An Experimental Channel Capacity Analysis of Cooperative Networks Using Universal Software Radio Peripheral (USRP)
Abstract
:1. Introduction
- Design and implementation of a complete-functional testbed framework based on USRP and LabVIEW to support the cooperative communication, which includes a signal processing for the physical layer implementation of cooperative communication.
- Different modulation schemes are used to verify the performance of the system.
- Capacity analysis of cooperative network using LabVIEW and NI-USRP based test-bed.
- Extensive experiments are performed with and without obstacles in the lab environment.
- Determine the optimal position of the relay placement in the cooperative system.
2. Related Work
3. System Model
3.1. Source Operation
3.2. Relay Operation
3.3. Optimal Position of the Relay
3.4. Transmission Protocols
3.5. Input-Output Equations
3.6. Receiver
4. Experimental Setup
5. Methodology
6. Results and Discussion
6.1. Experimental Analysis of CC over DC Without Obstacle
6.2. Experimental Analysis of CC over DC with Obstacle
6.3. Optimal Position of the Relay without and with Obstacle
- Case 1: Capacity gain of Position A over B
- Case 2: Capacity gain of Position A over C
- Case 3: Capacity gain of Position B over C
7. Conclusions
8. Future Recommendations
Author Contributions
Conflicts of Interest
References
- Cover, T.; Gamal, A.E. Capacity theorems for the relay channel. IEEE Trans. Inf. Theory 1979, 25, 572–584. [Google Scholar] [CrossRef]
- Bletsas, A.; Khisti, A.; Reed, D.P.; Lippman, A. A simple cooperative diversity method based on network path selection. IEEE J. Sel. Areas Commun. 2006, 24, 659–672. [Google Scholar] [CrossRef]
- Laneman, J.N.; Wornell, G.W.; Tse, D.N. An efficient protocol for realizing cooperative diversity in wireless networks. In Proceedings of the 2001 IEEE International Symposium on Information Theory, Washington, DC, USA, 29 June 2001; p. 294. [Google Scholar]
- Hunter, T.E.; Sanayei, S.; Nosratinia, A. Outage analysis of coded cooperation. IEEE Trans. Inf. Theory 2006, 52, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Kramer, G.; Gastpar, M.; Gupta, P. Cooperative strategies and capacity theorems for relay networks. IEEE Trans. Inf. Theory 2005, 51, 3037–3063. [Google Scholar] [CrossRef]
- Laneman, J.N.; Tse, D.N.; Wornell, G.W. Cooperative diversity in wireless net-works: Efficient protocols and outage behavior. IEEE Trans. Inf. Theory 2004, 50, 3062–3080. [Google Scholar] [CrossRef]
- Host-Madsen, A. Capacity bounds for cooperative diversity. IEEE Trans. Inf. Theory 2006, 52, 1522–1544. [Google Scholar] [CrossRef]
- Khan, I.; Rajatheva, N.; Tanoli, S.; Jan, S. Performance analysis of cooperative network over nakagami and rician fading channels. Int. J. Commun. Syst. 2014, 27, 2703–2722. [Google Scholar] [CrossRef]
- Kumar, N.; Bhatia, V. Outage probability and average channel capacity of amplify-and-forward in conventional cooperative communication networks over rayleigh fading channels. Wirel. Pers. Commun. 2016, 88, 943–951. [Google Scholar] [CrossRef]
- Korakis, T.; Tao, Z.; Makda, S.; Gitelman, B.; Panwar, S. To Serve is to Receive Implications of Cooperation in a Real Environment; Proceedings of the Networking: Atlanta, GA, USA, 2007. [Google Scholar]
- Zetterberg, P.; Mavrokefalidis, C.; Lalos, A.S.; Matigakis, E. Experimental investigation of cooperative schemes on a real-time dsp-based testbed. EURASIP J. Wirel. Commun. Netw. 2009, 1, 368752. [Google Scholar] [CrossRef]
- Gnu Radio. Available online: http://www.gnu.org/software/gnuradio (accessed on 17 May 2018).
- Usrp Family Brochure. Available online: http://www.ettus.com/downloads/er_broch_trifold_v5b.pdf (accessed on 17 May 2018).
- Bletsas, A.; Lippman, A. Implementing cooperative diversity antenna arrays with commodity hardware. IEEE Commun. Mag. 2006, 44, 33–40. [Google Scholar] [CrossRef]
- Wang, H.; Tian, S.; Gao, X.; Wu, L.; Chen, G. Approximation Designs for Cooperative Relay Deployment in Wireless Networks. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 2270–2275. [Google Scholar]
- Building a Cooperative Communications System. Available online: http://warp.rice.edu/trac/attachment/wiki/JSAC_CooperativeCo/Rice_JSAC_Cooperative Comm.pdf (accessed on 17 May 2018).
- Wireless Open-Access Research Platform. Available online: http://warp.rice. edu/index (accessed on 17 May 2018).
- Katti, S.; Gollakota, S.; Katabi, D. Embracing wireless interference: Analog network coding. ACM SIGCOMM Comput. Commun. Rev. 2007, 37, 397–408. [Google Scholar] [CrossRef]
- Katabi, D.; Gollakota, S. Zigzag decoding: Combating hidden terminals in wireless networks. In Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, New York, NY, USA, 17–22 August 2008; pp. 159–170. [Google Scholar]
- Katti, S.; Katabi, D.; Balakrishnan, H.; Medard, M. Symbol-level network coding for wireless mesh networks. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 401–412. [Google Scholar] [CrossRef]
- Zhang, X.; Shin, K.G. Cooperation without synchronization: Practical cooperative relaying for wireless networks. IEEE Trans. Mob. Comput. 2015, 14, 937–950. [Google Scholar] [CrossRef]
- Kim, W.; Khan, O.; Truong, K.T.; Choi, S.-H.; Grant, R.; Wright, H.K.; Mandke, K.; Daniels, R.C.; Heath, R.W., Jr.; Nettles, S.M. An experimental evaluation of rate adaptation for multi-antenna systems. In Proceedings of the 2009 IEEE INFOCOM, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 2313–2321. [Google Scholar]
- Omar, M.S.; Raza, S.A.; Kabir, S.H.; Hussain, M.; Hassan, S.A. Experimental implementation of cooperative transmission range extension in indoor environments. In Proceedings of the 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, 24–28 August 2015; pp. 1312–1317. [Google Scholar]
- Bradford, G.J. A Framework for Implementation and Evaluation of Cooperative Diversity in Software-Defned Radio. Master’s Thesis, University of Notre Dame, Notre Dame, IN, USA, 2008. [Google Scholar]
- Zhang, J.; Jia, J.; Zhang, Q.; Lo, E.M.K. Implementation and evaluation of co-operative communication schemes in software-defined radio testbed. In Proceedings of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010. [Google Scholar]
- Nabar, R.U.; Bolcskei, H.; Kneubuhler, F.W. Fading relay channels: Performance limits and space-time signal design. IEEE J. Sel. Areas Commun. 2004, 22, 1099–1109. [Google Scholar] [CrossRef]
Protocol Number | Time Slot 1 | Time Slot 2 |
---|---|---|
II | S → R S → D | R → D |
Transmit Antenna Gain | 0–30 dB |
Operating Frequency | 915 MHz |
Bandwidth | 400 kHz |
Data type | Text message |
Message | 128 bits |
Guards | 30 bits |
Synchronization | 20 bits |
Packets | 46 |
Modulation | BPSK, QPSK, 8PSK |
Channel | Real time |
Relaying mode | AF |
Transmission protocols | Two time slot |
Amplification Gain | 10 dB |
Number of relays | 1 |
Combining Technique | MRC |
Tx Antenna Gain (dB) | Capacity (Mbits/s/Hz) | ||||||||
---|---|---|---|---|---|---|---|---|---|
BPSK | QPSK | 8PSK | |||||||
DC | CC | Gain (%) | DC | CC | Gain (%) | DC | CC | Gain (%) | |
0 | 2.01 | 2.27 | 12.93 | 2.05 | 2.36 | 15.12 | 2.08 | 2.42 | 16.34 |
5 | 2.07 | 2.37 | 14.49 | 2.08 | 2.45 | 17.78 | 2.12 | 2.51 | 18.39 |
10 | 2.08 | 2.42 | 16.34 | 2.16 | 2.5 | 15.74 | 2.17 | 2.52 | 16.12 |
15 | 2.12 | 2.48 | 16.98 | 2.19 | 2.51 | 14.61 | 2.25 | 2.56 | 13.77 |
20 | 2.16 | 2.49 | 15.27 | 2.26 | 2.55 | 12.83 | 2.27 | 2.58 | 13.65 |
25 | 2.26 | 2.55 | 12.83 | 2.29 | 2.59 | 13.10 | 2.31 | 2.6 | 12.55 |
30 | 2.29 | 2.57 | 12.22 | 2.31 | 2.61 | 12.98 | 2.33 | 2.62 | 12.44 |
Average Gain | 14.44 | 14.59 | 14.75 |
Tx Antenna Gain (dB) | Capacity (Mbits/s/Hz) | ||||||||
---|---|---|---|---|---|---|---|---|---|
BPSK | QPSK | 8PSK | |||||||
DC | CC | Gain (%) | DC | CC | Gain (%) | DC | CC | Gain (%) | |
0 | 1.94 | 2.26 | 16.49 | 2.04 | 2.35 | 15.19 | 1.99 | 2.43 | 22.11 |
5 | 2.04 | 2.36 | 15.68 | 2.07 | 2.44 | 17.87 | 2.08 | 2.49 | 19.71 |
10 | 2.08 | 2.41 | 15.86 | 2.11 | 2.49 | 18.00 | 2.14 | 2.51 | 17.28 |
15 | 2.1 | 2.43 | 15.71 | 2.15 | 2.5 | 16.27 | 2.18 | 2.52 | 15.59 |
20 | 2.13 | 2.48 | 16.43 | 2.21 | 2.53 | 14.47 | 2.21 | 2.57 | 16.28 |
25 | 2.19 | 2.57 | 17.35 | 2.22 | 2.56 | 15.31 | 2.26 | 2.58 | 14.15 |
30 | 2.24 | 2.56 | 14.28 | 2.29 | 2.65 | 15.72 | 2.29 | 2.61 | 13.97 |
Average Gain | 15.97 | 16.12 | 17.01 |
Tx Antenna Gain (dB) | Capacity (Mbits/s/Hz) | Capacity Gain | ||||
---|---|---|---|---|---|---|
Position A | Position B | Position C | Case 1 | Case 2 | Case 3 | |
0 | 2.33 | 2.36 | 2.32 | 1.28 | 1.72 | 0.43 |
10 | 2.41 | 2.45 | 2.40 | 1.65 | 2.08 | 0.41 |
15 | 2.46 | 2.5 | 2.45 | 1.62 | 2.04 | 0.40 |
20 | 2.49 | 2.51 | 2.46 | 0.80 | 2.03 | 1.21 |
25 | 2.51 | 2.55 | 2.50 | 1.59 | 2.00 | 0.40 |
30 | 2.56 | 2.59 | 2.55 | 1.17 | 1.56 | 0.39 |
Average Gain | 1.35 | 1.90 | 0.54 |
Tx Antenna Gain (dB) | Capacity (Mbits/s/Hz) | Capacity Gain | ||||
---|---|---|---|---|---|---|
Position A | Position B | Position C | Case 1 | Case 2 | Case 3 | |
0 | 2.29 | 2.32 | 2.28 | 1.31 | 1.75 | 0.43 |
10 | 2.43 | 2.46 | 2.42 | 1.23 | 1.65 | 0.41 |
15 | 2.46 | 2.49 | 2.45 | 1.21 | 1.63 | 0.40 |
20 | 2.5 | 2.53 | 2.48 | 1.20 | 2.01 | 0.80 |
25 | 2.53 | 2.56 | 2.52 | 1.18 | 1.58 | 0.39 |
30 | 2.56 | 2.59 | 2.55 | 1.17 | 1.56 | 0.39 |
Average Gain | 1.22 | 1.70 | 0.47 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanoli, S.A.K.; Rehman, M.; Khan, M.B.; Jadoon, I.; Ali Khan, F.; Nawaz, F.; Shah, S.A.; Yang, X.; Nasir, A.A. An Experimental Channel Capacity Analysis of Cooperative Networks Using Universal Software Radio Peripheral (USRP). Sustainability 2018, 10, 1983. https://doi.org/10.3390/su10061983
Tanoli SAK, Rehman M, Khan MB, Jadoon I, Ali Khan F, Nawaz F, Shah SA, Yang X, Nasir AA. An Experimental Channel Capacity Analysis of Cooperative Networks Using Universal Software Radio Peripheral (USRP). Sustainability. 2018; 10(6):1983. https://doi.org/10.3390/su10061983
Chicago/Turabian StyleTanoli, Shujaat Ali Khan, Mubashir Rehman, Muhammad Bilal Khan, Ihtesham Jadoon, Farman Ali Khan, Faiza Nawaz, Syed Aziz Shah, Xiaodong Yang, and Ali Arshad Nasir. 2018. "An Experimental Channel Capacity Analysis of Cooperative Networks Using Universal Software Radio Peripheral (USRP)" Sustainability 10, no. 6: 1983. https://doi.org/10.3390/su10061983
APA StyleTanoli, S. A. K., Rehman, M., Khan, M. B., Jadoon, I., Ali Khan, F., Nawaz, F., Shah, S. A., Yang, X., & Nasir, A. A. (2018). An Experimental Channel Capacity Analysis of Cooperative Networks Using Universal Software Radio Peripheral (USRP). Sustainability, 10(6), 1983. https://doi.org/10.3390/su10061983