What Can You Do with 100 kWh? A Longitudinal Study of Using an Interactive Energy Comparison Tool to Increase Energy Awareness †
Abstract
:1. Introduction
- RQ1: What is the learning effect of using such a tool?
- RQ2: Was the energy use under- or overestimated before and after the intervention?
- (1)
- An assessment of their current energy understanding of kWh information as a baseline.
- (2)
- Using and experimenting with the KiloWhat prototype for 10 min.
- (3)
- A second test immediately after using the tool to see how the level of knowledge had changed.
- (4)
- A third test one week later to see how much knowledge had been lost.
- (5)
- A final test six months later to see how much knowledge had been lost.
2. Design of the Prototype
- (1)
- Make quantitative kWh information easier to relate to by providing a learning experience where the users can translate kWh into everyday activities;
- (2)
- Help users to learn differences in scale between the energy consumption of different activities by allowing the users to play and compare between them.
- (1)
- Energy generation: hours of solar panels, kg of coal, hours running in a treadmill.
- (2)
- Home and appliances: washing machine loads, hours with a light-emitting diode (LED) lamp on, hours with a incandescent light bulb on, hours with a fridge on, hours with Wi-Fi on, mobile phone charges, hours watching television.
- (3)
- Transportation: km driving a gasoline car, km driving an electric car, km driving an electric assisted bike.
- (4)
- Heating: hours heating a house with electric heaters, hours heating a house with geothermal pump. This category was later removed from the analysis since we found out that some participants interpreted it as averages over a year while other interpreted it as having a radiator turned on at maximum effect all the time.
- (5)
- Food: hamburgers (energy needed to produce).
3. Method
4. Results
4.1. RQ1: What Is the Learning Effect of Using Such a Tool?
4.2. RQ2: Was the Energy Use Under- or Overestimated before and after the Intervention?
5. Conclusions and Discussion
5.1. RQ1: What Is the Learning Effect of Using Such a Tool?
5.2. RQ2: Was the Energy Use Under- or Overestimated before and after the Intervention?
5.3. General Discussion
5.4. Limitations and Future Research
Author Contributions
Funding
Conflicts of Interest
Appendix A. Questions Asked in T0 and “Correct” Reference Values (Translated from Swedish). Corresponding Questions Were Asked for T1–T3
- Q1: X hours average electricity production from 10-square-meter solar cells.
- Q2: X hours running on a treadmill.
- Q3: X hours with a LED light on.
- Q4: X hours of refrigerator use.
- Q5: X hours with a old lightbulb on.
- Q6: X hours with a normal TV on.
- Q7: X hours with a Wi-Fi router on.
- Q8: X km riding on an electric bike.
- Q9: X km riding with an electric car.
- Q10: X km riding with a petrol-driven car.
- Q11: X one kilogram bags of coal (energy generated by).
- Q12: X runs with a wash machine.
- Q13: X charges of a mobile phone.
- Q14: X hamburgers (energy required to produce).
Appendix B
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67 | 1000 | 16,667 | 4488 | 2500 | 1493 | 17,544 | 5000 | 472 | 125 | 47 | 104 | 18,349 | 26 |
References
- Berkhout, P.H.; Muskens, J.C.; Velthuijsen, J.W. Defining the rebound effect. Energy Policy 2000, 28, 425–432. [Google Scholar] [CrossRef]
- DiSalvo, C.; Sengers, P.; Brynjarsdóttir, H. Mapping the landscape of sustainable HCI. In Proceedings of the SIGCHI Conference on ACM Human Factors in Computing Systems, Atlanta, GA, USA, 10–15 April 2010; pp. 1975–1984. [Google Scholar]
- Hargreavesn, T.; Nye, M.; Burgess, J. Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors. Energy Policy 2010, 38, 6111–6119. [Google Scholar] [CrossRef]
- Hargreavesn, T.; Nye, M.; Burgess, J. Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term. Energy Policy 2013, 52, 126–134. [Google Scholar] [CrossRef]
- Murtagh, N.; Nati, M.; Headley, W.R.; Gatersleben, B.; Gluhak, A.; Imran, M.I.; Uzzell, D. Individual energy use and feedback in an office setting: A field trial. Energy Policy 2013, 62, 717–728. [Google Scholar] [CrossRef] [Green Version]
- McCalley, T.; Kaiser, F.; Midden, C.; Keser, M.; Teunissen, M. Persuasive Appliances: Goal Priming and Behavioral Response to Product-Integrated Energy Feed-Back; IJsselsteijn, W.A., de Kort, Y.A.W., Midden, C., Eggen, B., van den Hoven, E., Eds.; PERSUASIVE 2006, LNCS 3962; Springer: Berlin/Heidelberg, German, 2006; pp. 45–49. [Google Scholar]
- Gamberini, L.; Spagnolli, A.; Corradi, N.; Jacucci, G.; Tusa, G.; Mikkola, T.; Zamboni, L.; Hoggan, E. Tailoring Feedback to Users’ Actions in a Persuasive Game for Household Electricity Conservation; Bang, M., Ragnemalm, E.L., Eds.; PERSUASIVE 2012, LNCS 7284; Springer: Berlin/Heidelberg, German, 2012; pp. 100–111. [Google Scholar]
- Yun, R.; Lasternas, B.; Aziz, A.; Loftness, V.; Scupelli, P.; Rowe, A.; Kothari, R.; Marion, F.; Zhao, J. Toward the Design of a Dashboard to Promote Environmentally Sustainable Behavior among Office Workers; Berkovsky, S., Freyne, J., Eds.; PERSUASIVE 2013, LNCS 7822; Springer: Berlin/Heidelberg, German, 2013; pp. 246–252. [Google Scholar]
- Karjalainen, S. Consumer preferences for feedback on household electricity consumption. Energy Build. 2011, 43, 458–467. [Google Scholar] [CrossRef]
- Wood, G.; Newborough, M. Energy-use information transfer for intelligent homes: Enabling energy conservation with central and local displays. Energy Build. 2007, 39, 495–503. [Google Scholar] [CrossRef]
- DeWaters, J.E.; Powers, S.E. Energy literacy of secondary students in New York State (USA): A measure of knowledge, affect, and behavior. Energy Policy 2011, 39, 1699–1710. [Google Scholar] [CrossRef]
- Brounen, D.; Kok, N.; Quigley, J.M. Energy literacy, awareness, and conservation behavior of residential households. Energy Econ. 2013, 38, 42–50. [Google Scholar] [CrossRef]
- Zapico Lamela, J.L.; Turpeinen, M.; Guath, M. Kilograms or cups of tea: Comparing footprints for better CO2 understanding. Psychnol. J. 2011, 9, 43–54. [Google Scholar]
- Oinas-Kukkonen, H.; Harjumaa, M. Persuasive systems design: Key issues, process model, and system features. Commun. Assoc. Inf. Syst. 2009, 24, 28. [Google Scholar]
- Cohen, L.; Manion, L.; Morrison, K. Research Methods in Education; Routledge: London, UK, 2000. [Google Scholar]
- Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hattie, J. Visible Learning: A Synthesis of over 800 Meta-Analyses Relating to Achievement; Routledge: London, UK, 2009. [Google Scholar]
- Strengers, Y. Smart energy in everyday life: Are you designing for resource man? Interactions 2014, 21, 24–31. [Google Scholar] [CrossRef]
- Hedin, B. Exploring Opportunistic Use of Mobile Devices for Studying in Higher Education. (TRITA-CSC-A). Ph.D. Thesis, KTH Royal Institute of Technology, KTH, Media Technology and Interaction Design, MID, Stockholm, Sweden, 2014. [Google Scholar]
- Dempster, F.N. The spacing effect: A case study in the failure to apply the results of psychological research. Am. Psychol. 1988, 43, 627–634. [Google Scholar] [CrossRef]
- He, H.A.; Greenberg, S.; Huang, E.M. One size does not fit all: Applying the transtheoretical model to energy feedback technology design. In Proceedings of the SIGCHI Conference on ACM Human Factors in Computing Systems, Atlanta, GA, USA, 10–15 April 2010; pp. 927–936. [Google Scholar]
- Hedin, B.; Zapico, J. Kilowh.at—Increasing Energy Awareness Using an Interactive Energy Comparison Tool. In Persuasive Technology: Development and Implementation of Personalized Technologies to Change Attitudes and Behaviors, Proceedings of the 12th International Conference, PERSUASIVE 2017, Amsterdam, The Netherlands, 4–6 April 2017; de Vries, P.W., Oinas-Kukkonen, H., Siemons, L., Beerlage-de Jong, N., van Gemert-Pijnen, L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 175–185. [Google Scholar]
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | AVG | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | MEAN | 0.93 | 1.52 | 1.80 | 1.91 | 1.47 | 1.67 | 2.29 | 1.92 | 1.37 | 0.98 | 0.89 | 0.91 | 2.41 | 0.60 | 1.48 |
STDEV | 0.62 | 0.77 | 0.96 | 0.83 | 0.90 | 0.83 | 0.89 | 0.74 | 0.79 | 0.61 | 0.51 | 0.51 | 0.97 | 0.51 | 0.49 | |
T1 | MEAN | 0.33 | 0.38 | 0.46 | 0.49 | 0.44 | 0.56 | 0.46 | 0.38 | 0.34 | 0.30 | 0.30 | 0.53 | 0.57 | 0.32 | 0.42 |
STDEV | 0.48 | 0.56 | 0.64 | 0.63 | 0.58 | 0.54 | 0.61 | 0.58 | 0.49 | 0.49 | 0.43 | 0.63 | 0.61 | 0.41 | 0.42 | |
T2 | MEAN | 0.73 | 0.73 | 0.71 | 0.98 | 0.76 | 0.81 | 0.92 | 0.92 | 0.58 | 0.69 | 0.58 | 0.65 | 1.01 | 0.46 | 0.75 |
STDEV | 0.66 | 0.64 | 0.89 | 0.87 | 0.67 | 0.71 | 0.82 | 0.75 | 0.58 | 0.57 | 0.49 | 0.67 | 0.90 | 0.69 | 0.48 | |
T3 | MEAN | 0.71 | 1.30 | 1.14 | 1.47 | 1.02 | 1.07 | 1.50 | 1.47 | 0.91 | 0.80 | 0.71 | 0.70 | 1.76 | 0.48 | 1.07 |
STDEV | 0.50 | 0.83 | 0.86 | 0.76 | 0.91 | 0.71 | 0.87 | 0.80 | 0.57 | 0.60 | 0.43 | 0.45 | 0.97 | 0.55 | 0.44 | |
T1–T0 | M0–M1 | 0.60 | 1.14 | 1.34 | 1.42 | 1.03 | 1.11 | 1.84 | 1.54 | 1.03 | 0.68 | 0.59 | 0.38 | 1.83 | 0.29 | 1.06 |
t | 5.38 | 8.30 | 7.20 | 9.68 | 6.79 | 8.50 | 11.62 | 11.89 | 7.51 | 5.24 | 5.50 | 2.98 | 11.14 | 2.56 | 11.28 | |
p | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | |
Cohen’s d | 1.03 | 1.56 | 1.30 | 1.86 | 1.23 | 1.56 | 2.15 | 2.31 | 1.35 | 1.02 | 1.08 | 0.71 | 2.02 | 0.50 | 2.25 | |
T2–T0 | M0–M2 | 0.20 | 0.79 | 1.09 | 0.93 | 0.70 | 0.86 | 1.37 | 0.99 | 0.79 | 0.29 | 0.31 | 0.26 | 1.40 | 0.15 | 0.72 |
t | 1.59 | 5.26 | 6.01 | 6.00 | 5.00 | 6.57 | 9.03 | 6.37 | 5.57 | 2.14 | 3.19 | 2.17 | 7.28 | 1.06 | 8.01 | |
p | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.04 | 0.00 | 0.30 | 0.00 | |
Cohen’s d | 0.35 | 1.03 | 1.24 | 1.32 | 0.95 | 1.31 | 1.87 | 1.37 | 1.04 | 0.44 | 0.67 | 0.54 | 1.51 | 0.27 | 1.70 | |
T3–T0 | M0–M3 | 0.22 | 0.23 | 0.66 | 0.44 | 0.44 | 0.61 | 0.79 | 0.44 | 0.46 | 0.18 | 0.18 | 0.21 | 0.64 | 0.13 | 0.40 |
t | 2.17 | 1.46 | 4.25 | 2.86 | 2.67 | 4.11 | 4.32 | 3.08 | 3.73 | 1.47 | 1.88 | 1.97 | 3.62 | 1.20 | 4.59 | |
p | 0.04 | 0.15 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.07 | 0.05 | 0.00 | 0.24 | 0.00 | |
Cohen’s d | 0.42 | 0.32 | 0.86 | 0.59 | 0.57 | 0.82 | 0.91 | 0.68 | 0.70 | 0.31 | 0.37 | 0.40 | 0.77 | 0.27 | 0.93 |
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | AVG | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | MEAN | −0.50 | −1.41 | −1.78 | −1.89 | −1.44 | −1.63 | −2.29 | −1.88 | −1.35 | −0.87 | −0.50 | −0.83 | −2.41 | 0.30 | −1.32 |
STDEV | 1.00 | 0.96 | 1.01 | 0.86 | 0.94 | 0.92 | 0.89 | 0.83 | 0.83 | 0.76 | 0.90 | 0.64 | 0.97 | 0.73 | 0.62 | |
T1 | MEAN | −0.04 | −0.23 | −0.37 | −0.39 | −0.27 | −0.28 | −0.39 | −0.22 | −0.10 | −0.08 | 0.00 | 0.14 | −0.41 | 0.00 | −0.19 |
STDEV | 0.58 | 0.64 | 0.70 | 0.70 | 0.68 | 0.73 | 0.65 | 0.66 | 0.59 | 0.57 | 0.52 | 0.81 | 0.73 | 0.52 | 0.49 | |
T2 | MEAN | −0.08 | −0.42 | −0.62 | −0.88 | −0.36 | −0.43 | −0.85 | −0.78 | −0.17 | −0.05 | −0.03 | 0.16 | −0.88 | 0.17 | −0.37 |
STDEV | 0.99 | 0.88 | 0.96 | 0.97 | 0.96 | 0.99 | 0.90 | 0.91 | 0.81 | 0.90 | 0.77 | 0.92 | 1.03 | 0.81 | 0.66 | |
T3 | MEAN | −0.34 | −1.15 | −1.04 | −1.46 | −0.88 | −0.99 | −1.50 | −1.43 | −0.78 | −0.51 | −0.30 | −0.41 | −1.68 | 0.18 | −0.88 |
STDEV | 0.80 | 1.03 | 0.99 | 0.78 | 1.05 | 0.81 | 0.88 | 0.87 | 0.74 | 0.87 | 0.78 | 0.73 | 1.10 | 0.71 | 0.59 | |
T1–T0 | M0–M1 | −0.46 | −1.18 | −1.41 | −1.50 | −1.17 | −1.35 | −1.90 | −1.66 | −1.24 | −0.79 | −0.50 | −0.96 | −1.99 | 0.30 | −1.13 |
t | 2.61 | 7.09 | 7.45 | 9.84 | 7.03 | 8.85 | 11.96 | 10.98 | 8.07 | 4.98 | 3.20 | 6.27 | 11.64 | 2.38 | 9.66 | |
p | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | |
Cohen’s d | −0.46 | −1.30 | −1.37 | −1.93 | −1.32 | −1.72 | −2.27 | −2.14 | −1.51 | −0.94 | −0.56 | −1.53 | −2.23 | 0.44 | −1.87 | |
T2–T0 | M0–M2 | −0.42 | −1.00 | −1.15 | −1.01 | −1.08 | −1.20 | −1.44 | −1.11 | −1.18 | −0.82 | −0.46 | −0.99 | −1.52 | 0.13 | −0.95 |
t | 2.17 | 5.02 | 5.94 | 5.90 | 6.62 | 6.95 | 9.03 | 6.28 | 6.55 | 4.69 | 2.80 | 5.51 | 7.47 | 0.81 | 7.34 | |
p | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.42 | 0.00 | |
Cohen’s d | −0.46 | −1.03 | −1.24 | −1.34 | −1.43 | −1.55 | −1.95 | −1.41 | −1.39 | −1.10 | −0.55 | −1.45 | −1.65 | 0.18 | −1.62 | |
T3–T0 | M0–M3 | −0.16 | −0.27 | −0.74 | −0.43 | −0.56 | −0.63 | −0.80 | −0.45 | −0.57 | −0.36 | −0.20 | −0.41 | −0.72 | 0.13 | −0.44 |
t | 0.88 | 1.36 | 4.24 | 2.68 | 3.13 | 3.66 | 4.29 | 2.84 | 3.92 | 2.15 | 1.31 | 2.79 | 4.17 | 0.89 | 3.62 | |
p | 0.38 | 0.18 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.04 | 0.20 | 0.01 | 0.00 | 0.38 | 0.00 | |
Cohen’s d | −0.17 | −0.30 | −0.90 | −0.55 | −0.71 | −0.74 | −0.91 | −0.62 | −0.80 | −0.49 | −0.26 | −0.64 | −0.96 | 0.19 | −0.75 |
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | CORREL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 67 | 1000 | 16,667 | 4488 | 2500 | 1493 | 17,544 | 5000 | 472 | 125 | 47 | 104 | 18,349 | 26 | |
Log10(C) | 1.826 | 3.000 | 4.222 | 3.652 | 3.398 | 3.174 | 4.244 | 3.699 | 2.674 | 2.097 | 1.672 | 2.017 | 4.264 | 1.415 | |
T0 Average | −0.503 | −1.413 | −1.779 | −1.890 | −1.440 | −1.627 | −2.292 | −1.881 | −1.349 | −0.871 | −0.497 | −0.826 | −2.406 | 0.304 | −0.953 |
T1 Average | −0.043 | −0.235 | −0.370 | −0.394 | −0.269 | −0.282 | −0.391 | −0.219 | −0.104 | −0.083 | −0.001 | 0.138 | −0.414 | 0.000 | −0.921 |
T2 Average | −0.083 | −0.416 | −0.625 | −0.880 | −0.356 | −0.429 | −0.849 | −0.775 | −0.168 | −0.054 | −0.033 | 0.160 | −0.884 | 0.170 | −0.936 |
T3 Average | −0.342 | −1.146 | −1.038 | −1.460 | −0.884 | −0.992 | −1.496 | −1.433 | −0.780 | −0.509 | −0.295 | −0.415 | −1.681 | 0.176 | −0.929 |
T0–T1 Cohen’s d | −0.455 | −1.296 | −1.369 | −1.929 | −1.320 | −1.723 | −2.270 | −2.140 | −1.505 | −0.942 | −0.558 | −1.529 | −2.229 | 0.443 | −0.832 |
T0–T2 Cohen’s d | −0.460 | −1.032 | −1.240 | −1.345 | −1.430 | −1.551 | −1.951 | −1.409 | −1.386 | −1.098 | −0.554 | −1.452 | −1.648 | 0.182 | −0.772 |
T0–T3 Cohen’s d | −0.170 | −0.302 | −0.895 | −0.545 | −0.708 | −0.737 | −0.914 | −0.623 | −0.796 | −0.492 | −0.262 | −0.637 | −0.956 | 0.188 | −0.799 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hedin, B.; Luis Zapico, J. What Can You Do with 100 kWh? A Longitudinal Study of Using an Interactive Energy Comparison Tool to Increase Energy Awareness †. Sustainability 2018, 10, 2269. https://doi.org/10.3390/su10072269
Hedin B, Luis Zapico J. What Can You Do with 100 kWh? A Longitudinal Study of Using an Interactive Energy Comparison Tool to Increase Energy Awareness †. Sustainability. 2018; 10(7):2269. https://doi.org/10.3390/su10072269
Chicago/Turabian StyleHedin, Björn, and Jorge Luis Zapico. 2018. "What Can You Do with 100 kWh? A Longitudinal Study of Using an Interactive Energy Comparison Tool to Increase Energy Awareness †" Sustainability 10, no. 7: 2269. https://doi.org/10.3390/su10072269
APA StyleHedin, B., & Luis Zapico, J. (2018). What Can You Do with 100 kWh? A Longitudinal Study of Using an Interactive Energy Comparison Tool to Increase Energy Awareness †. Sustainability, 10(7), 2269. https://doi.org/10.3390/su10072269