Monitoring and Modelling Coastal Vulnerability and Mitigation Proposal for an Archaeological Site (Kaulonia, Southern Italy)
Abstract
:1. Introduction
2. Study Area and Wave Climate
Archaeological Aspects
3. Methodology
3.1. Topo-Bathymetric and Sediment Survey
3.2. Numerical Wave Model
3.3. CVA Method
4. Results
4.1. Beach Characterization
4.2. Medium and Long-Term Shoreline Evolution
4.3. CVA Evaluation Based on the February 2014 Storm
4.3.1. Wave Run-Up Levels and Inundation Distances Obtained by Different Equations.
4.3.2. Evaluation of IR, E and ID
4.4. CVA Sensitivity to the Different Wave Run-Up Formulas
5. Adaptation Strategy
6. Discussion
7. Conclusions
- The run-up differences are less evident in CVA evaluation, nevertheless they can lead to different CVA scores, except in the case of limited beach width where the transects are completely inundated, regardless of the used run-up empirical formula.
- The vulnerability mitigation proposal, consisting of a submerged breakwater for the beach protection, decreased the CVA score based on the Kt value.
- The CVA additional decrease due to an adherent gabion wall for the cliff defense and the artificial nourishment placed in front of the Kaulonia site for a longitudinal extension of 800 m was not taken into account for precautionary reasons.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 89, 379–398. [Google Scholar] [CrossRef]
- De Leo, F.; Besio, G.; Zolezzi, G.; Bezzi, M. Coastal vulnerability assessment: through regional to local downscaling of wave characteristics along the Bay of Lalzit (Albania). Nat. Hazards Earth Syst. Sci. Discuss. 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Besio, G.; Donini, L.; Gallini, S.; Onorato, L. A prompt index for sea storm hazard. In Proceedings of the 7th Short Course and Conference on Applied Coastal Research (SCACR), Florence, Italy, 28 September–1 October 2015; pp. 553–560. [Google Scholar]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Rodríguez, G. Coastal vulnerability to wave storms of Sele littoral plain (southern Italy). Nat. Hazards 2014, 71, 1795–1819. [Google Scholar] [CrossRef]
- Tragaki, A.; Gallousi, C.; Karymbalis, E. Coastal Hazard Vulnerability Assessment Based on Geomorphic, Oceanographic and Demographic Parameters: The Case of the Peloponnese (Southern Greece). Land 2018, 7, 56. [Google Scholar] [CrossRef]
- Mavromatidi, A.; Briche, E.; Claeys, C. Mapping and analyzing socio-environmental vulnerability to coastal hazards induced by climate change: An application to coastal Mediterranean cities in France. Cities 2018, 72, 189–200. [Google Scholar] [CrossRef]
- Di Paola, G.; Aucelli, P.P.C.; Benassai, G.; Iglesias, J.; Rodríguez, G.; Rosskopf, C.M. The assessment of the coastal vulnerability and exposure degree of Gran Canaria Island (Spain) with a focus on the coastal risk of Las Canteras Beach in Las Palmas de Gran Canaria. J. Coast. Conserv. 2017, 1–15. [Google Scholar] [CrossRef]
- Benassai, G.; Di Paola, G.; Aucelli, P.P.C. Coastal risk assessment of a micro-tidal littoral plain in response to sea level rise. Ocean Coast. Manag. 2015, 104, 22–35. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Di Paola, G.; Incontri, P.; Rizzo, A.; Vilardo, G.; Benassai, G.; Buonocore, B.; Pappone, G. Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain—southern Italy). Estuar. Coast. Shelf Sci. 2017, 198, 597–609. [Google Scholar] [CrossRef]
- Martinelli, L.; Zanuttigh, B.; Corbau, C. Assessment of coastal flooding hazard along the Emilia Romagna littoral, IT. Coast. Eng. 2010, 57, 1042–1058. [Google Scholar] [CrossRef]
- Battjes, J.A. Surf similarity. In Coastal Engineering 1974; American Society of Civil Engineers: Reston, VA, USA, 1975; pp. 466–480. [Google Scholar]
- Holman, R. Extreme value statistics for wave run-up on a natural beach. Coast. Eng. 1986, 9, 527–544. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Mase, H. Random wave runup height on gentle slope. J. Waterw. Port Coast. Ocean Eng. 1989, 115, 649–661. [Google Scholar] [CrossRef]
- Poate, T.G.; McCall, R.T.; Masselink, G. A new parameterisation for runup on gravel beaches. Coast. Eng. 2016, 117, 176–190. [Google Scholar] [CrossRef]
- Montella, R.; Giunta, G.; Riccio, A. Using grid computing based components in on demand environmental data delivery. In Proceedings of the Second Workshop on Use of P2P, GRID and Agents for the Development of Content Networks, Monterey, CA, USA, 25 June 2007; ACM: New York, NY, USA, 2007; pp. 81–86. [Google Scholar]
- Benassai, G.; Ascione, I. Implementation and validation of wave watch III model offshore the coastlines of southern Italy. In Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, 4–9 June 2006; pp. 553–560. [Google Scholar] [CrossRef]
- Benassai, G.; Ascione, I. Implementation of WWIII wave model for the study of risk inundation on the coastlines of Campania, Italy. WIT Trans. Ecol. Environ. 2006, 88. [Google Scholar] [CrossRef] [Green Version]
- Benassai, G.; Aucelli, P.; Budillon, G.; De Stefano, M.; Di Luccio, D.; Di Paola, G.; Montella, R.; Mucerino, L.; Sica, M.; Pennetta, M. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation. Nat. Hazards Earth Syst. Sci. 2017, 17, 1493–1503. [Google Scholar] [CrossRef] [Green Version]
- Arena, G.; Briganti, R.; Corsini, S.; Franco, L. The Italian wave measurement buoy network: 12 years management experience. In Ocean Wave Measurement and Analysis (2001); American Society of Civil Engineers: Reston, VA, USA, 2002; pp. 86–95. [Google Scholar] [CrossRef]
- Di Paola, G.; Iglesias, J.; Rodríguez, G.; Benassai, G.; Aucelli, P.; Pappone, G. Estimating coastal vulnerability in a meso-tidal beach by means of quantitative and semi-quantitative methodologies. J. Coast. Res. 2011, 303–308. [Google Scholar] [CrossRef]
- Benassai, G.; Di Paola, G.; Aucelli, P.; Passarella, M.; Mucerino, L. An inter-comparison of coastal vulnerability assessment methods. In Engineering Geology for Society and Territory-Volume 4; Springer: Berlin, Germany, 2014; pp. 45–49. [Google Scholar] [CrossRef]
- Benassai, G.; Migliaccio, M.; Montuori, A.; Ricchi, A. Wave Simulations Through Sar Cosmo-Skymed Wind Retrieval and Verification with Buoy Data. In Proceedings of the Twenty-Second International Offshore and Polar Engineering Conference, Rhodes, Greece, 17–22 June 2012. ISOPE-I-12-426. [Google Scholar]
- Benassai, G.; Montuori, A.; Migliaccio, M.; Nunziata, F. Sea wave modeling with X-band COSMO-SkyMed? SAR-derived wind field forcing and applications in coastal vulnerability assessment. Ocean Sci. 2013, 9, 325. [Google Scholar] [CrossRef]
- D’Alessandro, L.; Davoli, L.; Lupia Palmieri, E.; Raffi, R. Natural and anthropogenic factors affecting the recent evolution of beaches in Calabria (Italy). In Applied Geomorphology: Theory and Practice; John Wiley & Sons Ltd.: Chichester, UK, 2002; pp. 397–427. [Google Scholar]
- Terranova, O.; Gariano, S. Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy). Nat. Hazards Earth Syst. Sci. 2014, 14, 2423. [Google Scholar] [CrossRef]
- Calabria, R. Master Plan Erosione Costiera—Autorità di Bacino Regionale—Area 9. 2013. Available online: http://old.regione.calabria.it/abr/index.php?option=com_content&task=view&id=428&Itemid=282 (accessed on 1 June 2018).
- Goda, Y. On the methodology of selecting design wave height. In Coastal Engineering 1988; American Society of Civil Engineers: Reston, VA, USA, 1989; pp. 899–913. [Google Scholar] [CrossRef]
- Mathiesen, M.; Goda, Y.; Hawkes, P.J.; Mansard, E.; Martín, M.J.; Peltier, E.; Thompson, E.F.; Van Vledder, G. Recommended practice for extreme wave analysis. J. Hydraul. Res. 1994, 32, 803–814. [Google Scholar] [CrossRef]
- Hershfield, D.; Kohler, M. An empirical appraisal of the Gumbel extreme-value procedure. J. Geophys. Res. 1960, 65, 1737–1746. [Google Scholar] [CrossRef]
- Carter, D.; Challenor, P. Methods of fitting the Fisher–Tippett Type 1 extreme value distribution. Ocean Eng. 1983, 10, 191–199. [Google Scholar] [CrossRef]
- Stanley, J.D.; Bernasconi, M.P. Buried and submerged Greek archaeological coastal structures and artifacts as gauges to measure late Holocene seafloor subsidence off Calabria, Italy. Geoarchaeology 2012, 27, 189–205. [Google Scholar] [CrossRef]
- ISPRA. Data Analysis. 2014. Available online: http://www.idromare.it/analisi_dati.php (accessed on 10 October 2014).
- ASTM D421-85(2007). Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants. Available online: http://www.astm.org/Standards/D421.htm (accessed on 17 November 2014).
- ASTM D422 (Hydrometer). Standard test method for particle-size analysis of soils. In Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2007; Available online: http://www.astm.org/Standards/D421.htm (accessed on 17 November 2014).
- Giunta, G.; Montella, R.; Mariani, P.; Riccio, A. Modeling and computational issues for air/water quality problems: A grid computing approach. Nuovo Cimento C Geophys. Space Phys. C 2005, 28, 215. [Google Scholar] [CrossRef]
- CCMMMA, Campania Center for Marine and Atmospheric Monitoring and Modelling. Available online: meteo.uniparthenope.it (accessed on 1 April 2009).
- Di Lauro, R.; Giannone, F.; Ambrosio, L.; Montella, R. Virtualizing general purpose GPUs for high performance cloud computing: An application to a fluid simulator. In Proceedings of the 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications (ISPA), Leganes, Spain, 10–13 July 2012; pp. 863–864. [Google Scholar] [CrossRef]
- Montella, R.; Coviello, G.; Giunta, G.; Laccetti, G.; Isaila, F.; Blas, J.G. A general-purpose virtualization service for HPC on cloud computing: An application to GPUs. In Parallel Processing and Applied Mathematics; Springer: Berlin, Germany, 2011; pp. 740–749. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Michalakes, J.; Dudhia, J.; Gill, D.; Henderson, T.; Klemp, J.; Skamarock, W.; Wang, W. The weather research and forecast model: software architecture and performance. In Use of High Performance Computing in Meteorology; World Scientific: Singapore, 2005; pp. 156–168. [Google Scholar] [CrossRef]
- Tolman, H.L.; Chalikov, D. Source terms in a third-generation wind wave model. J. Phys. Oceanogr. 1996, 26, 2497–2518. [Google Scholar] [CrossRef]
- Tolman, H.L. User manual and system documentation of WAVEWATCH III TM version 3.14. Tech. Note MMAB Contrib. 2009, 276, 220. [Google Scholar]
- Kriebel, D.L.; Dean, R.G. Convolution method for time-dependent beach-profile response. J. Waterw. Port Coast. Ocean Eng. 1993, 119, 204–226. [Google Scholar] [CrossRef]
- D’Angremond, K.; Van Der Meer, J.W.; De Jong, R.J. Wave transmission at low-crested structures. In Coastal Engineering 1996; American Society of Civil Engineers: Reston, VA, USA, 1997; pp. 2418–2427. [Google Scholar] [CrossRef]
- Martínez del Pozo, J.; Anfuso, G. Spatial approach to medium-term coastal evolution in south Sicily (Italy): Implications for coastal erosion management. J. Coast. Res. 2008, 33–42. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; Technical Report; US Geological Survey: Reston, VA, USA, 2009.
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Developing and validating a forecast/hindcast system for the Mediterranean Sea. J. Coast. Res. 2013, 65, 1551–1556. [Google Scholar] [CrossRef]
- Melby, J.; Caraballo-Nadal, N.; Kobayashi, N. Wave runup prediction for flood mapping. Coast. Eng. Proc. 2012, 1, 79. [Google Scholar] [CrossRef]
- Ciavola, P.; Vicinanza, D.; Aristodemo, F.; Contestabile, P. Large-scale morphodynamic experiments on a beach drainage system. J. Hydraul. Res. 2011, 49, 523–528. [Google Scholar] [CrossRef]
- Contestabile, P.; Aristodemo, F.; Vicinanza, D.; Ciavola, P. Laboratory study on a beach drainage system. Coast. Eng. 2012, 66, 50–64. [Google Scholar] [CrossRef]
Tr (yr) | Sector | yr | HTr (m) | Tr (yr) | Sector | yr | HTr (m) |
---|---|---|---|---|---|---|---|
1 | S2a | 3.32 | 5.00 | 20 | S2a | 6.33 | 7.50 |
S2b | 3.77 | 5.95 | S2b | 6.78 | 8.74 | ||
S2c | 3.97 | 3.37 | S2c | 6.98 | 4.58 | ||
5 | S2a | 4.94 | 6.35 | 50 | S2a | 7.25 | 8.26 |
S2b | 5.39 | 7.45 | S2b | 7.69 | 9.59 | ||
S2c | 5.59 | 4.02 | S2c | 7.89 | 4.95 | ||
10 | S2a | 5.64 | 6.93 | 100 | S2a | 7.94 | 8.84 |
S2b | 6.09 | 8.10 | S2b | 8.39 | 10.23 | ||
S2c | 6.29 | 4.30 | S2c | 8.59 | 5.23 |
Parameter | Classification | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
IR(%) | <15 | 15–30 | 30–50 | >50 |
IRu(%) | <40 | 40–60 | 60–80 | >80 |
E (m/yr) | <−0.5 | −0.5–−1.0 | −1.0–−2.0 | >−2.0 |
ID | −1 | −2 | −3 | −4 |
Kt | >0.58 | 0.41–0.58 | 0.24–0.41 | <0.24 |
Profile | Backshore Width L (m) | Backshore Slope βb (%) | Foreshore Slope βf (%) | Total Slope (%) | Foreshore Median Sediment Diameter (mm) |
---|---|---|---|---|---|
P1 | 36.8 | 6.1 | 18.4 | 7.5 | 5.18 |
P2 | 27.6 | 9.6 | 14.2 | 10.6 | 6.12 |
P3 | 31.8 | 8.6 | 17.6 | 10.2 | 5.96 |
P4 | 28.5 | 9.7 | 19.9 | 11.2 | 3.45 |
P5 | 13.3 | 10.5 | 17.1 | 13.6 | 2.55 |
P6 | 39.4 | 8.9 | 20.0 | 10.1 | 4.66 |
P7 | 17.6 | 5.7 | 19.1 | 7.9 | 5.93 |
P8 | 10.0 | 2.6 | 18.2 | 9.5 | 4.70 |
P9 | 20.3 | 6.1 | 19.5 | 8.6 | 2.80 |
P10 | 29.3 | 3.1 | 19.3 | 5.7 | 2.62 |
Period | Shoreline Variation | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|---|
1958–2014 | Total (m) | −25.43 | −8.49 | −38.46 | −38.17 | −24.04 | −6.61 | −5.97 | −43.25 | −60.67 | −54.86 |
Annual mean (m/yr) | −0.43 | −0.65 | −0.65 | −0.65 | −0.41 | −0.28 | −0.10 | −0.73 | −1.03 | −0.93 | |
1996–2014 | Total (m) | 6.90 | −0.89 | 7.74 | −33.26 | −9.36 | 16.46 | 12.12 | 23.32 | 27.19 | −9.96 |
Annual mean (m/yr) | 0.37 | −0.05 | −0.42 | −1.80 | −0.51 | 0.89 | 0.65 | 1.26 | 1.47 | −0.53 |
R | BI | SI | RMSE | NRMSE | BIP | SIP | NRMSEP | SPS | |
---|---|---|---|---|---|---|---|---|---|
Hs | 0.933 | 0.053 | 0.135 | 0.496 | 0.144 | 0.947 | 0.865 | 0.856 | 0.889 |
Tm | 0.672 | 0.220 | 0.186 | 1.706 | 0.283 | 0.779 | 0.815 | 0.717 | 0.771 |
Dm | 0.826 | −0.042 | 0.105 | 15.965 | 0.113 | 0.958 | 0.896 | 0.888 | 0.914 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Luccio, D.; Benassai, G.; Di Paola, G.; Rosskopf, C.M.; Mucerino, L.; Montella, R.; Contestabile, P. Monitoring and Modelling Coastal Vulnerability and Mitigation Proposal for an Archaeological Site (Kaulonia, Southern Italy). Sustainability 2018, 10, 2017. https://doi.org/10.3390/su10062017
Di Luccio D, Benassai G, Di Paola G, Rosskopf CM, Mucerino L, Montella R, Contestabile P. Monitoring and Modelling Coastal Vulnerability and Mitigation Proposal for an Archaeological Site (Kaulonia, Southern Italy). Sustainability. 2018; 10(6):2017. https://doi.org/10.3390/su10062017
Chicago/Turabian StyleDi Luccio, Diana, Guido Benassai, Gianluigi Di Paola, Carmen Maria Rosskopf, Luigi Mucerino, Raffaele Montella, and Pasquale Contestabile. 2018. "Monitoring and Modelling Coastal Vulnerability and Mitigation Proposal for an Archaeological Site (Kaulonia, Southern Italy)" Sustainability 10, no. 6: 2017. https://doi.org/10.3390/su10062017
APA StyleDi Luccio, D., Benassai, G., Di Paola, G., Rosskopf, C. M., Mucerino, L., Montella, R., & Contestabile, P. (2018). Monitoring and Modelling Coastal Vulnerability and Mitigation Proposal for an Archaeological Site (Kaulonia, Southern Italy). Sustainability, 10(6), 2017. https://doi.org/10.3390/su10062017