Machine Vision Retrofit System for Mechanical Weed Control in Precision Agriculture Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Hardware Setup
2.3. Experimental Design
2.4. Image Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Astrand, B.; Baerveldt, A.J. An agricultural mobile robot with vision-based perception for mechanical weed control. Auton. Robots 2002, 13, 21–35. [Google Scholar] [CrossRef]
- Vuong, V.L.; Slaughter, D.C.; Nguyen, T.T.; Fennimore, S.A.; Giles, D.K. An Automated System for Crop Signaling and Robotic Weed Control in Processing Tomatoes. In Proceedings of the 2017 ASABE Annual International Meeting, Washington, DC, USA, 16–19 July 2017; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2017; p. 1. [Google Scholar]
- Rodrigues, F.A.; Ortiz-Monasterio, I.; Zarco-Tejada, P.J.; Schulthess, U.; Gérard, B. High resolution remote and proximal sensing to assess low and high yield areas in a wheat field. In 2015 Precision Agriculture’15; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 38–50. [Google Scholar]
- Adamchuk, V.; Ji, W.; Rossel, R.V.; Gebbers, R.; Tremblay, N. Proximal Soil and Plant Sensing. In Precision Agriculture Basics; American Society of Agronomy: Madison, WI, USA; Crop Science Society of America: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 2018. [Google Scholar]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Burgos-Artizzu, X.P.; Ribeiro, A.; Tellaeche, A.; Pajares, G.; Fernández-Quintanilla, C. Analysis of natural images processing for the extraction of agricultural elements. Image Vis. Comput. 2010, 28, 138–149. [Google Scholar] [CrossRef]
- Srinivasan, A. Handbook of Precision Agriculture: Principles and Applications; The Haworth Press: New York, NY, USA, 2006. [Google Scholar]
- Lee, W.; Slaughter, D.; Giles, D. Robotic weed control system for tomatoes using machine vision and precision chemical application. Precis. Agric. 1999, 1, 95–113. [Google Scholar] [CrossRef]
- Aldabaa, A.A.A.; Weindorf, D.C.; Chakraborty, S.; Sharma, A.; Li, B. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma 2015, 239, 34–46. [Google Scholar] [CrossRef]
- Downey, D.; Giles, D.K.; Slaughter, D.C. Weeds accurately mapped using DGPS and ground-based vision identification. Calif. Agric. 2004, 58, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Hague, T.; Tillett, N.D.; Wheeler, H. Automated crop and weed monitoring in widely spaced cereals. Precis. Agric. 2006, 7, 21–32. [Google Scholar] [CrossRef]
- Andújar, D.; Ribeiro, Á.; Fernández-Quintanilla, C.; Dorado, J. Accuracy and feasibility of optoelectronic sensors for weed mapping in wide row crops. Sensors 2011, 11, 2304–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dworak, V.; Selbeck, J.; Dammer, K.H.; Hoffmann, M.; Zarezadeh, A.A.; Bobda, C. Strategy for the development of a smart NDVI camera system for outdoor plant detection and agricultural embedded systems. Sensors 2013, 13, 1523–1538. [Google Scholar] [CrossRef] [PubMed]
- King, A. The Future of Agriculture. Nature 2017, 544, S21–S23. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Antonucci, F.; Boglione, C.; Menesatti, P.; Vandeputte, M.; Chatain, B. Automated sorting for size, sex and skeletal anomalies of cultured seabass using external shape analysis. Aquac. Eng. 2013, 52, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Menesatti, P.; Zanella, A.; D’Andrea, S.; Costa, C.; Paglia, G.; Pallottino, F. Supervised multivariate analysis of hyperspectral NIR Images to evaluate the starch index of apples. Food Bioprocess Technol. 2009, 2, 308–314. [Google Scholar] [CrossRef]
- Pallottino, F.; Menesatti, P.; Costa, C.; Paglia, G.; De Salvador, F.R.; Lolletti, D. Image analysis techniques for automated hazelnut peeling determination. Food Bioprocess Technol. 2010, 3, 155–159. [Google Scholar] [CrossRef]
- Aguzzi, J.; Costa, C.; Robert, K.; Matabos, M.; Antonucci, F.; Juniper, K.; Menesatti, P. Automated image analysis for the detection of benthic crustaceans and bacterial mat coverage using the VENUS undersea cabled network. Sensors 2011, 11, 10534–10556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallottino, F.; Biocca, M.; Nardi, P.; Figorilli, S.; Menesatti, P.; Costa, C. Science mapping approach to analyze the research evolution on precision agriculture: World, EU and Italian situation. Precis. Agric. 2018, in press. [Google Scholar] [CrossRef]
Typology | Training | N Patches |
---|---|---|
Broccoli | Light | 43 |
Shadow | 20 | |
Lettuce | Light | 26 |
Shadow | 20 | |
Soil | Light | 22 |
Shadow | 13 | |
Weed | Light | 20 |
Shadow | 20 |
Crop | Speed (km h−1) | Total Objects | Correctly Identified | % Correctly Identified | Misclassified | % Misclassified | Errors |
---|---|---|---|---|---|---|---|
Broccoli | 1 | 62 | 40 | 64.5 | 22 | 35.5 | 1 |
1 (inverse) | 62 | 49 | 79.0 | 13 | 21.0 | 4 | |
3 | 62 | 44 | 71.0 | 18 | 29.0 | 0 | |
Lettuce | 1 | 68 | 65 | 95.6 | 3 | 4.4 | 1 |
1 (inverse) | 68 | 47 | 69.1 | 21 | 30.9 | 2 | |
3 | 68 | 62 | 91.2 | 6 | 8.8 | 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallottino, F.; Menesatti, P.; Figorilli, S.; Antonucci, F.; Tomasone, R.; Colantoni, A.; Costa, C. Machine Vision Retrofit System for Mechanical Weed Control in Precision Agriculture Applications. Sustainability 2018, 10, 2209. https://doi.org/10.3390/su10072209
Pallottino F, Menesatti P, Figorilli S, Antonucci F, Tomasone R, Colantoni A, Costa C. Machine Vision Retrofit System for Mechanical Weed Control in Precision Agriculture Applications. Sustainability. 2018; 10(7):2209. https://doi.org/10.3390/su10072209
Chicago/Turabian StylePallottino, Federico, Paolo Menesatti, Simone Figorilli, Francesca Antonucci, Roberto Tomasone, Andrea Colantoni, and Corrado Costa. 2018. "Machine Vision Retrofit System for Mechanical Weed Control in Precision Agriculture Applications" Sustainability 10, no. 7: 2209. https://doi.org/10.3390/su10072209
APA StylePallottino, F., Menesatti, P., Figorilli, S., Antonucci, F., Tomasone, R., Colantoni, A., & Costa, C. (2018). Machine Vision Retrofit System for Mechanical Weed Control in Precision Agriculture Applications. Sustainability, 10(7), 2209. https://doi.org/10.3390/su10072209