Measuring Country Sustainability Performance Using Ensembles of Neuro-Fuzzy Technique
Abstract
:1. Introduction
2. Sustainability and Fuzzy Neural Networks
3. ANFIS
4. ANFIS Ensemble Evaluation
5. Discussion and Recommendations
6. Conclusions and Future Work
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Component | Basic Indicator |
---|---|
PR(LAND) | “Municipal waste (kg per capita per year)” |
PR(LAND) | “Nuclear waste (tons per capita per year)” |
PR(LAND) | “Hazardous waste (tons per capita per year)” |
PR(LAND) | “Population growth rate (percent)” |
PR(LAND) | “Pesticide consumption (kg per hectare)” |
PR(LAND) | “Fertilizer consumption (kg per hectare)” |
ST(LAND) | “Desertification of land (percent of dryland area)” |
ST(LAND) | “Forest area (percent of what existed in 2000)” |
RE(LAND) | “Forest change (annual rate)” |
RE(LAND) | “Protected area (percent of total land area)” |
RE(LAND) | “Glass recycling (percent of apparent consumption)” |
RE(LAND) | “Paper recycling” |
PR(WATER) | “Pesticide consumption (kg per hectare)” |
PR(WATER) | “Fertilizer consumption (kg per hectare)” |
PR(WATER) | “Water withdrawals (percent of internal resources)” |
ST(WATER) | “Organic water pollutant (BOD) emissions (kg per capita per day)d1” |
ST(WATER) | “Phosphorous concentration (mg per liter of water)” |
ST(WATER) | “Metals concentration (micro-Siemens per centimeter)” |
RE(WATER) | “Public wastewater treatment plants (percent of population connected)” |
PR(BIOD) | “Threatened mammals (percentage)” |
PR(BIOD) | “Threatened birds (percentage)” |
PR(BIOD) | “Threatened plants (percentage)” |
PR(BIOD) | “Threatened fishes (percentage)” |
PR(BIOD) | “Threatened amphibians (percentage)” |
PR(BIOD) | “Threatened reptiles (percentage)” |
ST(BIOD) | “Desertification of land (percent of dryland area)” |
ST(BIOD) | “Forest area (percent of what existed in 2000)” |
RE(BIOD) | “Forest change (annual rate)” |
RE(BIOD) | “Protected area (percent of total land area)” |
PR(AIR) | “Ozone depleting substances (metric tons per capita)” |
PR(AIR) | “Greenhouse gas emissions (tons of CO2 equivalent per capita)” |
ST(AIR) | “Mortality from poor air quality (deaths per 100,000 population)” |
ST(AIR) | “Urban NO2 concentration (g/m3 of air)” |
ST(AIR) | “Urban SO2 concentration (g/m3 of air)” |
ST(AIR) | “Urban TSP (total suspended particulates) concentration (g/m3 of air)” |
RE(AIR) | “Renewable energy production (percent of total primary energy supply)” |
PR(POLICY) | “Military spending (percent of gross domestic product (GDP)d2)” |
PR(POLICY) | “Refugees per capita (country of origin)” |
PR(POLICY) | “Poverty (percent of population below national poverty line)” |
ST(POLICY) | “Political rights (values in [1,7])d3” |
ST(POLICY) | “Civil liberties (values in [1,7])d3” |
ST(POLICY) | “Gini indexd4” |
ST(POLICY) | “Corruption Perceptions Index (values in [0,10])d5” |
RE(POLICY) | “Environmental laws and enforcement (values in [0,1])d6” |
RE(POLICY) | “Tax revenue (percent of GDP)” |
PR(WEALTH) | “GDP implicit deflator (annual percent growth rate)” |
PR(WEALTH) | “Imports (percent of GDP)” |
PR(WEALTH) | “Unemployment (percent of total labor force)” |
PR(WEALTH) | “Unemployment gender gap (percent)” |
ST(WEALTH) | “Poverty (percent of population below national poverty line)” |
ST(WEALTH) | “Central government debt (percent of GDP)” |
ST(WEALTH) | “Gross National Income (GNI) per capita PPPd7” |
RE(WEALTH) | “Exports (percent of GDP)” |
RE(WEALTH) | “Foreign direct investment (percent of GDP)” |
RE(WEALTH) | “Mortality from poor air quality (deaths per 100,000 population)” |
RE(WEALTH) | “Infant mortality rate (deaths per thousand)” |
RE(WEALTH) | “Maternal mortality rate (deaths per 100,000 live births)” |
RE(WEALTH) | “HIV/AIDS prevalence rate (percent of population aged 15–49)” |
RE(WEALTH) | “Tuberculosis prevalence rate (per 100,000 population)” |
RE(WEALTH) | “Malaria cases (per thousand people)” |
ST(HEALTH) | “Life expectancy (years)” |
ST(HEALTH) | “Immunization against measles (percent of population)” |
ST(HEALTH) | “Immunization against diphtheria-tetanus-pertussis (DTB) (percent of population)d8” |
ST(HEALTH) | “Daily per capita calorie supply” |
RE(HEALTH) | “Number of doctors (per thousand people)” |
RE(HEALTH) | “Hospital beds (per thousand people)” |
RE(HEALTH) | “Public health expenditure (percent of GDP)” |
RE(HEALTH) | “Access to improved water sources (percent of population)” |
RE(HEALTH) | “Access to improved sanitation (percent of population)” |
PR(KNOW) | “Primary education ratio of students to teaching staff” |
PR(KNOW) | “Secondary education ratio of students to teaching staff” |
PR(KNOW) | “Tertiary education ratio of students to teaching staff” |
ST(KNOW) | “Male expected years of schooling” |
ST(KNOW) | “Female expected years of schooling” |
ST(KNOW) | “Primary net school enrollment (percent of children)” |
ST(KNOW) | “Secondary net school enrollment (percent of children)” |
ST(KNOW) | “Literacy rate (percent of population)” |
ST(KNOW) | “Knowledge Economy Index (KEI; values in [0,10])d9” |
RE(KNOW) | “Public expenditure on research and development (percent of GDP)” |
RE(KNOW) | “Public expenditure on education (percent of GDP)” |
RE(KNOW) | “Personal computers (per thousand people)” |
RE(KNOW) | “Internet users (per hundred people)” |
RE(KNOW) | “Expenditure on information and communication (percent of GDP)” |
Appendix B
Country | SAFE | ANFIS | ANFIS Ensemble | Difference (ANFIS Ensemble and SAFE) |
---|---|---|---|---|
Germany | 1 | 1 | 1 | 0 |
Switzerland | 2 | 3 | 3 | 1 |
Sweden | 3 | 2 | 2 | −1 |
Norway | 4 | 4 | 4 | 0 |
Finland | 5 | 6 | 5 | 0 |
Denmark | 6 | 5 | 8 | 2 |
Austria | 7 | 8 | 6 | −1 |
Netherlands | 8 | 7 | 7 | −1 |
Belgium | 9 | 9 | 9 | 0 |
France | 10 | 11 | 10 | 0 |
New Zealand | 11 | 10 | 11 | 0 |
UK | 12 | 12 | 12 | 0 |
Canada | 13 | 13 | 13 | 0 |
Australia | 14 | 14 | 14 | 0 |
Lithuania | 15 | 16 | 15 | 0 |
Czech Rep. | 16 | 15 | 16 | 0 |
Italy | 17 | 19 | 17 | 0 |
Latvia | 18 | 21 | 18 | 0 |
Slovenia | 19 | 18 | 19 | 0 |
Slovakia | 20 | 17 | 20 | 0 |
Spain | 21 | 25 | 21 | 0 |
Ireland | 22 | 26 | 22 | 0 |
Poland | 23 | 24 | 23 | 0 |
Portugal | 24 | 22 | 25 | 1 |
Estonia | 25 | 23 | 28 | 3 |
Uruguay | 26 | 20 | 24 | −2 |
Belarus | 27 | 27 | 26 | −1 |
Japan | 28 | 31 | 27 | −1 |
Croatia | 29 | 28 | 29 | 0 |
Romania | 30 | 29 | 30 | 0 |
Greece | 31 | 30 | 32 | 1 |
USA | 32 | 33 | 31 | −1 |
Hungary | 33 | 32 | 33 | 0 |
Argentina | 34 | 34 | 34 | 0 |
Brazil | 35 | 35 | 35 | 0 |
Bulgaria | 36 | 37 | 36 | 0 |
Turkey | 37 | 36 | 37 | 0 |
Former Yugoslav Republic of Macedonia (FYR) Maced. | 38 | 39 | 38 | 0 |
Ukraine | 39 | 38 | 39 | 0 |
Kazakhstan | 40 | 40 | 40 | 0 |
Russia | 41 | 41 | 42 | 1 |
Georgia | 42 | 42 | 41 | −1 |
Panama | 43 | 46 | 43 | 0 |
Albania | 44 | 43 | 44 | 0 |
Chile | 45 | 44 | 45 | 0 |
Ecuador | 46 | 45 | 48 | 2 |
Morocco | 47 | 47 | 47 | 0 |
South Korea | 48 | 53 | 46 | −2 |
Israel | 49 | 48 | 50 | 1 |
Nicaragua | 50 | 49 | 49 | −1 |
Venezuela | 51 | 50 | 51 | 0 |
Armenia | 52 | 51 | 52 | 0 |
Paraguay | 53 | 52 | 53 | 0 |
Kyrgyzstan | 54 | 54 | 54 | 0 |
Tunisia | 55 | 58 | 56 | 1 |
Bolivia | 56 | 57 | 55 | −1 |
Malaysia | 57 | 55 | 57 | 0 |
El Salvador | 58 | 56 | 58 | 0 |
Kuwait | 59 | 61 | 59 | 0 |
Mexico | 60 | 60 | 60 | 0 |
Peru | 61 | 59 | 62 | 1 |
China | 62 | 63 | 61 | −1 |
Tajikistan | 63 | 62 | 63 | 0 |
Thailand | 64 | 64 | 64 | 0 |
Indonesia | 65 | 66 | 65 | 0 |
Moldova | 66 | 65 | 66 | 0 |
Honduras | 67 | 68 | 67 | 0 |
Azerbaijan | 68 | 67 | 68 | 0 |
Ghana | 69 | 70 | 69 | 0 |
Zimbabwe | 70 | 69 | 70 | 0 |
Botswana | 71 | 72 | 71 | 0 |
Guatemala | 72 | 71 | 72 | 0 |
Syria | 73 | 73 | 73 | 0 |
Philippines | 74 | 74 | 74 | 0 |
Mongolia | 75 | 77 | 77 | 2 |
Jordan | 76 | 75 | 75 | −1 |
Namibia | 77 | 76 | 76 | −1 |
United Arab Emirates | 78 | 80 | 78 | 0 |
Saudi Arabia | 79 | 78 | 79 | 0 |
Uzbekistan | 80 | 79 | 80 | 0 |
Vietnam | 81 | 82 | 81 | 0 |
Gabon | 82 | 81 | 82 | 0 |
Algeria | 83 | 85 | 83 | 0 |
Kenya | 84 | 84 | 85 | 1 |
South Africa | 85 | 83 | 84 | −1 |
Malawi | 86 | 88 | 88 | 2 |
Sri Lanka | 87 | 89 | 87 | 0 |
Zambia | 88 | 87 | 86 | −2 |
Nepal | 89 | 86 | 91 | 2 |
Gambia | 90 | 90 | 93 | 3 |
Rwanda | 91 | 95 | 89 | −2 |
Egypt | 92 | 96 | 90 | −2 |
Lebanon | 93 | 94 | 92 | −1 |
Senegal | 94 | 91 | 94 | 0 |
Congo | 95 | 92 | 97 | 2 |
Mozambique | 96 | 93 | 95 | −1 |
Guinea Bissau | 97 | 100 | 96 | −1 |
Burkina Faso | 98 | 98 | 98 | 0 |
Cote d’Ivoire | 99 | 97 | 99 | 0 |
Guinea | 100 | 99 | 100 | 0 |
Angola | 101 | 104 | 101 | 0 |
Chad | 102 | 103 | 102 | 0 |
Iran | 103 | 101 | 104 | 1 |
Tanzania | 104 | 102 | 103 | −1 |
Colombia | 105 | 105 | 105 | 0 |
DR Congo | 106 | 108 | 106 | 0 |
Burundi | 107 | 106 | 107 | 0 |
Uganda | 108 | 107 | 108 | 0 |
Sierra Leone | 109 | 109 | 109 | 0 |
Nigeria | 110 | 112 | 110 | 0 |
Togo | 111 | 110 | 111 | 0 |
Laos | 112 | 111 | 113 | 1 |
Cameroon | 113 | 113 | 112 | −1 |
Madagascar | 114 | 114 | 114 | 0 |
Oman | 115 | 115 | 115 | 0 |
India | 116 | 116 | 116 | 0 |
Cambodia | 117 | 117 | 117 | 0 |
Papua NG | 118 | 118 | 118 | 0 |
Ethiopia | 119 | 119 | 119 | 0 |
Benin | 120 | 120 | 121 | 1 |
Centr. Afr. R | 121 | 123 | 120 | −1 |
Mali | 122 | 121 | 122 | 0 |
Bangladesh | 123 | 122 | 123 | 0 |
Niger | 124 | 124 | 124 | 0 |
Pakistan | 125 | 126 | 125 | 0 |
Yemen | 126 | 125 | 126 | 0 |
Sudan | 127 | 128 | 127 | 0 |
Mauritania | 128 | 127 | 128 | 0 |
References
- Brundtland Commission. Development, World Commission on Environment and Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Myronidis, D.; Ioannou, K.; Sapountzis, M.; Fotakis, D. Development of a sustainable plan to combat erosion for an island of the Mediterranean region. Fresenius Environ. Bull. 2010, 19, 1694–1702. [Google Scholar]
- Widya-Hasuti, A.; Mardani, A.; Streimikiene, D.; Sharifara, A.; Cavallaro, F. The Role of Process Innovation between Firm-Specific Capabilities and Sustainable Innovation in SMEs: Empirical Evidence from Indonesia. Sustainability 2018, 10, 2244. [Google Scholar] [CrossRef]
- Devuyst, D.; Hens, L.; De Lannoy, W. How Green Is the City?: Sustainability Assessment and the Management of Urban Environments; Columbia University Press: New York, NY, USA, 2001. [Google Scholar]
- Tan, Y.; Shuai, C.; Jiao, L.; Shen, L. An adaptive neuro-fuzzy inference system (ANFIS) approach for measuring country sustainability performance. Environ. Impact Assess. Rev. 2017, 65, 29–40. [Google Scholar] [CrossRef]
- Giddings, B.; Hopwood, B.; O’brien, G. Environment, economy and society: Fitting them together into sustainable development. Sustain. Dev. 2002, 10, 187–196. [Google Scholar] [CrossRef]
- Hediger, W. Sustainable development and social welfare. Ecol. Econ. 2000, 32, 481–492. [Google Scholar] [CrossRef]
- Konstantinos, I.; Georgios, T.; Garyfallos, A.; Zacharoula, A.; Eleni, Z. A Spatial Decision Support System Framework for the Evaluation of Biomass Energy Production Locations: Case Study in the Regional Unit of Drama, Greece. Sustainability 2018, 10, 531. [Google Scholar]
- Ioannou, K.; Birbilis, D.; Lefakis, P. A method for predicting the possibility of ring shake appearance on standing chestnut trees (Castanea sativa MIL L.). J. Environ. Prot. Ecol. 2011, 12, 295–304. [Google Scholar]
- Arushanyan, Y.; Ekener, E.; Moberg, Å. Sustainability assessment framework for scenarios–SAFS. Environ. Impact Assess. Rev. 2017, 63, 23–34. [Google Scholar] [CrossRef]
- Houshyar, E.; SheikhDavoodi, M.J.; Almassi, M.; Bahrami, H.; Azadi, H.; Omidi, M.; Sayyad, G.; Witlox, F. Silage corn production in conventional and conservation tillage systems. Part I: Sustainability analysis using combination of GIS/AHP and multi-fuzzy modeling. Ecol. Indic. 2014, 39, 102–114. [Google Scholar] [CrossRef]
- Cavallaro, F. A Takagi-Sugeno Fuzzy Inference System for developing a sustainability index of biomass. Sustainability 2015, 7, 12359–12371. [Google Scholar] [CrossRef]
- Zhao, H.; Li, N. Performance evaluation for sustainability of strong smart grid by using stochastic AHP and fuzzy TOPSIS methods. Sustainability 2016, 8, 129. [Google Scholar] [CrossRef]
- Phillis, Y.A.; Grigoroudis, E.; Kouikoglou, V.S. Sustainability ranking and improvement of countries. Ecol. Econ. 2011, 70, 542–553. [Google Scholar] [CrossRef]
- Phillis, Y.A.; Andriantiatsaholiniaina, L.A. Sustainability: An ill-defined concept and its assessment using fuzzy logic. Ecol. Econ. 2001, 37, 435–456. [Google Scholar] [CrossRef]
- Woods, K.; Kegelmeyer, W.P.; Bowyer, K. Combination of multiple classifiers using local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 405–410. [Google Scholar] [CrossRef]
- Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Kuncheva, L.I. Combining Pattern Classifiers: Methods and Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Soto, J.; Melin, P.; Castillo, O. A new approach for time series prediction using ensembles of ANFIS models with interval type-2 and type-1 fuzzy integrators. In Proceedings of the 2013 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr), Singapore, 16–19 April 2013; pp. 68–73. [Google Scholar]
- Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Halkijevic, I.; Vukovic, Z.; Vouk, D. Indicators and a Neuro-Fuzzy Based Model for the Evaluation of Water Supply Sustainability. Water Resour. Manag. 2017, 31, 3683–3698. [Google Scholar] [CrossRef]
- Cavallaro, F. Electric load analysis using an artificial neural network. Int. J. Energy Res. 2005, 29, 377–392. [Google Scholar] [CrossRef]
- Ruben, R.B.; Asokan, P.; Vinodh, S. Performance evaluation of lean sustainable systems using adaptive neuro fuzzy inference system: A case study. Int. J. Sustain. Eng. 2017, 10, 158–175. [Google Scholar] [CrossRef]
- Pousinho, H.M.I.; Mendes, V.M.F.; Catalão, J.P.S. A hybrid PSO–ANFIS approach for short-term wind power prediction in Portugal. Energy Convers. Manag. 2011, 52, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Altin, N.; Sefa, İ. dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter. Energy Convers. Manag. 2012, 56, 130–139. [Google Scholar] [CrossRef]
- Shamshirband, S.; Petković, D.; Ćojbašić, Ž.; Nikolić, V.; Anuar, N.B.; Mohd Shuib, N.L.; Mat Kiah, M.L.; Akib, S. Adaptive neuro-fuzzy optimization of wind farm project net profit. Energy Convers. Manag. 2014, 80, 229–237. [Google Scholar] [CrossRef]
- Osório, G.J.; Matias, J.C.O.; Catalão, J.P.S. Electricity prices forecasting by a hybrid evolutionary-adaptive methodology. Energy Convers. Manag. 2014, 80, 363–373. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.-Q.; Li, Y.-F. Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions. Energy Convers. Manag. 2015, 89, 1–11. [Google Scholar] [CrossRef]
- Mohammadi, K.; Shamshirband, S.; Tong, C.W.; Alam, K.A.; Petković, D. Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year. Energy Convers. Manag. 2015, 93, 406–413. [Google Scholar] [CrossRef]
- Al-Ghandoor, A.; Samhouri, M.; Al-Hinti, I.; Jaber, J.; Al-Rawashdeh, M. Projection of future transport energy demand of Jordan using adaptive neuro-fuzzy technique. Energy 2012, 38, 128–135. [Google Scholar] [CrossRef]
- Zahedi, G.; Azizi, S.; Bahadori, A.; Elkamel, A.; Wan Alwi, S.R. Electricity demand estimation using an adaptive neuro-fuzzy network: A case study from the Ontario province—Canada. Energy 2013, 49, 323–328. [Google Scholar] [CrossRef]
- Nikolić, V.; Shamshirband, S.; Petković, D.; Mohammadi, K.; Ćojbašić, Ž.; Altameem, T.A.; Gani, A. Wind wake influence estimation on energy production of wind farm by adaptive neuro-fuzzy methodology. Energy 2015, 80, 361–372. [Google Scholar] [CrossRef]
- Nikolić, V.; Petković, D.; Shamshirband, S.; Ćojbašić, Ž. Adaptive neuro-fuzzy estimation of diffuser effects on wind turbine performance. Energy 2015, 89, 324–333. [Google Scholar] [CrossRef]
- Naji, S.; Shamshirband, S.; Basser, H.; Keivani, A.; Alengaram, U.J.; Jumaat, M.Z.; Petković, D. Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renew. Sustain. Energy Rev. 2016, 53, 1520–1528. [Google Scholar] [CrossRef]
- Petković, D.; Shamshirband, S.; Kamsin, A.; Lee, M.; Anicic, O.; Nikolić, V. Survey of the most influential parameters on the wind farm net present value (NPV) by adaptive neuro-fuzzy approach. Renew. Sustain. Energy Rev. 2016, 57, 1270–1278. [Google Scholar] [CrossRef]
- Shamshirband, S.; Keivani, A.; Mohammadi, K.; Lee, M.; Hamid, S.H.A.; Petkovic, D. Assessing the proficiency of adaptive neuro-fuzzy system to estimate wind power density: Case study of Aligoodarz, Iran. Renew. Sustain. Energy Rev. 2016, 59, 429–435. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S.A. ANFIS-based modelling for photovoltaic power supply system: A case study. Renew. Energy 2011, 36, 250–258. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Li, C. Interpolation of missing wind data based on ANFIS. Renew. Energy 2011, 36, 993–998. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, L.A.; Muñoz-Jimenez, A.; Falces, A.; Mendoza-Villena, M.; Garcia-Garrido, E.; Lara-Santillan, P.M.; Zorzano-Alba, E.; Zorzano-Santamaria, P.J. Short-term power forecasting system for photovoltaic plants. Renew. Energy 2012, 44, 311–317. [Google Scholar] [CrossRef]
- Nilashi, M.; Ibrahim, O.; Ahani, A. Accuracy improvement for predicting Parkinson’s disease progression. Sci. Rep. 2016, 6, 34181. [Google Scholar] [CrossRef] [PubMed]
- Nilashi, M.; bin Ibrahim, O.; Ithnin, N. Hybrid recommendation approaches for multi-criteria collaborative filtering. Expert Syst. Appl. 2014, 41, 3879–3900. [Google Scholar] [CrossRef]
- Jang, J.-S.R.; Sun, C.-T.; Mizutani, E. Neuro-Fuzzy and Soft Computing—A Computational Approach to Learning and Machine Intelligence, 1997.
- Nilashi, M.; bin Ibrahim, O.; Ithnin, N.; Sarmin, N.H. A multi-criteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA–ANFIS. Electron. Commer. Res. Appl. 2015, 14, 542–562. [Google Scholar] [CrossRef]
- Chen, R.-Y. RFM-based eco-efficiency analysis using Takagi–Sugeno fuzzy and AHP approach. Environ. Impact Assess. Rev. 2009, 29, 157–164. [Google Scholar] [CrossRef]
- Ahmadi, H.; Gholamzadeh, M.; Shahmoradi, L.; Nilashi, M.; Rashvand, P. Diseases Diagnosis Using Fuzzy Logic Methods: A Systematic and Meta-Analysis Review. Comput. Methods Programs Biomed. 2018, 161, 145–172. [Google Scholar] [CrossRef] [PubMed]
- Nilashi, M.; Dalvi-Esfahani, M.; Ibrahim, O.; Bagherifard, K.; Mardani, A.; Zakuan, N. A soft computing method for the prediction of energy performance of residential buildings. Measurement 2017, 109, 268–280. [Google Scholar] [CrossRef]
- Ahani, A.; Rahim, N.Z.A.; Nilashi, M. Forecasting social CRM adoption in SMEs: A combined SEM-neural network method. Comput. Hum. Behav. 2017, 75, 560–578. [Google Scholar] [CrossRef]
- Nilashi, M.; Bagherifard, K.; Rahmani, M.; Rafe, V. A recommender system for tourism industry using cluster ensemble and prediction machine learning techniques. Comput. Ind. Eng. 2017, 109, 357–368. [Google Scholar] [CrossRef]
- Nilashi, M.; Ibrahim, O.; Ahmadi, H.; Shahmoradi, L.; Farahmand, M. A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques. Biocybern. Biomed. Eng. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Saini, L.M. Peak load forecasting using Bayesian regularization, Resilient and adaptive backpropagation learning based artificial neural networks. Electr. Power Syst. Res. 2008, 78, 1302–1310. [Google Scholar] [CrossRef]
- Wang, C.-H.; Kao, C.-H.; Lee, W.-H. A new interactive model for improving the learning performance of back propagation neural network. Autom. Constr. 2007, 16, 745–758. [Google Scholar] [CrossRef]
- Hjorth, P.; Bagheri, A. Navigating towards sustainable development: A system dynamics approach. Futures 2006, 38, 74–92. [Google Scholar] [CrossRef]
- Grigoroudis, E.; Kouikoglou, V.S.; Phillis, Y.A. SAFE 2013: Sustainability of countries updated. Ecol. Indic. 2014, 38, 61–66. [Google Scholar] [CrossRef]
Method | Membership Function | RMSE |
---|---|---|
ANFIS-Ensemble | Triangular, Generalized Bell-Shaped, Gaussian, and Π-Shaped | 0.00086 |
ANFIS-Ensemble | Gaussian, Π-Shaped, and Generalized Bell-Shaped | 0.00065 |
ANFIS-Ensemble | Gaussian, Triangular, and Generalized Bell-Shaped | 0.00059 |
ANFIS-Ensemble | Gaussian, Triangular, and Π-Shaped | 0.00038 |
NN | - | 0.02649 |
SVR | - | 0.00916 |
MLR | - | 0.03438 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilashi, M.; Cavallaro, F.; Mardani, A.; Zavadskas, E.K.; Samad, S.; Ibrahim, O. Measuring Country Sustainability Performance Using Ensembles of Neuro-Fuzzy Technique. Sustainability 2018, 10, 2707. https://doi.org/10.3390/su10082707
Nilashi M, Cavallaro F, Mardani A, Zavadskas EK, Samad S, Ibrahim O. Measuring Country Sustainability Performance Using Ensembles of Neuro-Fuzzy Technique. Sustainability. 2018; 10(8):2707. https://doi.org/10.3390/su10082707
Chicago/Turabian StyleNilashi, Mehrbakhsh, Fausto Cavallaro, Abbas Mardani, Edmundas Kazimieras Zavadskas, Sarminah Samad, and Othman Ibrahim. 2018. "Measuring Country Sustainability Performance Using Ensembles of Neuro-Fuzzy Technique" Sustainability 10, no. 8: 2707. https://doi.org/10.3390/su10082707
APA StyleNilashi, M., Cavallaro, F., Mardani, A., Zavadskas, E. K., Samad, S., & Ibrahim, O. (2018). Measuring Country Sustainability Performance Using Ensembles of Neuro-Fuzzy Technique. Sustainability, 10(8), 2707. https://doi.org/10.3390/su10082707