Scholar]
- Odum, H.T. Environment, Power, and Society for the Twenty-First Century: The Hierarchy of Energy; Columbia University Press: New York, NY, USA, 2007. [Google Scholar]
- Odum, H.T.; Brown, M.T.; Brandt-Williams, S. Handbook of Emergy Evaluation a Compendium of Data for Emergy Computation Issued in a Series of Folios; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Ulgiati, S.; Brown, M.T.; Bastianoni, S.; Marchettini, N. Emergy-based indices and ratios to evaluate the sustainable use of resource. Ecol. Eng. 1995, 5, 519–531. [Google Scholar] [CrossRef]
- Sciubba, E.; Ulgiati, S. Emergy and exergy analyses: Complementary methods or irreducible ideological options? Energy 2005, 30, 1953–1988. [Google Scholar] [CrossRef]
- Ulgiati, S.; Odum, H.T.; Bastianoni, S. Emergy use, environmental loading and sustainability an emergy analysis of Italy. Ecol. Model. 1994, 73, 215–268. [Google Scholar] [CrossRef]
- Odum, H.T.; Brown, M.T.; Brandt-Williams, S. Folio #1: Introduction and Global Budget. In Handbook of Emergy Evaluation A Compendium of Data for Emergy Computation Issued in a Series of Folios; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Brown, M.T.; Campbell, D.E.; Vilbiss, C.D.; Ulgiati, S. The geobiosphere emergy baseline: A synthesis. Ecol. Model. 2016, 339, 92–95. [Google Scholar] [CrossRef]
- Odum, H.T. Folio #2: Emergy of Global Processes. In Handbook of Emergy Evaluation A Compendium of Data for Emergy Computation Issued in a Series of Folios; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2000. [Google Scholar]
- Brown, M.T.; Bardi, E. Folio #3: Emergy of Ecosystems. In Handbook of Emergy Evaluation A Compendium of Data for Emergy Computation Issued in a Series of Folios; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2001. [Google Scholar]
- Brandt-Williams, S. Folio #4: Emergy of Florida Agriculture. In Handbook of Emergy Evaluation A Compendium of Data for Emergy Computation Issued in a Series of Folios; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2002. [Google Scholar]
- Kangas, R.C. Folio #5: Emergy of Landforms. In Handbook of Emergy Evaluation A Compendium of Data for Emergy Computation Issued in a Series of Folios; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2002. [Google Scholar]
- Campbell, D.E.; Wigand, C.; Schuetz, N.B. The Real Wealth Purchased in a Fish Dinner. In Emergy Synthesis 8: Theory and Applications of the Emergy Methodology; Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2015. [Google Scholar]
- Fonseca, A.M.P.; Marques, C.A.F.; Pinto-Correia, T. Emergy analysis of a silvo-pastoral system, a case study in southern Portuga. Agrofor. Syst. 2015, 90, 1–21. [Google Scholar] [CrossRef]
- Li, L.; Lu, H.; Tilley, D.R.; Qiu, G.; B, L.; R, D.K.; Jamali-Zghal, N. Emergy assessment of the benefits of closed-loop recycling accounting for material losses. Ecol. Model. 2015, 315, 377–387. [Google Scholar] [CrossRef]
- Liu, C.; Shi, X.; Qu, L.; Li, B. Comparative Analysis for the Urban Metabolic Differences of Two Types of Cities in the Resource-Dependent Region Based on Emergy Theory. Sustainability 2016, 8, 635. [Google Scholar] [CrossRef]
- Ang, B.W.; Zhang, F.Q. A survey of index decomposition analysis in energy and environmental studies. Energy 2014, 25, 1149–1176. [Google Scholar] [CrossRef]
- Weinzettel, J.; Kovanda, J. Structural Decomposition Analysis of Raw Material Consumption. J. Ind. Ecol. 2011, 15, 893–907. [Google Scholar] [CrossRef]
- Xu, X.; Ang, B. Index decomposition analysis applied to CO2, emission studies. Ecol. Econ. 2013, 93, 313–329. [Google Scholar] [CrossRef]
- Zhang, F.Q.; Ang, B.W. Methodological issues in cross-country/region decomposition of energy and environment indicators. Energy Econ. 2001, 23, 179–190. [Google Scholar] [CrossRef]
- Seydehme, J.; Lv, G.H.; Nurmemet, I.; Aishan, T.; Abliz, A.; Sawut, M.; Abliz, A.; Eziz, M. Model Prediction of Secondary Soil Salinization in the Keriya Oasis, Northwest China. Sustainability 2018, 10, 656. [Google Scholar] [CrossRef]
- Wei, H.; Liu, H.; Xu, Z.; Ren, J.; Lu, N.; Fan, W.; Zhang, P.; Dong, X. Linking ecosystem services supply, social demand and human well-being in a typical mountain-oasis-desert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Martín-Martín, M.; Guerrera, F.; Martínez-Valderrama, J.; Marín, P.R. A feasible methodology for groundwater resource modelling for sustainable use in sparse-data drylands: Application to the Amtoudi Oasis in the northern Sahara. Sci. Total Environ. 2018, 630. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Xie, Y.; Ma, J.; Zhang, W. The critical role of local policy effects in arid watershed groundwater resources sustainability: A case study in the Minqin oasis, China. Sci. Total Environ. 2017, 601, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, X.; Heck, P. Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis. Sustainability 2014, 6, 8618–8638. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Geng, Y.; Hung-Suck, P.; Dong, H.; Dong, L. An emergy-based hybrid method for assessing industrial symbiosis ofan industrial park. J. Clean. Prod. 2016, 114, 132–140. [Google Scholar] [CrossRef]
- Sun, L.; Dong, H.; Geng, Y.; Li, Z.; Liu, Z. Uncovering driving forces on urban metabolism—A case of Shenyang. J. Clean. Prod. 2016, 114, 171–179. [Google Scholar] [CrossRef]
- Tian, X.; Geng, Y.; Ulgiati, S. An emergy and decomposition assessment of China-Japan trade: Driving forces and environmental imbalance. J. Clean. Prod. 2017, 141, 359–369. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, Y.; Ulgiati, S.; Park, H.S.; Tsuyoshi, F. Uncovering key factors influencing one industrial park's sustainability: A combined evaluation method of emergy analysis and index decomposition analysis. J. Clean. Prod. 2015, 114, 141–149. [Google Scholar] [CrossRef]
- Qu, L.; Shi, X.; Liu, C.; Yuan, Y. An Emergy-Based Hybrid Method for Assessing Sustainability of the Resource-Dependent Region. Sustainability 2017, 9, 153. [Google Scholar] [CrossRef]
- González-Mejía, A.M.; Ma, X.C. The Emergy Perspective of Sustainable Trends in Puerto Rico from 1960 to 2013. Ecol. Econ. 2017, 133, 11–22. [Google Scholar] [CrossRef]
- Hotan Government Network. Available online: http://www.xjht.gov.cn/article/show.php?itemid=5818 (accessed on 22 April 2018).
- Hotan Bureau of Statistics. Hotan Statistics Yearbook, 2006–2016; China Statistics Press: Beijing, China, 2016.
- Huang, S.L.; Hsu, W.L. Materials flow analysis and emergy evaluation of Taipei’s urban construction. Landsc. Urban Plan. 2003, 63, 61–74. [Google Scholar] [CrossRef]
- Ulgiati, S.; Brown, M.T. Monitoring patterns of sustainability in natural and man-made ecosystems. Ecol. Model. 1998, 108, 23–36. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of Population Growth. Science 1971, 171, 1212. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.L. The Ultimate Resource; Princeton University Press: Princeton, NJ, USA, 1981. [Google Scholar]
- Yan, M.C.; Odum, H.T. A study on emergy evaluation and sustainable development of Tibetan eco-economic system. J. Nat. Resour. 1998, 13, 20–29. [Google Scholar] [CrossRef]
- Siche, J.R.; Agostinho, F.; Ortega, E. Sustainability of nations by indices: Comparative study between environmental sustainability index, ecological footprint and the emergy performance indices. Ecol. Econ. 2008, 66, 628–637. [Google Scholar] [CrossRef]
- Liu, G.; Brown, M.T.; Casazza, M. Enhancing the Sustainability Narrative through a Deeper Understanding of Sustainable Development Indicators. Sustainability 2017, 9, 1078. [Google Scholar] [CrossRef]
Flows | Items | Units | Transformity (Sej/Unit) | Reference | |
---|---|---|---|---|---|
Renewable resources (R) | Renewable environmental resources (R0) | Solar energy | J | 1 | [17] |
Wind energy | J | 2.52 × 103 | [19] | ||
Chemical energy of rainwater | J | 3.06 × 104 | [19] | ||
Potential energy of rainwater | J | 1.76 × 104 | [17] | ||
Rotational energy of the earth | J | 5.71 × 104 | [19] | ||
Indigenous products (R1) | Farming products | J | 4.44 × 104–1.45 × 106 | [17] | |
Forest products | J | 7.39 × 104–1.43 × 105 | [17] | ||
Livestock products | J | 2.86 × 106 | [17] | ||
Aquatic products | J | 3.36 × 106 | [17] | ||
Non-renewable resources (N) | Non-renewable resources (N0) | Net losses of the surface soil layer | J | 1.24 × 105 | [19] |
Locally produced non-renewable resources (N1) | Raw coal | J | 6.72 × 104 | [17] | |
Cement | g | 5.54 × 1010 | [17] | ||
Steel | g | 2.35 × 109 | [17] | ||
Electric power | J | 2.69 × 105 | [17] | ||
Tap water | g | 1.29 × 1013 | [17] | ||
Import emergy (IMP) | Goods and services | $ | 9.37 × 1012 | [19] | |
Tourism income | $ | 1.66 × 1012 | [15] | ||
Money | $ | 9.37 × 1012 | [19] | ||
Export emergy (EXP) | Goods and services | $ | 6.34 × 1012 | [19] |
Variable | Units | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | ×1022 sej | 6.99 | 7.02 | 7.06 | 7.16 | 7.23 | 7.23 | 7.31 | 7.41 | 7.51 | 7.61 | 8.85 |
R0 | ×1022 sej | 5.97 | 5.97 | 5.97 | 5.97 | 6.00 | 5.97 | 5.97 | 5.97 | 5.97 | 5.97 | 5.97 |
R1 | ×1022 sej | 1.02 | 1.05 | 1.10 | 1.19 | 1.23 | 1.27 | 1.35 | 1.44 | 1.54 | 1.64 | 2.89 |
N | ×1024 sej | 3.31 | 5.10 | 4.93 | 8.20 | 6.06 | 5.64 | 1.01 | 1.17 | 1.32 | 1.36 | 1.32 |
N0 | ×1022 sej | 5.27 | 5.28 | 5.28 | 5.28 | 4.79 | 4.80 | 4.80 | 4.80 | 4.80 | 4.80 | 4.80 |
N1 | ×1024 sej | 3.26 | 5.05 | 4.88 | 8.15 | 6.01 | 5.59 | 1.01 | 1.16 | 1.31 | 1.36 | 1.32 |
IMP | ×1023 sej | 1.45 | 1.30 | 2.22 | 3.05 | 4.53 | 5.70 | 7.27 | 8.28 | 8.72 | 9.87 | 1.31 |
EXP | ×1019 sej | 1.79 1 | 1.79 | 3.31 | 3.32 | 3.25 | 4.46 | 2.70 | 4.38 | 6.65 | 4.93 | 4.74 |
Expression | Unit | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U | U = R + N + IMP | ×1024 sej | 3.53 | 5.36 | 5.22 | 8.58 | 6.59 | 6.28 | 10.9 | 12.6 | 14.1 | 14.7 | 14.6 |
EYR | U/IMP | 24.386 | 28.275 | 23.528 | 28.076 | 14.550 | 11.024 | 15.051 | 15.199 | 16.184 | 14.879 | 11.180 | |
EG | U/GDP | ×1015 sej/$ | 5.86 | 8.06 | 7.08 | 9.69 | 6.71 | 5.70 | 8.79 | 9.00 | 9.25 | 8.48 | 7.56 |
ED | U/Area | ×1013 sej/m2 | 1.42 | 2.16 | 2.11 | 3.46 | 2.64 | 2.53 | 4.41 | 5.08 | 5.69 | 5.92 | 5.89 |
EP | U/population | ×1018 sej/inh. | 1.93 | 2.89 | 2.77 | 4.49 | 3.37 | 3.08 | 5.27 | 5.93 | 6.55 | 6.51 | 6.29 |
ELR | (N + IMP)/R | 49.46 | 75.39 | 72.94 | 118.81 | 90.10 | 85.80 | 148.59 | 168.97 | 186.95 | 192.02 | 164.13 | |
ESI | EYR/ELR | 0.493 | 0.375 | 0.323 | 0.236 | 0.161 | 0.128 | 0.101 | 0.090 | 0.087 | 0.077 | 0.068 | |
General information | |||||||||||||
GDP($) | ×108 $ | 6.02 | 6.65 | 7.38 | 8.85 | 9.82 | 1.1 | 1.24 | 1.4 | 1.53 | 1.73 | 1.93 | |
Area (m2) | ×1011 m2 | 2.48 | 2.48 | 2.48 | 2.48 | 2.49 | 2.48 | 2.48 | 2.48 | 2.48 | 2.48 | 2.48 | |
Population (inh.) | inh. | 1,825,127 | 1,857,563 | 1,883,894 | 1,910,054 | 1,955,836 | 2,039,601 | 2,075,811 | 2,123,377 | 2,154,462 | 2,258,200 | 2,324,287 |
Year | ΔC | ΔE | ΔG | ΔPOP | ΔU |
---|---|---|---|---|---|
2006 | −2.57 × 1022 | 1.42 × 1024 | 3.60 × 1023 | 7.72 × 1022 | 1.84 × 1024 |
2007 | 3.93 × 1022 | −7.27 × 1023 | 4.76 × 1023 | 7.45 × 1022 | −1.37 × 1023 |
2008 | −4.85 × 1022 | 2.17 × 1024 | 1.14 × 1024 | 9.33 × 1022 | 3.35 × 1024 |
2009 | 2.63 × 1023 | −3.03 × 1024 | 6.02 × 1023 | 1.79 × 1023 | −1.99 × 1024 |
2010 | 1.54 × 1023 | −1.20 × 1024 | 4.68 × 1023 | 2.70 × 1023 | −3.08 × 1023 |
2011 | −2.21 × 1023 | 3.86 × 1024 | 8.74 × 1023 | 1.48 × 1023 | 4.66 × 1024 |
2012 | −8.14 × 1021 | 2.83 × 1023 | 1.11 × 1024 | 2.66 × 1023 | 1.65 × 1024 |
2013 | −5.71 × 1022 | 4.14 × 1023 | 9.71 × 1023 | 1.94 × 1023 | 1.52 × 1024 |
2014 | 8.34 × 1022 | −1.33 × 1024 | 1.15 × 1024 | 6.77 × 1023 | 5.76 × 1023 |
2015 | 3.54 × 1023 | −2.03 × 1024 | 1.19 × 1024 | 4.23 × 1023 | −6.81 × 1022 |
Total | 5.33 × 1023 | −1.69 × 1023 | 8.33 × 1024 | 2.40 × 1024 | 1.11 × 1025 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.; Yang, D.; Huo, J.; Xia, F.; Zhang, Z. Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis. Sustainability 2018, 10, 1856. https://doi.org/10.3390/su10061856
Chang T, Yang D, Huo J, Xia F, Zhang Z. Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis. Sustainability. 2018; 10(6):1856. https://doi.org/10.3390/su10061856
Chicago/Turabian StyleChang, Ting, Degang Yang, Jinwei Huo, Fuqiang Xia, and Zhiping Zhang. 2018. "Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis" Sustainability 10, no. 6: 1856. https://doi.org/10.3390/su10061856
APA StyleChang, T., Yang, D., Huo, J., Xia, F., & Zhang, Z. (2018). Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis. Sustainability, 10(6), 1856. https://doi.org/10.3390/su10061856