The Influence of Noise, Vibration, Cycle Paths, and Period of Day on Stress Experienced by Cyclists
Abstract
:1. Introduction
- Is it possible to identify, directly and objectively, critical points of stress along cycling routes?
- What is the importance of external variables such as noise, vibration, presence or not of a cycling infrastructure, and the period of the day on stress experienced by cyclists?
2. Method
2.1. Equipment for Stress, Noise, and Vibration Measurements
2.2. Routes Selected
2.3. Processing and Fusing Sensor Information
2.3.1. Stress Data Processing
2.3.2. Noise Data Processing
2.3.3. Vibration Data Processing
2.4. Logistic Regression Models
3. Results and Discussion
3.1. Stress Maps
3.2. Results of Logistic Regression Models
+ 0.123*VA2 − 0.14451*VA3 − 0.02449*VA4 + 0.05507*VA5 + 0.12673*VA6
− 0.07296*PCI + 0.21814*Period
4. Limitations of the Research
5. Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Useche, S.; Montoro, L.; Alonso, F.; Oviedo-Trespalacios, O. Infrastructural and human factors affecting safety outcomes of cyclists. Sustainability 2018, 10, 229. [Google Scholar] [CrossRef]
- Blanc, B.; Figliozzi, M. Modeling the impacts of facility type, trip characteristics, and trip stressors on cyclists’ comfort levels utilizing crowdsourced data. Transp. Res. Rec. J. Transp. Res. Board 2016, 2587, 100–108. [Google Scholar] [CrossRef]
- Chen, C.; Anderson, J.C.; Wang, H.; Wang, Y.; Vogt, R.; Hernandez, S. How bicycle level of traffic stress correlate with reported cyclist accidents injury severities: A geospatial and mixed logit analysis. Accid. Anal. Prev. 2017, 108, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Epperson, B. Evaluating suitability of roadways for bicycle use: Toward a cycling level-of-service standard. Transp. Res. Rec. J. Transp. Res. Board 1994, 1438, 9–16. [Google Scholar]
- Ng, A.; Kumar, A.; Heesch, K.C. Cyclist’ safety perceptions of cycling infrastructure at un-signalised intersections: Cross-sectional survey of Queensland cyclists. J. Transp. Heal. 2017, 6, 13–22. [Google Scholar] [CrossRef]
- Sorton, A.; Walsh, T. Bicycle stress level as a tool to evaluate urban and suburban bicycle compatibility. Transp. Res. Rec. J. Transp. Res. Board 1994, 1438, 17–24. [Google Scholar]
- Davis, J. Bicycle Safety Evaluation; Technical Report; Chattanooga Hamilton County Regional Planning Commission: Chattanooga, TN, USA, 1987. [Google Scholar]
- Dixon, L. Bicycle and pedestrian level-of-service Performance measures and standards for congestion management systems. Transp. Res. Rec. J. Transp. Res. Board 1996, 1538, 1–9. [Google Scholar] [CrossRef]
- Landis, B.; Vattikuti, V.; Brannick, M. Real-time human perceptions: Toward a bicycle level of service. Transp. Res. Rec. J. Transp. Res. Board 1997, 1578, 119–126. [Google Scholar] [CrossRef]
- Turner, S.M.; Shafer, C.S.; Stewart, W.P. Bicycle Suitability Criteria for State Roadways in Texas; Summary Report; Texas Transportation Institute: College Station, TX, USA, 1997; p. 95. [Google Scholar]
- Jensen, S. Pedestrian and bicyclist level of service on roadway segments. Transp. Res. Rec. J. Transp. Res. Board 2007, 2031, 43–51. [Google Scholar] [CrossRef]
- Transportation Research Board of the National Academies. Transportation Reseach Board. HCM-Highway Capacity Manual, 5th ed.; Transportation Research Board of the National Academies: Washington, DC, USA, 2010; ISBN 978-0-309-16080. [Google Scholar]
- Mekuria, M.C.; Furth, P.G.; Nixon, H. Low-Stress Bicycling and Network Connectivity. Available online: https://nacto.org/wp-content/uploads/2017/11/1005-low-stress-bicycling-network-connectivity.pdf (accessed on 5 July 2018).
- Wang, H.; Palm, M.; Chen, C.; Vogt, R.; Wang, Y. Does bicycle network level of traffic stress (LTS) explain bicycle travel behavior? Mixed results from an Oregon case study. J. Transp. Geogr. 2016, 57, 8–18. [Google Scholar] [CrossRef]
- Fitch, D.T.; Sharpnack, J.; Handy, S. The Road Environment and Bicyclists’ Psychophysiological Stress. In Proceedings of the 6th Annual International Cycling Safety Conference, Davis, CA, USA, 21–22 September 2017; pp. 22–24. [Google Scholar]
- Zeile, P.; Resch, B.; Loidl, M.; Petutschnig, A. Urban Emotions and Cycling Experience—Enriching Traffic Planning for Cyclists with Human Sensor Data. GI_Forum J. Geogr. Inf. Sci. 2016, 1, 204–216. [Google Scholar] [CrossRef]
- Caviedes, A.; Technology, T.; Technology, T.; Le, H.; Feng, W. What does stress real-world cyclists? In Proceedings of the Transportation Research Board 96th Annual Meeting, Washington, DC, USA, 8–12 January 2017; pp. 1–15. [Google Scholar]
- Liu, F.; Figliozzi, M. Utilizing Egocentric Video and Sensors to Conduct Naturalistic Bicycling Studies; Technical Report; NITC-RR-805; Transportation Research and Education Center (TREC): Portland, OR, USA, 2016. [Google Scholar]
- Zeile, P.; Resch, B.; Exner, J.P.; Sagl, G. Urban emotions: Benefits and risks in using human sensory assessment for the extraction of contextual emotion information in urban planning. In Planning Support Systems and Smart Cities; Geertman, S., Ferreira, J., Jr., Goodspeed, R., Stillwell, J., Eds.; Springer: Cham, Switzerland, 2015; Volume 213, pp. 209–225. [Google Scholar]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergner, B.; Zeile, P.; Papastefanou, G. Emotionales Barriere-GIS als neues Instrument zur Identifikation und Optimierung stadträumlicher Barrieren. Available online: https://gispoint.de/fileadmin/user_upload/paper_gis_open/AGIT_2011/537508010.pdf (accessed on 5 July 2018).
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 14–41. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wu, C. Primary or secondary tasks? Dual-task interference between cyclist hazard perception and cadence control using cross-modal sensory aids with rider assistance bike computers. Appl. Ergon. 2017, 59, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.W.; Wener, R.E. Rail commuting duration and passenger stress. Heal. Psychol. 2006, 25, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.; Prato, C.G. “Them or Us”: Perceptions, cognitions, emotions, and overt behavior associated with cyclists and motorists sharing the road. Int. J. Sustain. Transp. 2016, 10, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Joshi, M.S.; Senior, V.; Smith, G.P. A diary study of the risk perceptions of road users. Heal. Risk Soc. 2001, 3, 261–279. [Google Scholar] [CrossRef]
- Szalma, J.L.; Hancock, P.A. Noise effects on human performance: A meta-analytic synthesis. Psychol. Bull. 2011, 137, 682–707. [Google Scholar] [CrossRef] [PubMed]
- Hockey, G.R.J.; Hamilton, P. Arousal and Information Selection in Short-term Memory. Nature 1970, 226, 866–867. [Google Scholar] [CrossRef] [PubMed]
- Boman, E.; Enmarker, I.; Hygge, S. Strength of noise effects on memory as a function of noise source and age. Noise Heal. 2005, 7, 11–26. [Google Scholar] [CrossRef]
- Barbosa, A.S.M.; Cardoso, M.R.A. Hearing loss among workers exposed to road traffic noise in the city of São Paulo in Brazil. Auris Nasus Larynx 2005, 32, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Babisch, W. Cardiovascular effects of noise. Noise Heal. 2011, 13, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Babisch, W.; Beule, B.; Schust, M.; Kersten, N.; Ising, H. Traffic noise and risk of myocardial infarction. Epidemiology 2005, 16, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.L.; Muhar, A. An approach to the acoustic design of outdoor space. J. Environ. Plan. Manag. 2004, 47, 827–842. [Google Scholar] [CrossRef]
- Lavandier, C.; Defréville, B. The contribution of sound source characteristics in the assessment of urban soundscapes. Acta Acust. United Acust. 2006, 92, 912–921. [Google Scholar]
- Nilsson, M.E.; Berglund, B. Soundscape quality in suburban green areas and city parks. Acta Acust. United Acust. 2006, 92, 903–911. [Google Scholar]
- Venkatappa, K.G.; Vinutha Shankar, M.S. Study of association between noise levels and stress in traffic policemen of Bengaluru city. Biomed. Res. 2012, 23, 135–138. [Google Scholar]
- Michaud, D.; Keith, S.; McMurchy, D. Noise annoyance in Canada. Noise Heal. 2005, 7, 39–47. [Google Scholar] [CrossRef]
- Öhrström, E. Longitudinal surveys on effects of changes in road traffic noise—Annoyance, activity disturbances, and psycho-social well-being. J. Acoust. Soc. Am. 2004, 115, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Öhrström, E.; Skånberg, A.; Svensson, H.; Gidlöf-Gunnarsson, A. Effects of road traffic noise and the benefit of access to quietness. J. Sound Vib. 2006, 295, 40–59. [Google Scholar] [CrossRef]
- Björk, J.; Ardö, J.; Stroh, E.; Lövkvist, H.; Östergren, P.O.; Albin, M. Road traffic noise in southern Sweden and its relation to annoyance, disturbance of daily activities and health. Scand. J. Work. Environ. Heal. 2006, 32, 392–401. [Google Scholar] [CrossRef] [Green Version]
- Ramos, T.D.C. Avaliação da Exposição de Ciclistas ao Ruído em uma Cidade Média Brasileira. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2017. [Google Scholar]
- Apparicio, P.; Carrier, M.; Gelb, J.; Séguin, A.M.; Kingham, S. Cyclists’ exposure to air pollution and road traffic noise in central city neighbourhoods of Montreal. J. Transp. Geogr. 2016, 57, 63–69. [Google Scholar] [CrossRef]
- Dupuisl, H.; Gemne, G. Hand-arm vibration and the central nervous system. Int. Arch. Occup. Environ. Health 1985, 55, 185–189. [Google Scholar] [CrossRef]
- Putz-Anderson, V.; Bernard, B.; Burt, S. Musculoskeletal Disorders and Workplace Factors—A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back; National Institute for Occupational Safety and Health: Columbia Parkway Cincinnati, OH, USA, 1997. [Google Scholar]
- Griffin, M.J.; Bovenzi, M. The diagnosis of disorders caused by hand-transmitted vibration: Southampton Workshop 2000. Int. Arch. Occup. Environ. Health 2002, 75, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Parkin, J.; Sainte Cluque, E. The impact of vibration on comfort and bodily stress while cycling. In Proceedings of the UTSG 46th Annual Conference, Newcastle, UK, 6–8 January 2014; UWE: Newcastle, UK, 2014; pp. 6–8. [Google Scholar]
- Torbic, D.; Elefteriadou, L.; El-Gindy, M. Methodology for Evaluating Impacts of Rumble Strips on Bicyclists. In Transportation Research Board 82nd Annual Meeting; TRB, Ed.; Transportation Research Board of the National Academies: Washington, DC, USA, 2003; p. 24. [Google Scholar]
- Levy, M.; Smith, G.A. Effectiveness of vibration damping with bicycle suspension systems. Sport. Eng. 2005, 8, 99–106. [Google Scholar] [CrossRef]
- Yamanaka, H. Measuring Level-of-Service for Cycling of Urban Streets Using “Probe Bicycle System”. Transportation 2007, 7, 1614–1625. [Google Scholar]
- Du, W.; Zhang, D.; Zhao, X. Dynamic modelling and simulation of electric bicycle ride comfort. In Proceedings of the International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009; pp. 4339–4343. [Google Scholar] [CrossRef]
- Giubilato, F.; Petrone, N. A method for evaluating the vibrational response of racing bicycles wheels under road roughness excitation. Procedia Eng. 2012, 34, 409–414. [Google Scholar] [CrossRef]
- Olieman, M.; Marin-Perianu, R.; Marin-Perianu, M. Measurement of dynamic comfort in cycling using wireless acceleration sensors. Procedia Eng. 2012, 34, 568–573. [Google Scholar] [CrossRef]
- Arpinar-Avsar, P.; Birlik, G.; Sezgin, Ö.C.; Soylu, A.R. 14_The effects of surface-induced loads on forearm muscle activity during steering a bicycle. J. Sport. Sci. Med. 2013, 12, 512–520. [Google Scholar]
- Macdermid, P.W.; Fink, P.W.; Stannard, S.R. Transference of 3D accelerations during cross country mountain biking. J. Biomech. 2014, 47, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Ayachi, F.S.; Dorey, J.; Guastavino, C. Identifying factors of bicycle comfort: An online survey withenthusiast cyclists. Appl. Ergon. 2015, 46, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-P.; Lee, W.-J.; Chen, A.-C.; Wang, R.-Z.; Tseng, I.-C.; Lee, C.-C. Simulation of Bicycle-Riding Smoothness by Bicycle Motion Analysis Model. J. Transp. Eng. 2015, 141, 04015031. [Google Scholar] [CrossRef]
- Thigpen, C.G.; Li, H.; Handy, S.L.; Harvey, J. Modeling the Impact of Pavement Roughness on Bicycle Ride Quality. Transp. Res. Rec. J. Transp. Res. Board 2015, 2520, 67–77. [Google Scholar] [CrossRef]
- Takahashi, J.; Kobana, Y.; Tobe, Y.; Lopez, G. Classification of Steps on Road Surface Using Acceleration Signals. In Proceedings of the 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Coimbra, Portugal, 22–24 July 2015. [Google Scholar]
- Ambrož, M. 30-Raspberry Pi as a low-cost data acquisition system for human powered vehicles. Measurement 2017, 100, 7–18. [Google Scholar] [CrossRef]
- Zeile, P. Urban Emotions. Available online: http://urban-emotions.com/?author=2 (accessed on 20 March 2018).
- Dekoninck, L.; Botteldooren, D.; Panis, L.I.; Hankey, S.; Jain, G.; Karthik, S.; Marshall, J. Applicability of a noise-based model to estimate in-traffic exposure to black carbon and particle number concentrations in different cultures. Environ. Int. 2014, 74, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, T.C.; Rodrigues da Silva, A.N.; De Souza, L.C.L.; Dekoninck, L.; Botteldooren, D. Assessing noise exposure levels along recently built cyclepaths in a Brazilian city with a mobile sensing system. In Proceedings of the CUPUM 2015—14th International Conference on Computers in Urban Planning and Urban Management, Cambrige, MA, USA, 7–10 July 2015; Massachusetts Institute of Technology: Cambrige, MA, USA, 2015. [Google Scholar]
- Beyel, S.; Wilhelm, J.; Mueller, C.; Zeile, P.; Klein, U. Stresstest städtischer Infrastrukturen—Ein Experiment zur Wahrnehmung des Alters im öffentlichen Raum. In Proceedings of the 21st International Conference on Urban Planning, Regional Development and Information Society, Hamburg, Germany, 22–24 June 2016; Available online: https://www.corp.at/archive/CORP2016_42.pdf (accessed on 5 July 2018).
- International Standards Organization ISO 2631-1. Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-Body Vibration—Part 1—General Requirements; ISO-Standards Cat.: Geneva, Switzerland, 1997; Volume 31. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized linear models, no. 37. In Monograph on Statistics and Applied Probability; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Agresti, A. An Introduction to Categorical Data Analysis, 2nd ed.; Wiley: Gainesville, FL, USA, 2007; ISBN 9780471226185. [Google Scholar]
- Cox, D.R.; Snell, D.J. The Analysis of Binary Data, 2nd ed.; Chapman & Hall: London, UK, 1989. [Google Scholar]
- Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
Noise Level (LAeq (dB)) | Category for the Model | Category |
---|---|---|
Less than 75 | Low noise | 1 |
75 to 85 | Moderate noise | 2 |
More than 85 | Loud noise | 3 |
Acceptable Values of Vibration Magnitude for Comfort (RMS (m/s²)) | Likely User’s Reaction | Category | |
---|---|---|---|
As in ISO 2631-1 | Values Used in This Study (to Avoid Overlapping Classes) | ||
Less than 0.315 0.315 to 0.63 0.5 to 1 0.8 to 1.6 1.25 to 2.5 More than 2.5 | Less than 0.315 0.315 to 0.63 0.63 to 1 1 to 1.6 1.6 to 2.5 More than 2.5 | Not uncomfortable A little uncomfortable Fairly uncomfortable UncomfortableVery uncomfortable Extremely uncomfortable | 1 2 3 4 5 6 |
Morning Rush Hour | |||||||
---|---|---|---|---|---|---|---|
Variable | Min. | 1st | Median | Mean | 3rd | Max. | σ |
Stress (DOS (s)) | 5 | 5 | 7 | 9.55 | 12.25 | 28 | 5.70 |
Noise (LAeq (dB)) | 57.47 | 71.30 | 75.60 | 75.97 | 80.33 | 108.10 | 6.22 |
VA (RMS (m/s2)) | 0.01274 | 0.8736 | 1.142 | 1.431 | 1.621 | 11.62 | 0.99 |
Afternoon Rush Hour | |||||||
Variable | Min. | 1st | Median | Mean | 3rd | Max. | σ |
Stress (DOS (s)) | 5 | 6 | 8 | 10.34 | 11.5 | 43 | 7.60 |
Noise (LAeq (dB)) | 45.65 | 75.46 | 78.91 | 78.80 | 82.18 | 107.60 | 5.44 |
VA (RMS (m/s2)) | 0.001 | 0.9036 | 1.241 | 1.579 | 1.8 | 18.09 | 1.21 |
Variables | Adjustment Criteria | ||
---|---|---|---|
Cox and Snell | Nagelkerke | AIC | |
Noise | 7.851 × 10−5 | 1.25 × 10−4 | 19,748 |
VA | 2.07 × 10−3 | 3.20 × 10−3 | 19,716 |
PCI | 3.68 × 10−4 | 5.70 × 10−4 | 19,741 |
Period | 2.06 × 10−3 | 3.19 × 10−3 | 19,708 |
Noise + VA | 2.16 × 10−3 | 3.35 × 10−3 | 19,719 |
Noise + PCI | 4.46 × 10−4 | 6.90 × 10−4 | 19,743 |
Noise + Period | 2.23 × 10−3 | 3.45 × 10−3 | 19,709 |
VA + PCI | 2.23 × 10−3 | 3.46 × 10−3 | 19,715 |
VA + PCI + Period | 4.03 × 10−3 | 6.23 × 10−3 | 19,683 |
VA + Period | 3.85 × 10−3 | 5.97 × 10−3 | 19,684 |
PCI + Period | 2.42 × 10−3 | 3.75 × 10−3 | 19,704 |
Noise + VA + PCI | 2.32 × 10−3 | 3.60 × 10−3 | 19,717 |
Noise + VA + PCI + Period | 4.20 × 10−3 | 6.49 × 10−3 | 19,684 |
Explanatory Variables | Estimate | Std. Error | z Value | Pr (>|z|) | Odds Ratio exp(β) | 95% Confidence Interval for exp(β) | |
---|---|---|---|---|---|---|---|
Intercept | −1.35361 | 0.12286 | −11.017 | <2 × 10−16 | 0.258306 | 0.201986 | 0.327135 |
Noise (LAeq (dB)) | |||||||
75 to 85 (Noise2) | −0.0552 | 0.03791 | −1.456 | 0.1454 | 0.946295 | 0.878529 | 1.019304 |
>85 dBA (Noise3) | 0.03948 | 0.07115 | 0.555 | 0.5790 | 1.040268 | 0.903712 | 1.194528 |
RMS (m/s²) | |||||||
0.315 to 0.63 (VA2) | 0.123 | 0.13285 | 0.926 | 0.3545 | 1.130885 | 0.874831 | 1.473401 |
0.63 to 1 (VA3) | −0.14451 | 0.12533 | −1.153 | 0.2489 | 0.865442 | 0.679883 | 1.111831 |
1 to 1.6 (VA4) | −0.02449 | 0.12479 | −0.196 | 0.8444 | 0.975804 | 0.767435 | 1.252346 |
1.6 to 2.5 (VA5) | 0.05507 | 0.12754 | 0.432 | 0.6659 | 1.056614 | 0.826331 | 1.363036 |
>2.5 (VA6) | 0.12673 | 0.12852 | 0.986 | 0.3241 | 1.135114 | 0.885927 | 1.467004 |
PCI | −0.07269 | 0.04071 | −1.785 | 0.0742 | 0.92989 | 0.858353 | 1.006886 |
Period | 0.21814 | 0.03652 | 5.974 | 2.32 × 10−9 | 1.243759 | 1.157868 | 1.336069 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuñez, J.Y.M.; Teixeira, I.P.; Silva, A.N.R.d.; Zeile, P.; Dekoninck, L.; Botteldooren, D. The Influence of Noise, Vibration, Cycle Paths, and Period of Day on Stress Experienced by Cyclists. Sustainability 2018, 10, 2379. https://doi.org/10.3390/su10072379
Nuñez JYM, Teixeira IP, Silva ANRd, Zeile P, Dekoninck L, Botteldooren D. The Influence of Noise, Vibration, Cycle Paths, and Period of Day on Stress Experienced by Cyclists. Sustainability. 2018; 10(7):2379. https://doi.org/10.3390/su10072379
Chicago/Turabian StyleNuñez, Javier Yesid Mahecha, Inaian Pignatti Teixeira, Antônio Nélson Rodrigues da Silva, Peter Zeile, Luc Dekoninck, and Dick Botteldooren. 2018. "The Influence of Noise, Vibration, Cycle Paths, and Period of Day on Stress Experienced by Cyclists" Sustainability 10, no. 7: 2379. https://doi.org/10.3390/su10072379
APA StyleNuñez, J. Y. M., Teixeira, I. P., Silva, A. N. R. d., Zeile, P., Dekoninck, L., & Botteldooren, D. (2018). The Influence of Noise, Vibration, Cycle Paths, and Period of Day on Stress Experienced by Cyclists. Sustainability, 10(7), 2379. https://doi.org/10.3390/su10072379